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Abstract

This paper presents a general semi-analytical study of the mass efficiency of coil-

able plate-like space structures. A bending architecture based on four diagonal

booms that support parallel strips is compared to a cable-stayed architecture

in which vertical booms and cable stays support the diagonal booms at the

tip. Limiting conditions of global buckling, local buckling, material failure, and

excessive deflection define the design space for each architecture. Considering

pressure loads spanning several orders of magnitude, the optimal areal density

of structures of size varying from a few meters to hundreds of meters is deter-

mined for both architectures. Design charts for optimal designs are provided for

a range of sizes, loads, and deflection limits. It is shown that the cable-stayed

architecture is always lighter than the bending architecture, from a few percent

to over 30%.
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ofNomenclature

EI Flexural stiffness

H Height of vertical booms

Ĥ Normalized height

L Side length of structure (span)

M Max. bending moment

mb Mass of booms

n Number of strips per quadrant

P Pressure

r Boom radius

R Longeron radius

t, tf Boom wall thickness, longeron flange thickness

wj Max. cable sag

ws Max. strip deflection

wn Boom tip deflection

w Total max. deflection

εf Failure strain

ρb,cs Areal density of booms and cables

ρs Areal density of strips

ρtotal Total areal density

θ Longeron subtended angle

Subscripts

[ ]b Bending architecture or boom

[ ]cs Cable-stayed architecture

[ ]i ith strip of quadrant

[ ]s Strip

Superscripts

[ ]d Excessive deflection or diagonal boom

[ ]g Global buckling

[ ]f Material failure

[ ]l Local shell buckling

[ ]lim Design limit

[ ]v Vertical boom
2
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of1. Introduction

Deployable space structures are required to be extremely lightweight and

packageable into small volumes. These objectives can be pursued through dif-

ferent structural concepts and architectures.

Exquisite solutions to this problem have been developed for many specific5

applications (Miura and Pellegrino, 2020) and their superiority has typically

been demonstrated by showing higher mass efficiency over an expected range

of scales, loading environments, etc. However, there has been a lack of broader

studies providing general trade-offs between different structural architectures

across a wide range of scales and environments, which limits the potential for10

significant advances in future space exploration.

Recent advances in structural materials and manufacturing technologies have

broadened the range of practically feasible structural architectures. Coupled

with space exploration mission concepts with unprecedented requirements, cur-

rently on the horizon, the potential importance of such broader studies has15

greatly increased.

For a practical impact, it is important to focus these studies on advanced

architectures that are at the cutting edge of achievable performance, although

this increases the complexity of these studies. Advanced architectures combine

different load-carrying modes, which have to be optimized with suitable ana-20

lytical formulations. The present study shows a systematic way of doing this,

considering two different architectures for coilable space structures that are cur-

rently under development for large solar arrays (KISS, 2022) and space solar

power stations (Gdoutos et al., 2020).

The first architecture will be described as the bending architecture and is25

schematically shown in Fig. 1(a). It is a square structure of size L×L, composed

of long and narrow, parallel strips that can support photovoltaic and/or RF

power radiation films. The strips are bending-stiff structures supported by four

diagonal booms, also loaded in bending, through four diagonal cables. Each

cable is connected to the central hub and to the tip of a boom. Bending of the30

3
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loaded by a transverse pressure, and the structure can be efficiently packaged

through a combination of origami-inspired folding and coiling, schematically

shown in Fig. 2 (Arya et al., 2016).

The second architecture considered in this paper, inspired by cable-stayed35

bridges (Fairclough et al., 2018) and large deployable space structures for solar

reflectors (Hedgepeth, 1981) and antennas (Campbell, 1981; Belvin, 1984), uses

cable stays to increase the stiffness of the diagonal booms. It will be described

as the cable-stayed architecture. The specific architecture considered in this

paper includes two vertical booms of length H connected by cable stays to the40

diagonal boom tips, Fig. 1(b). When a transverse pressure is applied to this

structure, the top vertical boom and the four stays connected to it support the

diagonal booms against downward deflection, while the bottom stays become

slack. The bottom vertical boom and the stays connected to it support the

diagonal booms when the direction of the pressure is reversed.45

Figure 1: (a) Bending and (b) cable-stayed architectures for square space structure loaded by

a pressure P . The side length is L and the height of the vertical boom for the cable-stayed

architecture is H.

Comparing the performance of the bending and cable-stayed architectures is

the goal of this paper. The objective of the present study is to quantify the mass

reduction that can be achieved by introducing the cable stays, which decrease

4
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Figure 2: Schematic of packaging concept.

the bending deformation of the diagonal booms and thus increase the lateral

stiffness of the structure, while taking into account the mass increase associated50

with the axial compression applied to the booms by the stays. To avoid buckling,

these booms have to be made thicker and with a larger diameter. Specific

questions arising are if the performance advantage for cable-stayed architectures

will be general, or limited to a range of loads or structural spans, and how

significant is the mass advantage. These questions will be addressed in the paper55

by comparing the areal densities of the lightest possible structures that can be

designed with both architectures, for varying load magnitude and structural

span.

A difference between the present paper and existing work is that previously

only the scaling of the design parameters for a specific architecture has been60

considered. Heard et al. (1981) compared deployable vs. in-space erectable

for plate-like trusses of two specific sizes and subject to a specific vibration

frequency constraint. Greschik and Mikulas (2002) studied 100 m solar sails with

a bending architecture and a specific film architecture. Banik and Maji (2016)

considered tensioned blanket solar arrays with either one or two deployable65

booms.

The paper is organized as follows. Section 2 presents the overall approach,

which consists in defining for each architecture a set of design parameters, and to

5
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cessive compliance. Section 3 focuses on the strips that form the four quadrants70

in both architectures. Finite element simulations are combined with analytical

expressions to predict the pressures that cause local shell buckling or excessive

deflection of the strips. The strip design limits and the optimal areal density

for a wide range of structural spans are derived. Sections 4 and 5 present the

analytical formulations for obtaining the design limits for the booms and cables75

for the bending and cable-stayed architectures, respectively. Minimal mass de-

signs for each architecture, including the strips, are then obtained. Section 7

compares the mass efficiency of the optimized architectures and identifies the

superior architecture for a range of lengths and loads. It also presents and

compares optimal designs based on both architectures, for a specific example.80

Section 8 concludes the paper.

2. Approach

An integrated design approach was adopted, setting identical metrics, limits,

and parameter spaces between different architectures. Concurrent optimization

of major structural elements then occurs within these constraints. This ap-85

proach allows the peak performance of each architecture to be compared against

one another without bias due to differing design conditions.

This approach was inspired by a paper on compression structures by Budi-

ansky (1999), which compared the mass efficiency of different types of columns.

Budiansky compared columns with solid square or circular cross-sections, to90

columns based on metal-foam-filled tubes, to tubes whose walls are foam-core

sandwiches, and also to tubes made from panels with hat stiffeners. Budi-

ansky derived a common set of structural indices applicable to each type of

cross-section. These indices were based on the column’s geometry, material

properties, and compressive strength. He then used these design parameters95

to minimize the weight, which were subsequently compared to ascertain the

relative performance of each column type.

6
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present one. First, each design is characterized by several parameters, making

the overall design space very large and hence suggesting that the simultane-100

ous “brute force” optimization of all design parameters would not be the best

approach. Second, basic analytical or semi-analytical structural mechanics so-

lutions are available for many of the quantities of interest, making it possible to

derive inverse relationships that can be used to implicitly satisfy design condi-

tions (inequalities), etc. A further benefit of adopting a semi-analytical approach105

is that, since we are interested in comparing solutions across a wide range of

spans and loads, the detailed evaluation of many specific designs would not be

feasible.

The design of the strips is considered first, since the strips are an element

common to both architectures and their design is independent from the other110

load carrying elements. A mass efficient design is chosen for the strips, using

coilable thin shells that form stiff, lightweight frames. Once the strips have

been optimized, the design of the diagonal booms and cords for the bending

architecture is considered. Then, the design of the diagonal booms and cords,

and of the vertical booms for the cable-stayed architecture completes the initial115

part of the study. For each component type, its contribution to the areal density

of the complete structure is derived and the sum of these contributions yields

the overall areal density of each structure.

It is important to note that only the mass of the structural elements is

included in the calculation of the areal densities. The mass of the deployment120

devices and the functional elements, such as the solar cells and the electrical

blankets for a solar array, is not included.

Each design problem is formulated in terms of finding the maximum pressure

that can be carried without reaching a specific type of failure (global buckling,

local buckling or material failure) of that component, making reasonable as-125

sumptions for the buckling modes which, of course, would require a detailed

verification at a later, detailed design stage. Additionally, a limit on the maxi-

mum acceptable compliance of the structure is set at a global level.

7
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ing, with a six degree of freedom rigid-body constraint applied at the center130

of the structure. In reality, the structure would be part of a spacecraft system

that operates under dynamic conditions, and the actual loads on the structure

would result from solar pressure, gravity gradients and inertial forces due to

station-keeping maneuvers. The magnitudes of these loads depends on the spe-

cific application. Inertial loads depend on the areal density of the structure as135

well as the design of the attitude control system of the spacecraft (Hedgepeth,

1981). For generality, it is assumed that all of these effects can be captured

through an equivalent static pressure.

Table 1 presents the notation that is used for the values of the pressure P

that correspond to each specific mode of failure. Note that the subscripts b,140

cs, and s denote the bending architecture, the cable-stayed architecture, and

the strips, respectively. Also, the superscripts g, l, f , and d for the bending

architecture denote global buckling, local shell buckling, material failure, and

excessive deflection, respectively. For the cable-stayed architecture, the super-

scripts g, l, f denote global buckling, local shell buckling, and material failure,145

respectively, and d and v denote the diagonal and vertical booms, respectively.

Material failure of the strips due to pressure is not considered, as the buckling

or deflection limits are always reached first.

Table 1: Pressure values corresponding to each design limit.

Strips
Bending:

Boom

Cable-stayed:

Vertical Boom

Cable-stayed:

Diagonal Boom

Global Buckling N/A P g
b P v,g

cs P d,g
cs

Local Buckling P l
s P l

b P v,l
cs P d,l

cs

Material Failure N/A P f
b P v,f

cs P d,f
cs

Deflection P d
s P d

b N/A N/A

The flowchart in Fig. 3 outlines the procedure for obtaining the minimum

areal densities of both architectures for mass efficiency comparisons.150
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fold symmetric around a vertical axis and they also have four vertical planes

of mirror symmetry. Hence their analysis has been simplified by exploiting

symmetry considerations.

3. Design Limits for the Strips155

The strips are arranged to form four identical quadrants, with n strips of

equal width, W , in each quadrant, as shown in Fig. 4. The innermost strip

has length L1 =
√
2W and the outermost strip has length Ln = n

√
2W = L.

To form a gap-free surface, the strips need to be of trapezoidal shape (Gdoutos

et al., 2020) but in the present analysis their shape is simplified to a rectangle, as160

shown in Fig. 4. With this assumption, the pressure loading is mirror-symmetric

with respect to the center line of each rectangle.

To achieve a high stiffness-to-mass ratio, a strip architecture with edge

longerons that can be elastically flattened and coiled was chosen. A ladder-

type structure consisting of two Triangular Rollable and Collapsible (TRAC)165

longerons (Murphey and Banik, 2011; Royer and Pellegrino, 2020) transversely

connected by regularly spaced battens is particularly well suited for the present

application. The longerons are thin composite shells consisting of two flanges

connected to a web, Fig. 5, and the battens are rods with a rectangular cross-

section. More details are provided in Appendix A.170

It is shown in Appendix B that for the chosen longerons the strip buckling

moment varies with the angle θ according to Fig. B.22. Hence, the strip buckling

pressure can be obtained from:

P l
s =

8M l
s

WL2
i

(1)

9
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Figure 3: Procedure for obtaining optimal areal densities.
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Figure 4: Definition of strip lengths and area allocated to each strip for loading analysis.

Figure 5: Schematic of ith strip consisting of longerons and battens.

3.1. Deflection Limit

The strips were modeled as simply supported beams of flexural stiffness EIs

equal to twice the stiffness of a longeron (Leclerc, 2020) and given by:

EIs = 4

(
A11 −

A2
12

A22

)[
dt̄2 +

R2

2
sin θ (R cos θ − 4 (R+ t̄))

+
3Rθ

2

(
R2 +

4Rt̄

3
+

2t̄2

3

)] (2)

where t̄ = 1
2 (tf + tGF P W ) and A11, A12, and A22 are the in-plane extensional

stiffness terms in Table A.3. Substituting the parameters defined in Appendix

A, EIs is only a function of the subtended angle θ.

11
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under a uniformly distributed loading P d
s W , is given by:

P d
s =

384EIsws

5WL4
i

(3)

3.2. Design Limits175

The pressure limit, P lim
s , for a strip is found by considering the smallest

among two pressure values. The third limit, material failure, has already been

taken into account, by choosing a value of the flange radius that allows flattening

and coiling of the strip, Eq. A.1. Therefore:

P lim
s = min

{
P l

s, P
d
s

}
(4)

Here it is noted that both values are lowest for the longest strip in the structure

and hence Li = L is used to calculate these limits.

As an example, a deflection limit of ws = 0.1L for the outermost strip was

considered. Figure 6 shows plots of P lim
s as a function of L, for θ = 45◦, 90◦,

and 135◦. The smallest span considered is L = 6 m which corresponds to a180

structure with only three strips per quadrant. Designs limited by buckling are

denoted with dashed lines, identifying strips that would buckle before reaching

the specified deflection limit. In most of the design space the strip designs are

deflection limited; buckling becomes dominant only for shorter spans and larger

subtended angles. Note that the range of spans for which the strips are limited185

by buckling grows with increasing values of θ.

A more complete understanding of the contribution of the strips to the over-

all mass of the structure is provided by the areal density of strips that reach the

performance limits. It is obtained from:

ρs =
4

L2

n∑

i=1

(
2ml

s +mb
s

)
i

(5)

where ml
s, m

b
s are the mass of a single longeron and of all the battens, respec-

tively, in the ith strip. They are given by:

(
ml

s

)
i
= Li

[
2 (Rθ + d) ([nρt]CF + [nρt]GF P W ) + d[ρt]GF P W

]
(6)

12
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Figure 6: Strip pressure limit as a function of span for longeron subtended angles θ = 45◦, 90◦,

and 135◦. The deflection limit is ws = 0.1L.

(
mb

s

)
i
=

⌊
Li

Lbs

⌋
ρCF bhLb (7)

In Eq. 6, nCF and nGF P W are respectively the number of unidirectional carbon

fiber and glass fiber plain weave plies in the flange laminate. The lamina den-

sities are ρCF = 1200 kg/m3 and ρGF P W = 1900 kg/m3. In Eq. 7,
⌊

Li

Lbs

⌋
is the

number of battens in the ith strip.190

The areal density of the strips has been plotted in Fig. 7, in terms of L and

θ. Note that a red line separates the regions of the design space dominated by

different pressure limits. An upper limit of θ = 180◦ has been set in the plot.

This limit accounts for the difficulty of coiling longerons with large subtended

angles, and sets an implicit limit on the maximum pressure loading, which195

depends on the length of the strip.

The previously made observations regarding Fig. 6, that the strips are limited

by local shell buckling for shorter spans and larger subtended angles, and are

deflection limited elsewhere, are still valid. In general, increasing the longeron

13
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Figure 7: Areal density of strips as a function of span and longeron subtended angle. The red

line marks the transition from deflection to buckling. Black lines mark order-of-magnitude

variations of the pressure limit. The deflection limit is set to ws = 0.1L.

angle and decreasing the span increases the pressure limit. Figure 7 also shows200

that to maintain the same pressure limit as the span increases, the strip’s angle

and mass must be scaled with the span.

4. Design Limits for Bending Architecture

This section presents an analysis of the forces in the booms and diagonal

cables, which leads to a set of formulas to calculate the contribution of booms205

and cables to the overall areal density of the structure.

4.1. Analysis of Diagonal Booms and Cables

A standard reference architecture for studying the performance metrics of

deployable booms is the tubular architecture (Mikulas et al., 2006). A particu-

larly relevant architecture for the present study, known as Collapsible Tube Mast210

(CTM) or Omega Boom (Miura and Pellegrino, 2020), has been the main choice

14
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Langley Research Center (Block et al., 2011; Fernandez, 2017). Its cross-section

is not exactly circular but can be closely modeled by a circle.

A diagonal boom, shown in Fig. 8, is modeled as a cantilevered thin-walled215

circular tube with cross-sectional radius r and thickness t. The tube is isotropic,

with elastic modulus E and Poisson’s ratio ν, density ρ, and second moment

of area Ib = πtr3. A diagonal cable, shown below the boom in the figure,

is attached to the root and the tip of the boom. Since these structures are

lightly loaded, extensional deformations are small and hence both booms and220

cables can be modeled as inextensible. Furthermore, limits on the maximum

allowed deflections are imposed during the presents design process, and therefore

standard small deflection assumptions are valid for the analysis.

Figure 8: Bending architecture boom and cable parameters, boundary conditions, and reaction

forces from strips under pressure loading P .

In Section 3.1 the strips were modeled as beams attached (simply supported)

to the diagonal cables. The attachment nodes are denoted by red dots in Figs 4225

and 8. There are n attachment nodes per cable, corresponding to the n strips

in a quadrant. The node closest to the root (i = 1) supports the innermost

strip and subsequent nodes correspond to strips farther out. The last node is at

15
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spacing between the nodes is
√
2W .230

The uniformly distributed loading PW on the beams is resisted by vertical

reactions at the ith node:

Vi =
1

2
PWLi (8)

where Li = 2iW . Since each node is connected to two identical strips, in

adjacent quadrants, the vertical reaction is doubled, as shown in Fig. 8. The

accompanying displacement of the cable is wi.

It is assumed that there are no horizontal reaction components and the

cable deflections are purely vertical. Hence, the horizontal component of the235

cable tension, Th, is uniform throughout the cable. More details on the profile

of the diagonal cables are provided in Appendix C.

Next, the analysis considers the diagonal boom, which is fixed at the root

and is loaded by the cable tip reactions VB (vertical) and HB (horizontal), with

HB = Th. The vertical tip force, VB , is found by considering the moment

equilibrium of the cable with respect to the root of the boom:

VB =
−wnTh√
2Wn

+
n∑

i=1

2PW 2i2

n
(9)

The vertical deflection of the boom, wb, is calculated by considering the

bending deflection due to VB , as well as the amplification factor 1
1−Th/Tcr

that

accounts for the additional deflection caused by the axial compression Th (Tim-

oshenko and Gere, 1961). Therefore, wb is given by:

wb (x) =
1

1− Th/Tcr

[
VBx2

6EIb

(
3
√
2

2
L− x

)]
(10)

where Tcr is the fixed-free Euler buckling load:

Tcr =
π2EIb

2L2
(11)

The maximum value of Eq. 10 occurs at the tip (x =
√
2L/2) and has the

expression:

wn =
1

1− Th/Tcr

(√
2VBL3

12EIb

)
(12)

16
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horizontal component of the cable tension, Th. Moment equilibrium of a free

body of the cable extending from the root to the node n− 1 yields:

Th =
PL3

2
√
2wnn3

n−1∑

i=1

i2 = HB (13)

The combined mass of boom and cables, mb, is expressed in terms of the

ratio between the mass of the cable, mc
b, and the mass of the booms, mb

b:

mb = 4
√
2πrtρL

(
1 +

mc
b

mb
b

)
(14)

It is also convenient to define the linear mass density of the structure, mb/L.

Note that the linear mass density is not directly related to the density of a

specific element of the structure, but is a useful metric nonetheless.240

The boom thickness can be expressed as a function of the linear mass density

and the ratio of the boom thickness and radius, t
r (which can be taken to be

constant). Therefore, the following expression is obtained:

t =

√√√√
(

mb

L

) (
t
r

)

4
√
2πρ

(
1 +

mc
b

mb
b

) (15)

Once t has been found by solving Eq. 15, the corresponding r is calculated

for the chosen t
r .

4.2. Boom Design Limits

There are four design limits for the diagonal booms of the bending architec-

ture.245

The first limit corresponds to global buckling of the boom, which occurs

when the axial compression, HB = Th, reaches the critical buckling load for a

cantilevered beam-column. The corresponding pressure limit, P g
b , is found by

equating Eq. 13 to Eq. 11 and solving for P . The resulting expression is:

P g
b =

6
√
2π3En2r3twn

L5 (n− 1) (2n− 1)
(16)

The second limit corresponds to local buckling of the boom, which occurs

when the maximum compressive stress reaches a critical value. The maximum

17
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HB , respectively, and hence is given by:

σb =
Mb

πr2t
+

HB

2πrt
(17)

The maximum bending moment occurs at the root and is given by:

Mb =

√
2

2
LVB + wnHB (18)

The critical stress for combined bending and axial compression of a thin-

walled circular cylinder is obtained from an interaction equation (Peterson et al.,

1965) that incorporates knockdown factors that account for shell imperfections:

σcl =
1

γb

(
Mb

πr2t

)
+

1

γc

(
HB

2πrt

)
(19)

Here, σcl is the critical buckling stress of a cylindrical shell and has the

expression (Brush and Almroth, 1975):

σcl =
Et

r
√

3 (1− ν2)
(20)

The knockdown factors for a cylindrical shell under pure bending, γb, and

under pure axial compression, γc, are based on empirical curves in NASA SP-

8007 (Peterson et al., 1965) and are a function of the radius to thickness ratio:

γb = 1− 0.731
(
1− e

−1
16

√
r
t

)
(21)

γc = 1− 0.901
(
1− e

−1
16

√
r
t

)
(22)

Substituting Eqs. 9, 13, 20, and 18 into Eq. 19 and solving for P results in

the critical pressure P l
b that induces local buckling of the boom:

P l
b =

8
√
6πEn2rt2wnγbγc

L3
√
1− ν2 (rγb (1− 3n+ 2n2) + 2wnγc (1 + 3n+ 2n2))

(23)

The third limit corresponds to failure of the material at the point of highest

stress in the boom’s cross-section. The failure stress σf can be expressed as a

function of the elastic modulus E and the failure strain εf :

σf = Eεf (24)
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vb, HB related to P by Eq. 9 and Eq. 13, leads to an equation that can be solved

for P . The solution of this equation gives the pressure P f
b that causes material

failure at the root of the boom:

P f
b =

24
√
2πEn2r2twnεf

L3 (r (1− 3n+ 2n2) + 2wn (1 + 3n+ 2n2))
(25)

The last design limit is related to the compliance of the structure. The

maximum deflection of the boom, wn is given by Eq. 12. The pressure P d
b that

causes the specific tip deflection wn is found by substituting VB , given by Eq.

9, into Eq. 12. Then, solving for P gives:

P d
b =

12
√
2π3En2r3twn

L5 (2 + 4n2 + n (π2 − 6))
(26)

5. Design Limits for Cable-Stayed Architecture

This section provides a set of formulas to calculate the forces in the booms

and cables and estimate their contribution to the overall areal density of the

structure.

5.1. Analysis of Booms and Cables250

It is assumed that in the cable-stayed architecture all booms have the same

cross-sectional radius rcs and thickness tcs, Fig. 9. Hence, the second moment

of area of the booms has the expression Ics = πtcsr
3
cs. The material properties

of the booms are chosen identical to the booms of the bending architecture.

Also, it is assumed that the booms, diagonal cables, and cable-stays are all255

inextensible and the deflection of the diagonal cables is assumed to be small. It

follows from these assumptions that the diagonal booms are loaded in a purely

axial mode, and all internal forces can be obtained from equations of equilibrium

for any given maximum cable displacement.

The analysis follows similar lines to Section 4.1 and gives the following main

results.
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Figure 9: Components of cable-stayed architecture (a) horizontal booms and cables, (b) cable-

stays, and (c) vertical boom.
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n → ∞ and the maximum deflection converges to:

w(x) → 3wjx

L3

√
3

2

(
L2 − 2x2

)
(27)

where j = nint
(

n√
3

)
and nint denotes the nearest integer function.

Horizontal component of diagonal cable tension:

Th =
PL3

2
√
2wjn3




n∑

i=1

i2

n
(n− j)−

n∑

i=1+j

i (i− j)


 (28)

Vertical and horizontal components of stay tension:

VB =
PL2

2n3

n∑

i=1

i2 (29)

HB =
VBL√
2H

(30)

5.2. Boom Design Limits260

There are six design limits for the diagonal and vertical booms in the cable-

stayed architecture.

The first limit corresponds to global buckling of the diagonal booms. The

diagonal booms are constrained in plane by the cable stays, but are able to

buckle out of plane, as shown in Fig. 10. Therefore, their critical buckling load

is calculated for the same fixed-free conditions considered in Eq. 11:

Nd
cr = π2EIcs

2L2
(31)

Equating Nd
cr in Eq. 31 to the sum of Th in Eq. 28 and HB in Eq. 30,

and solving for the pressure provides the following expression for the pressure

at which the diagonal booms will buckle:

P d,g
cs =

6
√
2π3EĤtcsr

3
csn

3wj

L4
(
LĤj (n2 − j2) + nwj (1 + 3n+ 2n2)

) (32)

where Ĥ = H
L .
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Figure 10: Buckling modes of diagonal booms in (a) perspective and (b) end views.

The second limit corresponds to global buckling of the vertical booms. They

are modeled as fixed-pinned columns and their Euler critical load is given by

(Timoshenko and Gere, 1961):

Nv
cr = π2 EIcs

(0.699H)2
(33)

Setting Nv
cr in Eq. 33 equal to the axial compression of 4VB in the vertical

booms, given by Eq. 29, and solving for P yields the following expression for

the pressure at which the vertical booms will buckle:

P v,g
cs =

6.140 π3Etcsr
3
csn

2

L4Ĥ4 (1 + n) (1 + 2n)
(34)

The third and fourth limits correspond to local buckling of the diagonal and

vertical booms, respectively. The procedure to obtain these limiting pressure

values is similar to that outlined in Section 4.2 but in the present case the

booms are loaded purely axially. The maximum stresses due to the axial forces

HB +HC and 4VB , respectively, are given by:

σd
cs =

Th +HB

2πrcstcs
(35)

σv
cs =

4VB

2πrcstcs
(36)

Substituting Eqs. 28, 30 and 29 respectively for Th, HB and VB in Eqs. 35 and

36 and then equating the resulting expressions to the critical buckling stress
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values of P that result in the local buckling of the diagonal and vertical booms,

respectively:

P d,l
cs =

8
√
6πEĤn3t2cswjγc

L2
√
1− ν2

(
LĤj (n2 − j2) + nwj (1 + 3n+ 2n2)

) (37)

P v,l
cs =

2
√
3πEt2csn

2γc

L2
√
1− ν2 (1 + n) (1 + 2n)

(38)

where the knockdown factor γc has been introduced to account for imperfections.

The fifth and sixth limits correspond to material failure. The stresses in

Eqs. 35 and 36, with Eqs. 28, 30 and 29 substituted respectively for Th, HB and

VB , are equated to the failure stress in Eq. 24. Then, solving for P provides

the following expressions for the pressure corresponding to material failure, re-

spectively for the diagonal and vertical booms:

P d,f
cs =

24
√
2πEĤn3rcstcswjεf

L2
(
LL̂vj (n2 − j2) + nwj (1 + 3n+ 2n2)

) (39)

P v,f
cs =

6πErcstcsn
2εf

L2 (1 + n) (1 + 2n)
(40)

The smallest of the pressure limits in Eqs. 32, 34, 37, 38, 39, 40 is the actual

limiting pressure for any specific design based on the cable-stayed architecture:

P lim
cs = min

{
P d,g

cs , P v,g
cs , P d,l

cs , P v,l
cs , P d,f

cs , P v,f
cs

}
(41)

Here it should be noted that excessive compliance of the booms is not a mean-265

ingful limit for the cable-stayed architecture.

6. Optimal Designs

Designs based on the two architectures combine optimally designed strips

and booms. The strips’ longerons have the orthotropic properties in Table A.3

and are designed according to Section 3.2. The booms are assumed isotropic270

with modulus E = 70 GPa, density ρ = 1600 kg/m3, and failure strain εf = 0.01.
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The limiting pressure for the booms is the smallest among the pressure limits

given by Eqs. 16, 23, 25 and 26:

P lim
b = min

{
P g

b , P
l
b , P

f
b , P

d
b

}
(42)

Since the largest deflection of the strips occurs at the center of the outermost

strip, the maximum deflection for the bending architecture is obtained by adding

the maximum strip deflection, ws, to the boom tip deflection, wn. A deflection

limit of 0.1L, which may be acceptable for a solar array design, is chosen:

w = ws + wn = 0.1L (43)

where different deflections of the strips and the booms can be considered as part

of the design optimization.

As an example, wn = 0.05L has been chosen and the areal density needed275

to achieve this deflection limit together with specified values of P lim
b has been

computed for a range of side lengths. The procedure outlined in Appendix C

for scaling the boom thickness and radius with respect to mb

L was applied. Note

that the minimum length considered was L = 6 m, to match the strip length

limit in Section 3.2, and that all booms within the design space were found to280

be limited by excessive compliance.

The results have been plotted in Fig. 11. The contribution of the booms

and cables to the overall areal density of the structure is represented by the

equivalent area density ρb, defined as:

ρb = mb/L
2 (44)

which has been plotted in Fig. 11.

Figure 12(a) presents the areal density of the booms and cables for three

different values of the pressure limits, 10−2, 10−3, and 10−4 Pa, and for the boom

tip deflection wn = 0.05L. To satisfy Eq. 43, the maximum strip deflection limit285

is set to ws = 0.05L and the corresponding areal density of the strips is found

using the procedure outlined in Section 3.2. Figure 12(b) shows plots of ρs vs.
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Figure 11: Areal density of booms and cables for bending architecture. Black lines mark

order-of-magnitude variations of the pressure limit. The max. boom deflection and cable sag

are 0.05L.

L for the same three values of the pressure. Figure 12(c) shows a plot of the

total areal density, also for the same pressures.

It should also be noted that, although there is no upper limit on the areal290

density of the booms and cables, the total areal density of the strips is con-

strained by the limit of 180◦ on the longeron subtended angles. This effectively

results in a constraint on the maximum pressure/span that can be carried by

the structure.

The effect of varying the allowable deflections of the booms and strips, while295

keeping the total maximum deflection equal to 0.1L, has also been considered.

By specifying wn

L , the corresponding maximum strip deflection ws was found

from Eq. 43. Then, the procedure outlined in Section 3.2 was used to find the

corresponding strip design limits. The results are shown in Fig. 13, where the

contours provide the total equivalent areal density as a function of span and non-300

dimensionalized maximum boom deflection, for three different pressure limits.
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mass efficiency has been identified by a red dot, for the full range of spans and

for each chosen pressure. These optimal designs mostly correspond to an even

distribution of the boom deflection vs. the strip deflection, but for the longest305

spans (on the right-hand side of the design space) the strip deflection tends

to dominate and hence stiffer boom designs are required to satisfy the design

limits.

6.2. Optimal Cable-Stayed Architectures

The mass of the horizontal and vertical booms, the diagonal cables, and the

cable-stays is denoted by mcs and is given by:

mcs = 4πrcstcsρL
(√

2 + Ĥ
)(

1 +
mc

cs +mcs
cs

md,v
cs

)
(45)

where the cable mass mc
cs and cable-stay mass mcs

cs are assumed to each be one

tenth of the boom massmd,v
cs , i.e.

mc
cs+mcs

cs

md,v
cs

= 0.2. Equation 45 can be rearranged

to express the boom thickness tcs in terms of the linear mass density mcs

L (note

that, as already noted for the bending architecture, the linear mass density is

not the linear density of a specific structural element) the non-dimensionalized

vertical boom length, and the boom’s thickness to radius ratio:

tcs =

√√√√√
(

mcs

L

) (
tcs

rcs

)

4πρ
(√

2 + Ĥ
)(

1 +
mc

cs+mcs
cs

mh,v
cs

) (46)

Equation 46 provides the scaling of the boom thickness in terms of mcs

L and310

Ĥ with a constant thickness to radius ratio. Once tcs has been determined, the

corresponding rcs can be calculated from tcs

rcs
.

A specific example is used to illustrate the design space. Consider a cable-

stayed structure with L = 20 m and choose the maximum cable sag wj = 0.05L,

the thickness–to-radius ratio tcs

rcs
= 0.03, and set the linear mass density to315

mcs

L = 0.1 kg/m. These values of the linear mass density and thickness to

radius ratio are reasonable for tubular booms (Greschik and Mikulas, 2002).

The limiting pressure from Eq. 41 has been plotted in Fig. 14 as a function

of the only remaining design variable, Ĥ. The plot shows the interaction of
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Figure 12: Areal densities for bending architecture (a) booms and cables, (b) strips, and (c)

total vs. span L for three pressure limits. The max. boom deflection, cable sag, and strip

deflection are 0.05L and the total max. deflection is 0.1L.
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Figure 13: Total areal density for bending architecture vs. span and non-dimensionalized max.

boom deflection for the pressure limits of (a) 10−2 Pa, (b) 10−3 Pa, and (c) 10−4 Pa. The

red dots indicate the minimum density designs. The total max. deflection limit is 0.1L.

28



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
oftwo limiting conditions, i.e. global buckling of either the horizontal or vertical320

booms. The transition occurs at Ĥ = 1.683. For Ĥ > 1.683 the vertical boom

will buckle at lower pressures than the horizontal boom, and vice versa. The

most important result from this plot is that it identifies an optimal design which

carries the largest pressure, P lim
cs = 0.0238 Pa. The corresponding value of the

non-dimensionalized vertical boom height is Ĥ = 0.392.325

cs

Figure 14: Pressure limit P lim
cs for cable-stayed architecture booms as a function of non-

dimensionalized vertical boom length, for span L = 20 m and linear mass density mcs
L

= 0.4

kg/m. The max. cable sag is set to wj = 0.05L.

The same analysis to find the optimal boom designs was repeated for the

range of spans 6 ≤ L ≤ 200 m and the results are shown in Fig. 15 as a contour

plot of the limiting pressure as a function of L and Ĥ. The optimal Ĥ for each

span is shown by a black line. The red line in the plot marks the transition

between the global buckling of the horizontal and vertical booms. Since the330

optimal designs correspond to values of Ĥ lower than the buckling transition,

they are all limited by global buckling of the horizontal booms.

Note that the value of the optimal Ĥ remains almost constant when L is in-

creased. This is because the boom radius and thickness have to remain constant

as the linear mass density has been fixed.335
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Figure 15: Pressure limits for cable-stayed architecture booms as a function of span for mcs
L

=

0.4 kg/m and max. cable sag wj = 0.05L. The red line marks the transition between two

different limiting conditions. The black line indicates the maximum pressure.

For a more general characterization of the optimal designs, a range of linear

mass densities was considered, in order to allow a wider range of pressure limits.

This was done by repeating the analysis that generated Fig. 15, for a range linear

mass density values and selecting from each analysis the optimal value of P lim
cs .

All designs were found to be limited by global buckling of the horizontal boom,

as was already the case in Fig. 15. Then, the corresponding equivalent areal

density (of the booms and cables only) was calculated from:

ρcs = mcs/L
2 (47)

and the density variation has been plotted in terms of L and mcs

L in Fig. 16.

Since the linear mass density has been allowed to vary, the boom radius and

thickness can also vary. Hence, by following one of the constant-pressure black

lines, one follows the evolution of the optimal design when L is increased.

The above analysis has obtained the optimal boom and cable designs for340

the cable-stayed architecture. Next, this result was combined with the optimal
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Figure 16: Areal density of optimal cable-stayed architecture booms and cables as a function

of span and linear mass density. The black lines mark order-of-magnitude variations of the

pressure limit. The max. cable sag is wj = 0.05L. All designs are limited by global buckling

of the horizontal booms.

design for the strips, presented in Section 3.2.

The total maximum deflection limit was set to wcs = 0.1L, which is identi-

cal to the deflection limit for the bending architecture, in Section 6.1. However,

since the tip deflection of the diagonal booms is zero in this architecture (re-345

call that the booms, the diagonal cables, and the cable stays are all assumed

inextensional) the location of the maximum cable sag is at the node nearest

to x = L/
√
6 (see Eq. 27 in Section 5.1) along the diagonal x axis, while the

maximum strip deflection is —as before— at the center of the outermost strip.

The distribution of deflections between the diagonal cables and the strips along350

with the applied pressure and the values of all design parameters need to be

considered to determine the total maximum deflection. This analysis was car-

ried out by choosing a specific value for the maximum cable sag, wj as shown

in Fig. 9 (a), and then determining the specific strip design such that the to-

tal maximum deflection is 0.1L. In practice, this involves finding the longeron355
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