CaltechAUTHORS
  A Caltech Library Service

Dissipation-Driven Quantum Phase Transition in Superconductor-Graphene Systems

Lutchyn, Roman M. and Galitski, Victor M. and Refael, Gil and Das Sarma, S. (2008) Dissipation-Driven Quantum Phase Transition in Superconductor-Graphene Systems. Physical Review Letters, 101 (10). Art. No. 106402. ISSN 0031-9007. doi:10.1103/PhysRevLett.101.106402. https://resolver.caltech.edu/CaltechAUTHORS:LUTprl08

[img]
Preview
PDF - Published Version
See Usage Policy.

373kB
[img]
Preview
Image (GIF) (Editors' Suggestion) - Cover Image
See Usage Policy.

1kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:LUTprl08

Abstract

We show that a system of Josephson junctions coupled via low-resistance tunneling contacts to graphene substrate(s) may effectively operate as a current switching device. The effect is based on the dissipation-driven superconductor-to-insulator quantum phase transition, which happens due to the interplay of the Josephson effect and Coulomb blockade. Coupling to a graphene substrate with gapless excitations further enhances charge fluctuations favoring superconductivity. The effect is shown to scale exponentially with the Fermi energy in graphene, which can be controlled by the gate voltage. We develop a theory that quantitatively describes the quantum phase transition in a two-dimensional Josephson junction array, but it is expected to provide a reliable qualitative description for one-dimensional systems as well.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1103/PhysRevLett.101.106402DOIArticle
ORCID:
AuthorORCID
Lutchyn, Roman M.0000-0002-0222-9728
Additional Information:© 2008 The American Physical Society. (Received 19 June 2008; published 2 September 2008) We thank M. Feigel’man, E. Hwang, J. Lau, and S. Tewari for stimulating discussions. V.G. acknowledges the hospitality of Boston University visitors program. This work was supported by U.S.-ONR and NSF-NRI.
Funders:
Funding AgencyGrant Number
Office of Naval Research (ONR)UNSPECIFIED
NSFUNSPECIFIED
Issue or Number:10
DOI:10.1103/PhysRevLett.101.106402
Record Number:CaltechAUTHORS:LUTprl08
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:LUTprl08
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:11576
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:07 Sep 2008 08:00
Last Modified:08 Nov 2021 22:00

Repository Staff Only: item control page