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Abstract-Many parallel computers consist of processors con- 
nected in the form of a d-dimensional mesh or hypercube. 
Two- and three-dimensional meshes have been shown to be 
efficient in manipulating images and dense matrices, whereas 
hypercubes have been shown to be well suited to divide-and- 
conquer algorithms requiring global communication. However, 
even a single faulty processor or communication link can seriously 
affect the performance of these machines. 

This paper presents several techniques for tolerating faults in 
tl-dimensional mesh and hypercube architectures. Our approach 
consists of adding spare processors and communication links 
so that the resulting architecture will contain a fault-free mesh 
or hypercube in the presence of faults. We optimize the cost 
of the fault-tolerant architecture by adding exactly k spare 
processors (while tolerating up to k processor and/or link faults) 
and minimizing the maximum number of links per processor. For 
example, when the desired architecture is a d-dimensional mesh 
and !i = 1, we present a fault-tolerant architecture that has the 
same maximum degree as the desired architecture (namely, 2tl) 
and has only one spare processor. We also present efficient layouts 
for fault-tolerant two- and three-dimensional meshes, and show 
how multiplexers and buses can be used to reduce the degree 
of fault-tolerant architectures. Finally, we give constructions 
for fault-tolerant tori, eight-connected meshes, and hexagonal 
meshes. 

I. INTRODUCTION 

ANY existing parallel machines have a mesh or hy- M percube topology. Examples of hypercube computers 
include the Cosmic Cube (from Caltech), the iPSC/860 (from 
Intel), the NCUBE (from NCUBE Inc.), and the CM-2 (from 
Thinking Machines). Examples of two-dimensional mesh com- 
puters include the MPP (from Goodyear Aerospace) [3], the 
MP-1 (from MASPAR), VICTOR (from IBM), and DELTA 
(from Intel and Caltech). The J-Machine, which is under 
development at MIT, and the GC series from Parsytec [20] 
are three-dimensional meshes. In addition, memory chips are 
also organized in the form of a two-dimensional mesh [16], 

As improvements in technology lead to the creation of larger 
parallel computers, it becomes essential to consider the issue of 
computing in the presence of faults. In particular, the ability to 

1271. 

Manuscript received July 2, 1991; revised November 12, 1991, and August 
28, 1992. This work is based on “Fault-Tolerant Meshes with Minimal 
Numbers of Spares,’’ by J. Bruck, R. Cypher, and C. T. Ho, which appeared 
in the Proceedings of the 3rd IEEE Symposium on Parallel und Distributed 
Processing, Dallas, TX, Dec. 2-5, 1991, pp. 288-295, and “Efficient 
Fault-Tolerant Mesh and Hypercube Architectures,” which appeared in the 
Proceedings of the 22nd Annual International Symposium on Fault-Tolerunt 
Computing, Boston, MA, July 8-10, 1992, pp. 162-169. 01991, 1992 IEEE. 

The authors are with IBM, Almaden Research Center, San Jose. CA 95120. 
IEEE Log Number 9208568. 

tolerate even a small number of faults could allow the machine 
to be used between the time a failure is first detected and 
the time the machine is repaired. As a result, several existing 
parallel machines contain spare processors and are designed 
to tolerate a limited number of faults [3], [20]. 

A large amount of research has been devoted to creating 
fault-tolerant parallel architectures. The techniques used in 
this research can be divided into two main classes. The first 
class consists of techniques that do not add redundancy to 
the desired architecture. Instead, these techniques attempt to 
mask the effects of faults by using the healthy part of the 
architecture to simulate the entire machine [l], [6], [12], 
[14]. The hope with this approach is to obtain the same 
functionality with a reasonable slowdown factor. Although this 
approach yields interesting theoretical results, even a constant 
factor slowdown in performance can be very significant in 
practice. Furthermore, this approach requires that some healthy 
processors simulate several processors. As a result, each 
simulated processor can have only a fraction of the memory 
present in a healthy processor. 

The second class consists of techniques that do add redun- 
dancy to the desired architecture. These techniques attempt 
to isolate the faults, usually by disabling certain links or 
disallowing certain switch settings, while maintaining the 
complete desired architecture [2], [3], [SI, [8]-[ lo], [13], 
[ 1S]-[17], [ 191, [21]-[24], [26], [28]. Many of these techniques 
require either a nonminimal number of spare processors [2], 
[3],  [SI, [lS], [16], [24], [26] or a switching mechanism 
assumed to be immune to faults [3], [lS], [16], [21], [22], 
[24], [26]. In contrast, the results presented herein use only 
the minimal number of spare processors and can tolerate 
faults in any of the components. Finally, we assume a worst 
case distribution of faults, whereas many of the preceding 
approaches do not work in a worst case scenario. 

Our approach is based on a graph model. In this model 
a distributed memory parallel computer is viewed as being 
a graph in which the nodes represent the processors and the 
edges represent the communication links. A target graph with 
71 nodes is selected first. Then a fault-tolerant graph with 
72 + k: nodes is defined with the property that, given any set of 
A. or fewer faulty nodes, the remaining graph is guaranteed 
to contain the target graph as a subgraph. This approach 
guarantees that any algorithm designed for the target graph will 
run  with no slowdown in the presence of k .  or fewer node faults, 
regardless of their distribution. Note that in our approach the 
spare nodes are fully utilized. Hence, minimizing the cost in 
this model amounts to constructing a fault-tolerant graph with 
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a small maximum degree. Although our results are stated for 
n>de faults, it should be noted that they can also be used 
t o  tolerate edge faults by viewing a node incident with each 
I iulty edge as being faulty. 

This graph model of fault tolerance has been used by several 
I ther researchers. Hayes [13] has used this model with target 
p raphs of cycles, linear arrays, and trees. Rosenberg examined 
1 iult-tolerant graphs for linear arrays [ 2 3 ] .  The work by Wong 
‘1 nd Wong [28] and Paoli et al. [ 191 relates to cycles. The more 
r:cent work by Dutt and Hayes uses trees [8], hypercubes [9], 
I. irculant and nearly circulant graphs [9], and arbitrary graphs 

The main contribution of this paper is the creation of effi- 
1. ient fault-tolerant graphs for several important target graphs. 

pecifically, we give four different constructions for creating 
I iult-tolerant two-dimensional meshes, as well as constructions 
I 3r creating fault-tolerant d -dimensional meshes, hypercubes, 
t x i ,  eight-connected meshes, and hexagonal meshes. In all 
<ases. our fault-tolerant graphs have a smaller degree than 
I ny previously known graphs with the same properties. In 
I articular, we present a construction for fault-tolerant d- 
imensional meshes that can tolerate k faults and has degree 

i k  + 1)d when k is odd and ( k  + 2)d when k is even. 
‘hus when k = 1 this construction has degree 2d, which 

I S  no larger than the degree of the target graph. Our fault- 
t alerant graph for the d-dimensional hypercube has degree 
ik  + 2)d - ( k  + 2)log k + 2k - 3 when k is a power of 

1. This is approximately a factor of 2 improvement over 
the result obtained by Dutt and Hayes, which has degree 
! ( ( k +  1)d- ( k +  1) log k - 3 )  when k is a power of 2 [9]. We 
llso show how multiplexers and buses can be used to reduce 
he degree of the fault-tolerant architectures. 

The rest of this paper is organized as follows. Defini- 
ions that will be used throughout the paper are given in 
iection 11. In Section 111, we present several fault-tolerant 
wo-dimensional meshes, all of which are based on a family 
If graphs known as “circulant graphs.” In Section IV, we 
ntroduce another family of graphs, called “diagonal graphs,” 
ind show how they can be used to create fault-tolerant d- 
limensional meshes and hypercubes. We also present efficient 
mplementations for many of these fault-tolerant architectures. 
Section V shows how the same techniques can be used to 
sreate fault-tolerant graphs for target graphs that are related to 
he mesh. Conclusions are presented in Section VI. 

IO] as target graphs. 

11. DEFINITIONS 

The following definitions will be used throughout this paper. 
Definition: Let IC be a nonnegative integer and let G = 

(V,E) be a graph. We say that the graph G’ = (V’,E’) is 
(k,G)-tolerant if the subgraph of G’ induced by any set of 
IV’I - k nodes contains G as a subgraph. We note here that 
throughout this paper the number of spare nodes is minimal, 

Definition: Given two graphs G1 and G2: a function of 
4 that maps the vertices of G1 to the vertices of G2 is 
called an embedding of GI into G2 if for any pair of distinct 

so JV’J = J V J  + I C .  

0 

12 4 

8 

Fig. 1. Circulant graph with 16 nodes and offsets 1 and 4. 

nodes i and j in G I ,  qb(1:) # qb(j), and for any edge ( i , j )  in 
G l , ( d ( i ) , b ( j ) )  is an edge in Gz. 

Definition: For any positive integer n, the set { O , 1 ,  . . . , n - 
1) will be denoted [n]. 

Definition: Let nn,ni,”.,nd-l be integers all of which 
are greater than or equal to 2. The no x ‘11 x . . . n d - 1  d- 
dimensional mesh M consists of IIfzt n,; nodes. Each node 
in M has a unique label of the form (an, (11, . . , ad-1) whcre 
for all 1: E [ d ,a i  E [nil. Each node ( a o , a l ; . . . > a d - l )  is 
connected to the 2d other nodes of the form (an, . . . , ai- 1, n f 
1, ai+l,. . . , a d - 1 )  provided they exist. 

Definition: The d-dimensional hypercube, denoted Qd, i; a 
2 x 2 x . . . x 2 d-dimensional mesh with n = 2d nodes. Note that 
hypercubes are simply special types of d-dimensional mesh-s, 
so that results presented for d-dimensional meshes will apply 
to d-dimensional hypercubes as well. 

111. CIRCULANT GRAPHS 

This section discusses a class of graphs known as “circul int 
graphs” [ll] and shows how they can be used to create 
fault-tolerant two-dimensional meshes. We begin by defin ng 
circulant graphs and reviewing some of their known properties. 

Definition: Let p be a positive integer and let S be a set of 
integers in the range 1 through p - 1. The p -node c i rcuht  
graph with connection set S ,  denoted C,,S, consists of p nodes. 
Each node in C,,S has a unique label in the range 0 throi.gh 
p - 1. Each node 1: is connected to all nodes of the form ( z  4: s) 
mod p where s E S.  The values in the connection set S will 
be referred to as ‘‘jumps’’ or “offsets.” A simple example c f a 
circulant graph is a cycle, where there is only one offset and 
the value of that offset is 1. Fig. 1 shows an example cf a 
circulant graph. 

Definition: Let p be a positive integer and let S be a se of 
integers in the range 1 through p - 1. The closure of S b)! p ,  
denoted close( S ,  p ) ,  is the set 

T = {t( t  E S or ( p  - t )  5) 

Note that the degree of C,,S is ( c l o s e ( S . p ~ ( .  In addition, 
note that IS1 5 Iclose(S,p)l 5 2(SI. 

Definition: Let S be a set of integers and let k be a nonceg- 
ative integer. The expansion of S by I C ,  denoted expand(S. k), 
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is the set T ,  where 

Note that lezpand(S,k)(  5 ( k  + 1)lSl. 
The following theorem is an immediate consequence of a 

result proven by Dutt and Hayes [9]. 
Theorem 3.1 [9]: Let n be a positive integer, let S be a 

set of integers in the range 1 through n - 1, let k be a 
nonnegative integer, and let T = ezpand(S, k ) .  The circulant 
graph Cn+k,T is ( k ,  C,,s)-tolerant. 

The idea behind Theorem 3.1 is that given any set of k 
faulty nodes in Cn+k ,T ,  we can embed the target graph cn,s 
into the healthy nodes of the fault-tolerant graph Cn+k,T by 
mapping each node i in the target graph to the ith healthy node 
in the fault-tolerant graph. It is clear that any pair of nodes 
that are z apart in the target graph are mapped to nodes in the 
fault-tolerant graph that are at least z apart and at most z + k 
apart (because there are between 0 and k faulty nodes between 
them). Consider any edge that connects nodes that are z apart 
in the target graph, where z E S. This edge will be mapped 
to nodes that are z’ apart in the fault-tolerant graph, where 
z’ E T ,  so it will be mapped to an edge in the fault-tolerant 
graph. 

Theorem 3.1 gives a general technique for creating a fault- 
tolerant graph when the target graph is circulant. We will 
use Theorem 3.1 to obtain four different constructions for 
fault-tolerant two-dimensional meshes. Each construction first 
defines a circulant graph, which is a supergraph of the desired 
two-dimensional mesh. Then Theorem 3.1 is used to add 
fault tolerance to the supergraph. It is interesting to note 
that circulant graphs that contain two-dimensional meshes as 
subgraphs have been studied in a context unrelated to fault 
tolerance [4]. 

Throughout the remainder of this section, let T and c be 
integers greater than or equal to 2, and let k be a non- 
negative integer. Additional constraints on these parameters 
will be added as needed. In addition, let Mr,c denote the 
two-dimensional mesh with T rows and c columns. The four 
different constructions and their degrees are given in Theorems 
3.3, 3.5, 3.7, and 3.14. Another construction for fault-tolerant 
two-dimensional meshes is given in Corollary 4.7 in Section 
IV. This final construction has the smallest degree when the 
number of faults that must be tolerated is small. 

A. Mesh Construction 1 

The first fault-tolerant mesh construction is based on the 
fact that, when the nodes in Mr,c are labeled in row-major 
order, the labels of adjacent nodes differ by either 1 or c [see 
Fig. 2(a)]. 

Lemma 3.2: Let S = { 1, c}. The mesh Mr,c is a subgraph 
of the circulant graph CrC,s. 

Proof: Let q5(i,j) = i c + j .  It is straightforward to verify 
0 

Theorem 3.3: Let S = { 1, c} and let T = expand( S ,  k ) .  
The circulant graph Crc+k,T is ( k ,  M,,,)-tolerant and has 
degree at most 4k + 4. 

that q5 defines an embedding of Mr,c into CrC,s. 

l ! ! ! ! ! ! ! l  

@2l@l8@22@l7@Z2@17@U@ 
M 19 21 I8 21 18 21 18 
@18@U@17@22@17@22@17@ 
19 21 18 21 18 21 18 21 
aUm17.U.17 .Pm17mU.  
21 18 21 18 21 18 21 19 
@17@22@17@U@17@U@18@ 
18 21 18 21 18 21 19 M 
@a@ l7@22@ 17@U@ 18@2l 

(c)  ( 4  

Fig. 2. Three orderings of mesh nodes 

Proof: From Theorem 3.1, the graph Crc+k,T is 
(k,C,,,s)-tolerant. From Lemma 3.2, the graph Mr,c is a 
subgraph of cTc,s. As a result, the graph Crc+k,T is ( k ,  M r , c ) -  

tolerant. Because IS1 5 2 and T = ezpand(S, k ) ,  (TI 5 2 k f 2  
0 and the degree of Crc+k,T is at most 4k + 4. 

B. Mesh Construction 2 
Whereas Construction 1 is a very natural application of 

Theorem 3.1, Theorem 3.1 can also be used to obtain more 
efficient constructions. We will now give a construction for 
obtaining a graph that tolerates k faults and has degree only 
2k + 4. This construction is based on an ordering of the nodes 
in the mesh that we call the antidiagonal-major order [see 
Fig. 2(b)]. The advantage of antidiagonal-major order is that 
it leads to a circulant graph that has a connection set consisting 
of two consecutive integers. As a result, fault tolerance can be 
added to the circulant graph in an efficient manner. 

Lemma 3.4: Let S = {c, c + 1). The mesh Mr,c is a 
subgraph of the circulant graph Crc,s. 

Proof: Let I$ ( i , j )  = ( ( i  + j) mod T ) C  + j. It is straight- 
forward to verify that I$ defines an embedding of MT,c into 

Theorem 3.5: Let S = {c, c+l}  and let T = ezpand(S, k ) .  
The circulant graph Crc+k,T is ( k ,  M,,,)-tolerant and has 
degree at most 2k + 4. 

Proof: From Theorem 3.1, the graph Crc+k,T is 
(k,C,,,s)-tolerant. From Lemma 3.4, the graph Mr,c is a 
subgraph of CTC,s. As a result, the graph Crc+k,T is (k, 
tolerant. BecauseT = { c , c + l , ~ ~ ~ , c + k + l } , ~ T ~  5 k + 2  

0 

crc,s 0 

and the degree of Crc+k,T is at most 2k + 4. 

C. Mesh Construction 3 
The fault-tolerant meshes produced by Construction 2 re- 

quire two additional edges per node for each additional fault 
that is tolerated. We will now give a construction that requires 
only one additional edge per node for each additional fault 
that is tolerated. However, this reduced rate of growth in the 
degree requires a larger initial degree. 

The construction is based on an ordering of the nodes 
in the mesh that we call the interleaved antidiagonal-major 
order [see Fig. 2(c)]. The interleaved antidiagonal-major order 
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issigns the numbers 0 through r c  - 1 to the nodes in M,,c. 
Yode (0, 0) (the upper left corner) is assigned the value 0, 
and successive values are assigned to the nodes in every 
3ther antidiagonal. Then node (1, 0) (the node immediately 
below the upper left comer) is assigned the value [rc/2], and 
successive values are assigned to the nodes in the remaining 
antidiagonals. The advantage of interleaved antidiagonal-major 
order is that it leads to a circulant graph with r c  nodes that 
has a connection set clustered about the value rc/2. 

Lemma 3.6: Let r and c be integers greater than 2, let 
a = [rc/21 - [r/2], let b = [rc/2] + Lr/2], and let S be the 
set of integers in the range a through b. The mesh M,,, is a 
subgraph of the circulant graph CTC,s. 

Proof: Let d ( i , j )  be the value assigned to node ( i , j )  
when M,,, is labeled in interleaved antidiagonal-major order. 
It will be shown that for any nodes ( i1 , j l )  and ( i 2 , j z )  that 
are adjacent in M,,,,a 5 I4(il , j l)  - 4 ( 2 2 , j 2 ) 1  I 6 .  

For all integers i and j where 0 5 i 5 r - 1 and 
0 I j < c - 1, let hi,j = I4( i , j )  - 4( i , j  + 1)l. For all 
integers i and j where 0 5 i < r - 1 and 0 5 j 5 c - 1, 
let ui,j = I4( i , j )  - d(Z + 1, j ) l .  We will call the hi,j values 
horizontal differences and the ui, j  values vertical differences 
[see Fig. 2(d)]. First, we will show that if there is a vertical 
difference that is not in the range a through b, then there 
is also a horizontal difference that is not in the range a 
through b. Let ui,j be any vertical difference. If j = 0 
then either hi,j < ui, j  < hi+l,j or hi+l,j < ui, j  < hi>j. 
Conversely, if j > 0 then either hi,j-l < ui,j < hi+l,j-l or 
hi+l,j-l < ui,j < hi,j-l. Therefore, if the ui,j is not in the 
range a through b,  there also exists an hij,jf that is not in the 
range a through b. 

It is clear that for all i and j where 1 5 i 5 r - 1 and 
0 5 j I c - 3, hi,j = hi-l,j+l, so horizontal differences 
that are in the same antidiagonal are equal. It will be helpful 
to divide the horizontal differences into two sets according to 
their parity. We will say that horizontal difference hi,j is even 
if i + j is even, and it is odd otherwise. It is straightforward 
to show that all even horizontal differences are greater than 
rc/2 and all odd horizontal differences are less than rc/2. 
Furthermore, it is straightforward to show that the largest 
horizontal difference is hr-2,0 if r is even and h,-l,o if r 
is odd, whereas the smallest horizontal difference is h,-l,o if 
r is even and hr-2,0 if r is odd. Therefore, it suffices to show 
that hr-2,0 and h,-l,o are in the range a through b. There 
are two cases: 

Case 1)  r is even: In this case, 4(r  - 2,O) = r2/4 - 
r + I ,  $(r - 2, I )  = rc/2 + r2 /4  - r /2  + 1, $(r - 1,O) = 
rc /2 + r 2 / 4  - r /2 ,  and 4(r  - 1, l )  = r2/4.  Thus, hr-2,0 = 
rc/2 + r / 2  = b and h,-l,o = rc/2 - r / 2  = a. 

Case 2) r is odd: In this case, 4(r  - 2,O) - [rc/21 + 
Lr/2]’ - Lr/2],4(r - 2 , l )  = Lr/212 + 1 , 4 ( ~  - 1 , O )  = 
Lr/2J2,4(r-1,1) = [rc/21+Lr/2j2+Lr/2j. Thus, hr-2,0 = 
[rc/2] - [r/2] = a and h,-l,o = [rc/21 + [r/2J = b. 

It has been shown that all horizontal and vertical differences 
are in the range a through b. Furthermore, 4 assigns a unique 
value in the range 0 through r c  - 1 to each node in M,,,. As 
a result, it follows that 4 defines an embedding of M,,, into 
C,, s. 

Theorem 3.7: Let r and c be integers greater than 2, let 
a = rrc/21 - rr/21, let b = [rc/21 + Lr/2], let S be the set 
of integers in the range a through b,  and let T = erpand(S,  IC) .  
The circulant graph C,.c+k,T is ( k ,  M,,,)-tolerant and las 
degree at most k + r + 1 when r is odd and c is even, and 
at most k + r otherwise. 

Proof: From Theorem 3.1, the graph Crc+k,T is 
(k,C,,,s)-tolerant. From Lemma 3.6, the graph M,., is, a 
subgraph of CTc,s. As a result, the graph C r c + k , T  is ( k ,  M,  C ) -  

tolerant. Note that T = { a , a + l , . . .  , b + k }  and that b-a  = r. 
If r is odd and c is even, then close(T, rc + k) = { a ,  L + 
1 , .  . - ,  b+k+l}  and the degree of C,c+k,T is at most k+r-- l .  
Otherwise, close(T, rc + k) = { a ,  a + 1 , .  . . , b + I C }  and the 

Theorem 3.7 is based on Lemma 3.6, which showed that the 
mesh My,,  is a subgraph of a circulant graph with r c  nodes 
and a connection set that has values near rc/2. Specifically, 
when r is odd and c is even, all of the values in the connection 
set are within ( r+1) /2  of rc/2, and in all other cases all of the 
values in the connection set are within r /2  of rc/2. If Lemma 
3.6 could be improved by finding a circulant graph wit’i a 
connection set that is more tightly clustered around rc/2, the 
degree of the construction in Theorem 3.7 could be reduced. 
However, as we will see in Theorem 3.8, no such improvement 
in Lemma 3.6 is possible. The proof of Theorem 3.8 is gkien 
in the Appendix. 

Theorem 3.8: Let r and c be integers where 4 5 r 5 c md 
let CTC,s be a circulant graph that contains the mesh M,.,, ;is a 
subgraph. There exists an s E S such that 1s - (rc/2)1 2 ( r + 
1)/2 if r is odd and c is even, and such that 1s - (rc/2)1 2 -/2 
otherwise. 

degree of CTc+k,T is at most k + r. 

D. Mesh Construction 4 

We will now present constructions of ( k ,  M,,,)-tolelant 
graphs that combine the advantages of Constructions 2 md 
3. More precisely, the degree of the construction given l-ere 
increases at the rate of two per fault up to some number of 
faults, at which point it increases at the rate of one per fault. 
The cut-off point at which the rate of growth in the degree 
slows depends on a value called the gap, which will be defined 
later. 

Lemma 3.9: The following properties hold. i) If r is 1)dd 
then r and ( r  - l ) / 2  are relatively prime. ii) If T mod 4 = 0 
then r and (r /2)  - 1 are relatively prime. iii) If r m o d 4  = 2 
then r and ( r /2)  - 2 are relatively prime. 

Proof: First, we prove i). Let r = 22 + 1 when: 5 

is an integer. Thus gcd( r , ( r  - 1)/2) = gcd(22 + 1 9 x ;  = 
gcd( 1, 2 )  = 1, so r and ( r -  1)/2 are relatively prime. To prove 
ii), let r = 42 where 2 is an integer. Thus gcd(r, ( r /2)  - 1) = 
gcd(4z,22 - 1) = gcd(2,2z - 1) = 1. To prove iii), let 
r = 42 + 2 where 2 is an integer. Thus, gcd(r ,  ( r /2)  - 2)  = 

Lemma 3.10: Let r be odd and let S = { ( r  - l)c/2, ( r  - 
l )c /2  + l}. The mesh M,,, is a subgraph of the circulant 

Proof: Let f ( i )  = ( i ( r  - 1) /2 )modr  and let $ ( i , j )  = 
f ( i + j ) c + j .  First, we will show that 4 maps distinct nodes to 

g c d ( 4 ~  + 2,22 - 1) = gcd(4,22 - 1) = 1. 

graph CTr,s. 



BRUCK et al.: FAULT-TOLERANT MESHES AND HYPERCUBES 1093 

(a) (b) (c)  

Fig. 3. Three orderings of mesh nodes for the mesh construction 4: (a) T is 
odd, (b) T mod4 = 0. and (c) T mod4 = 2 .  

distinct values. From Lemma 3.9, r and ( r -  1)/2 are relatively 
prime, so for any integers x and x’, if f(x) = f ( d )  it follows 
that x mod r = x’ mod r. Let ( 2 ,  j )  and (i ‘ , j ’ )  be any nodes 
in Mr,c. Note that f ( i + j ) c  and j ( i ’ + j ’ ) c  are multiples of c, 
and that j E [e] and j ‘  E [c]. Therefore, if $ ( i , j )  = 4( i ’ , j ’ ) ,  
it follows that j = j ’ ,  which implies that f ( i + j )  = f ( i ’ + j ’ ) ,  
so i m o d r  = i ’modr  and i = i ’ .  

We will now show that 4 maps edges in MT,c to edges in 
CTC,s. We will show this by proving that for any integers 
i and j ,  i) I4(i + 1 , j )  - d ( i , j ) l  E close(S,rc), and ii) 
I4(i,j + 1) - b( i , j ) I  E close(S,rc). Let s = ( r  - 1)c/2 
and let s’ = ( r  + l)c/2, and note that close(S,rc) = 
{s,s + 1,s’ 1 l,s’}. In addition, note that for any integer 
x , f ( x  + 1) - f(x) equals either ( r  - 1)/2 or - ( r  + 1)/2. 
Therefore, I4(i + 1 , j )  - 4( i , j ) l  = I f ( i  + j  + 1) - f ( i  + j ) l c ,  
which equals either s or s’, and property i holds. Let 4 ( i , j )  = 
y. Clearly, $ ( i , j  + 1) = 4(i + 1 , j )  + 1, which equals either 
y + s + 1 or y - s’ + 1, so property ii holds as well. As a 

0 
Lemma3.11: Let r m o d 4  = 0 and let S = {(r /2  - 

l )c ,  ( r /2  - 1)c + l}. The mesh Mr,c is a subgraph of the 
circulant graph CrC,s. 

Proof: Let f ( i )  = ( ( r /2  - 1 ) i ) m o d r  and let qh(i,j) = 
f ( i  + j ) c  + j .  The proof is analogous to that of Lemma 3.10 

0 
Lemma3.12: Let r m o d 4  = 2 and let S = { ( r / 2  - 

2)c, ( r /2  - 2)c + 1). The mesh Mr,c is a subgraph of the 
circulant graph CTc,s. 

Proof: Let f ( i )  = ( ( r / 2  - 2 ) i ) m o d r  and let 4 ( i , j )  = 
f ( i  + j ) c  + j .  The proof is analogous to that of Lemma 3.10 

0 
Fig. 3 shows examples of the mapping 4 for three meshes, 

representing the cases of Lemmas 3.10 through 3.12, respec- 
tively. 

Definition: Let n , s ,  and x be integers where 0 5 s < 
Ln/2] and 0 5 x I s, and let S = {s - x, s - z + 1 , .  . . , s}. 
Then gap(S ,n )  = n - 1 - 2s. 

Intuitively, gap(  S, n)  is the length of the “gap” between 
the two consecutive groups of offsets in close(S, n ) .  For 
instance, if S = {5,6},close(S,16) = {5,6,10,11} and 
gap(S ,  16) = 3. The following lemma is similar to one proven 
by Dutt and Hayes [9]. 

result, 4 is an embedding of Mr,c into CTC,s. 

and will not be repeated here. 

and will not be repeated here. 

Lemma 3.13: Let n, s, and x be integers where 0 5 s < 
Ln/2J and 0 I z I s ,  let S = {s - 5,s - z + l , . . . , s }  
and let T = expand(S,k). The circulant graph Cn+k,T has 
degree at most 

d = {  2IC + 2 ( S ( ,  if k- I g a p ( S ,  n ) ,  
if IC > gap(S ,  n). k + 21SI + gap(S ,  n ) ,  

Proof: The fact that d 5 2k + 21S( follows immediately 
from the definitions of expansion and closure. Now consider 
the case where IC > g a p ( S , n ) .  Note that T = {s - x, s - 
x + 1, . . . , s + I C }  so we will compare the values of s + IC 
and n + IC - (s + I C )  = n - s to see if there is a gap 
between the two groups of offsets in close(T,n + I C ) .  Note 
that (n  - s) - (s + k )  = n - 2s - I C ,  which is less than 
n - 2s - (n  - 1 - 2.9) = 1 because k > g a p ( S , n )  = 
n - 1 - 2s. Therefore, there is no gap between the two 
groups of offsets in close(T,n + I C ) ,  so close(T,n + IC) = 
{s - 2 ,  s -x+ 1,. . . , n+ k - (s -x)} and Iclose(T, n+lc)l = 
n + IC - (s - x) - (s - x - 1) = n + IC - 2s + 22 + 1. Since 
IC + 21SI + gap(S ,  n)  = IC + 2(x + 1) + n - 1 - 2s, we have 

0 JcZose(T, n + I C ) \  = IC + 215’1 + g a p ( S ,  n). 
Theorem 3.14: Let 

{(i - l )c ,  (i - l )c+’l}  if r mod 4 = 0, 

{ (i - 2)c, (f - 2). + 1} if r mod 4 = 2, 

and let T = expand(S, k ) .  Then the circulant graph Crc+k,T 

is ( I C ,  M,,,)-tolerant and has degree at most 

d(k,  r,  c) = 

’ 2k + 4, 
e +  I C +  1, 
2IC + 4, 
2c + k + 1, 
21C + 4, 

, 4c + k + 1, 

r is odd and k 5 c - 3 ,  
r is odd and IC > c -  3, 
r mod 4 = 0 and IC 5 2c - 3 ,  
r mod 4 = 0 and IC > 2c - 3, 
r mod 4 = 2 and IC I 4c - 3,  
r mod 4 = 2 and IC > 4c - 3.  

Proof: From Theorem 3.1, the graph Crc+k,T is 
( I C ,  C,,,s)-tolerant. From Lemmas 3.10 to 3.12, the graph 
is a subgraph of CrC,s. Thus, the graph Crc+k,T is ( I C ,  
tolerant. The degree follows directly from Lemma 3.13 and the 
fact that gap(S, r e )  = c - 3 if r is odd, 2c - 3 if r mod 4 = 0, 
and 4c -  3 if r m o d 4  = 2. 0 

Note that if the numbers 0,1, . . . , rc - 1 are assigned to 
meshes in the diagonal manner instead of the antidiagonal 
manner, then the new gap(S ,  re)  is greater than the original 
g a p ( S ,  rc) by 2. 

IV. DIAGONAL GRAPHS 
In Section 111, we studied the family of circulant graphs. 

Another important class of graphs consists of what we call 
“diagonal graphs.” In this section we will show that diagonal 
graphs can be used to create fault-tolerant d-dimensional 
meshes and hypercubes with small degree. We will also 
present efficient implementations for many of these fault- 
tolerant graphs. The definition of diagonal graphs and a general 
technique for adding fault tolerance to diagonal graphs are 
given next. 
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Fig. 4. 

B 

Diagonal graph with 16 nodes and offsets 1 and 4. 

Definition: Let n be a positive integer and let S be a set of 
iiitegers in the range 1 through n - 1. The n -node diagonal 
graph with connection set S, denoted Dn,s, consists of n 
rodes. Each node in Dn,s has a unique label in the range 0 
t irough n- 1. Each node z is connected to all nodes of the form 
I f s  where s E S. Thus diagonal graphs are similar to circulant 
t,raphs, except they do not have the “wraparound” connections 
from high numbered nodes to low numbered nodes, Fig. 4 
chows an example of a diagonal graph. The name “diagonal 
~raph” refers to the structure of the adjacency matrix of such 
L graph. 

Given the target graph Dn,s (with the restriction that S C 
[ 1 , 2 , .  . . , [n/31}), we will use the circulant graph C n + k , ~ ,  

where T = ezpand(S ,  Lk/2]), as the fault-tolerant graph. 
The idea is similar to the technique for adding fault tolerance 
LO circulant graphs given in Theorem 3.1. Recall that given 
the circulant target graph C,,s, the fault-tolerant graph has 
the connection set T = expand(S , k ) .  The reason that we 
have to expand S by k is that an edge in the target graph 
may have to “jump over” as many as k faults in the fault- 
tolerant graph. In contrast, given the diagonal target graph 
D,,s , the fault-tolerant graph requires only the connection 
set T = ezpand(S ,  Lk /2]) .  The reason that we can expand 
S by Lk/2] rather than by k is that the lowest and highest 
numbered nodes in D,,s have smaller degree than the other 
nodes in D,,s. Thus if the fault-tolerant graph has a cluster 
of faults that are near one another (and thus could require an 
edge to jump over a large number of faults), we can choose 
to map the lowest and highest numbered nodes in D,,s to the 
healthy nodes near that cluster of faults. Using this mapping 
none of the edges has to jump over the cluster of faults, and the 
expansion by Lk/2J is sufficient. This argument is formalized 
subsequently. 

Definitions: Let n and k be positive integers, let y = [n/31, 
let P = [n + k ] ,  let F c P be any set of k elements in P, and 
let H = P\F. The set P will represent the n + k processors in 
the fault-tolerant graph, the set H will represent the n healthy 
processors, and the set F will represent the k faulty processors. 
The elements of F and H will be denoted f o ,  f l , .  . . , fk-1 

and ho, h l , . . . ,  hn-l, respectively, where f z  < f, if z < 1 
and h, < h, if a < 3. Given any healthy node h, E H 
and any integer z where 1 5 T 5 n - l , jumps(h , ,x )  

is defined to be {fjlhi < fj < hi+%} if i + x < 11 

and {fjlhi < f, or fj < hi+l-n} otherwise. In additior, 
marked(%)  = (hi1 Ijumps(hi,z)( > k / 2 }  and t a i l ( h i , x )  

jumps(hi,z)  is the set of faults that must be jumped 
over when connecting hi to the xth healthy node following 
h i , m a r k e d ( x )  is the set of healthy nodes that jump over a 
majority of the faults when they are connected to the zth 
healthy node following them, and tail(h;,x) is the set of x 
consecutive healthy nodes (in cyclic order) ending with h; .  
Finally, for any healthy nodes hi and hi ,  let dist(hi, h j )  = 
min((i - j )  m o d n ,  ( j  - i) m o d n ) .  Note that dist(hi, h,;) 
denotes the distance (in cyclic order) between h; and hj,  whe:e 
only healthy nodes are considered to contribute to the distance. 

Lemma 4.1: Given n, k ,  y,  P, F ,  and H as defined earlier, 
and given any nonempty set X H ,  if for all hi and hj in 
X ,  dist(hi, h j )  5 y - 1, then there exists some h, E X such 
that X 5 ta i l (h , ,y ) .  

Proof: Let hb be an arbitrary element in x. Let ha = 
h(b-y+l)mo& and let h d  = h(b+y- l )modn.  Note that every 
member of X appears in the sequence 

= {hi, h ( i - l ) m o d n ,  h(i--2)modn, ’ ‘ .  > h ( i - z + l ) m o d n } .  Thuh 

W = ha, (ha + 1) mod (n + k ) .  
(ha + 2)mod (n  + k ) ,  . . . , hd 

because for each hi E X,dis t (hb,  hi) 5 y = 1. Let h, be 
the last element in X to appear in the sequence W. Because 
W contains 2y - 1 members of H ,  there must be at least 
n - 2y + 1 2 y - 1 members of H that do not appear in 
W. Furthermore, for each hi E X ,  dist(h,, hi) 5 y - I, SO 

0 
Lemma 4.2: Given n, k ,  y ,  P,  F, and H as defined earlier, 

there exists some element h, E H such that for all z, where 
1 5 3: 5 y , m a r k e d ( x )  C tail(h,,z). 

Proof: We will assume that marked(:y)  is not empty, 
because the lemma is trivially true otherwise. First, we will 
show that there exists an element h, E m a r k e d ( y )  such ‘.hat 
m a r k e d ( y )  C tai l (h , ,y) .  We will then show that for a1 z, 
where 1 5 x 5 y - l ,marked(x)  C tail(h,,.c). 

Let hi and hj be arbitrary members of marked(y ) .  Bec2use 
jumps(hi, y )  and jumps(hj,  y )  both contain a majorit!’ of 
the elements in F, there must be some f a  E F such that 
fa E jumps(h;,y) and fa E jumps(hj,y). As a result, 
dist(h,, h j )  5 y - 1. Therefore, it follows from Lemma 4.1 
that there is some h, E m a r k e d ( y )  such that marked(%) C 

We will now show that for any x, where 1 5 3.  5 
y - I , m a r k e d ( z )  C tail(h,,z). Clearly, marked(x1  C 
m a r k e d ( y ) ,  so m a r k e d ( x )  C ta i l (h , ,y ) .  Thus all that 
remains to be shown is that tail(h,, y)\tclil(h,, x) does not 
contain any elements in marked(%). Let hi be an arbi:rary 
member of tail(h,, y)\tail(h,,z). Note that .jumps(hi, E )  n 
j u m p s ( h , , y )  = 0 and Ijumps(h,,,y)l > k / 2 .  so 
Jjumps(hi,z))  < k / 2  and hi 6 marked( z ) .  Therefore, 
tail(& y)\tail(h,,z) does not contain any members of 

0 
Theorem 4.3: Let n be a positive integer, let y = [?!/31 , 

let S be a set of integers in the range 1 through y ,  let k be a 

h; E tail(h,, y) .  As a result, X C taiZ(h,, y). 

tail( h,, y ) .  

marked(x ) ,  and marked(z)  C tail(h,,x). 
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positive integer, and let T = expan,d(S: [k: /2] ) .  The circulant 
graph C,+k)T is ( k ,  D,,s)-tolerant. 

Proof: We will show the existence of an embedding d, 
that maps the nodes of DTL,s to the healthy nodes in C,{+~ ,T .  
Let P, F. and H be as defined earlier, with P representing the 
nodes in C,+~,T> F representing an arbitrary set of k: faulty 
nodes, and H representing the remaining 71 healthy nodes. 
From Lemma 4.2, there exists a node h,,. E H such that 
for all x ,  where 1 5 z 5 y ,mm-ked( . r )  C tail(h,,.:e). Let 
h, = (h ,  + 1)  mod ( n  + k ) .  Define the function d, that maps 
from [n,] to [n+k] such that for any ,i E [n,]. 4 ( i )  = h ( z + z ) m o d n .  

We will show that 4 is an embedding of Dn..y into the 
healthy nodes in Cn+k,T.  It is clear that for any node i in 
D,,s, 4( i )  is a healthy node in C n + k . ~ .  In addition, it is clear 
that for any distinct nodes i and j in Dn,s .  $( i )  # 4(:j). Thus 
all that remains to be shown is that for any edge ( i . j )  in 
D,,s. (d( i ) ,d , ( . j ) )  is an edge in CT,+k.T. Every edge in Dn.s  
is of the form (a: a + .T) ,  where (I E [n - x] and :r E S. We 
will show that (d (u ) .  d ( a  + x)) is an edge in C,,+~.,T. Note 
that d ( a )  = h ( z + a ) m o d n ,  and because a E [n, - . T I .  4 ( a )  
tail(h,, x ) .  However, h,, was selected so that mmrked(:r:) C 
tail(h,,n:), so it follows that Ijumps(q5(n),z)/  5 [ k / 2 ]  and 
5 + Ijumps(d(a), x)I E T. Therefore, ( d ( a ) .  d(o, + , E ) )  is an 
edge in Cn+k,T. 

(b) A. d-Dimensional Meshes and Hypercubes 
The previous theorem on diagonal graphs can be used to 

construct efficient fault-tolerant d-dimensional meshes and 

Fig. S .  (a) A 6 x 6 one-fault-tolerant two-dimensional mesh. (b) New labeling 
of the fault-tolerant mesh when the node with original label 13 is faulty. 

hypercubes. 
Lemma 4.4: Let M be an n,o x 721 x . . . x njrl-l d-dimensional 

mesh, let TI, = II::; n,t. and for all 1 E [d]  let s i  = IItzi 71j  

(thus so = 1). The graph M is a subgraph of the diagonal 
graph Dn,s,  where s = { s o .  9 1 .  . . . . sd -  1) .  

straightforward to verify that q5 defines an embedding of M 

Theorem 4.5: Let M be an no x n,1 x . .  . x fr1,1-1 d- 
dimensional mesh, let n, = IIfzi n,i, for all i E [ d ]  let 
s,  = IIgzi n3, let S = {sg. s l , .  . . , s d - l } .  let k be a positive 
integer, and let T = ezpnn,d(S, [ k / 2 ] ) .  The circulant graph 
C,+~,T is ( I C ,  M)-tolerant and has degree at most ( k  + 2)d if 
k is even, and at most ( k  + 1)d if k is odd. 

Proof: From Lemma 4.4, the graph M is a subgraph 
of D,,s. We will consider two cases based on the value of 
n d - 1 .  If n d - 1  2 3. then S C { 1 , 2 : . . . ,  [ n / 3 ] } .  Therefore, it 
follows from Theorem 4.3 that C,+~.T is ( k .  D,,.s)-tolerant, 
which implies that C,+~,T is ( k ,  AI)-tolerant. 

Conversely, if nd-1 = 2 let S' = S\{n,/2} and note 
that S' C { 1 , 2 . .  . . ~ Ln/3)}. Therefore, it follows from The- 
orem 4.3 that C,+~.T is ( k .  D,,sf)-tolerant, so there exists 
a function 4 that is an embedding of D,,s, into the healthy 
nodes in C,+,+,T. We will show that q5 is also an embedding 
of Dn,s  into the healthy nodes in C n + k , ~ .  It is clear that 
each edge in D,,s of the form ( i , i  + x). where :E E S'. 
is mapped to an edge (4(i),d,(i + x ) )  in C,,+~.T. Thus all 
that remains to be shown is that each edge in Dn,s  of the 
form (zli + n/2)  is mapped to an edge (4(6).4(i + n, /2) )  

Proof: Let 4(n0.a813.. . .ad-l)  = E,=, d -  1 ( u i ) ( s , ) .  It is 

into Dn>s. 0 

in C,,+~.T. But {n/2,71,/2 + l , . . . , n , / 2  + L k / 2 ] }  C T ,  so 
{n/2.71/2 + l , . . . , r 1 , / 2  + k }  C closc(T,n + k), and no 
matter how many faulty nodes are located between d,(i) and 
4(1 + n/2) ,  the edge ( d ( i ) ,  cj(i + n / 2 ) )  is in C n + k , ~ .  

Finally, note that IS1 5 d and T = e:rpand(S, L k / 2 ] ) ,  so 
(TI 5 d ( 1  + [k/Zj) .  Therefore, the degree of Cn+k,T is at 
most ( k  + 2 ) d  if k is even and at most ( k  + 1)d if k is odd.0 

Corollary 4.6: Let Q ( 1  be a d-dimensional hypercube, let 
n = 2 ' , f o r a l l i ~  [d]  I e t s , = 2 ' , ~ e t S = { s o , . ~ 1 . ~ ~ ~ , s ~ - - l } ,  
and let T = cxpand(S, [ k / 2 J ) .  The circulant graph C n + k . ~  

is ( k .  Qd)-tolerant and has degree at most ( k  + 2 ) d  - k - 1 
if k is even, and at most ( k  + l ) d  - k + 1 if k is odd. 
In particular, the circulant graph C,,,,. has degree at most 
( k  + 2)d - ( k  + 2 )  log k + 2k - 3 when k: is a power of 2. 

Corollary 4.7: Let r and c be integers greater than or equal 
to 2, let M r ~ ,  be a two-dimensional mesh with T rows and c 
columns, let n = T C ,  let S = { 1, c}. let k be a positive integer, 
and let T = ezpn,71,d(S. [ k / 2 ) ) .  The circulant graph C,+~,T is 
( k .  M?,,)-tolerant and has degree at most 2k + 4 if k is even, 
and at most 2k + 2 if k: is odd. 

I t  is helpful to examine some specific examples of the 
preceding general construction. First, consider the important 
case where the target graph A4 is an m x m two-dimensional 
mesh and k = 1 fault must be tolerated. In this case the fault- 
tolerant graph is a circulant graph with m2 + 1 nodes and 
offsets 1 and m,. An example is shown in Fig. 5(a), where it is 
assumed that m = 6.  The graph has 37 nodes, the offsets are 
1 and 6, and the connections are calculated using modulo-37 
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Fig. 6. A 4 x 4 x 4 one-fault-tolerant three-dimensional mesh partitioned according to three types of edges. 

; rithmetic. As another example, consider the case where M 
i s  an m x m x r n  three-dimensional mesh and k = 1 fault 
inust be tolerated. In this case, the fault-tolerant graph is a 
~irculant graph with m3 + 1 nodes and offsets l . m ,  and m 2  
#see Fig. 6, in which the edges corresponding to the three 
iifferent offsets are shown separately for clarity). It will be 
,hown in Section IV-C-1 that fault-tolerant two- and three- 
iimensional meshes can be laid out efficiently in two and 
hree dimensions, respectively. 

Another interesting example is where M is a d -dimensional 
iypercube and k = 1 fault must be tolerated. In this case, the 
fault-tolerant graph is a circulant graph with 2" + 1 nodes and 
3ffsets 1 ,2 .4 ,  . . . .2"-l. Finally, consider the case where A4 
IS an m x ni two-dimensional mesh and k = 3 faults must 
be tolerated. In this case, the fault-tolerant graph is a circulant 
graph with m2 + 3 nodes and offsets 1 ,2 .m.  and m + 1. 
Although both of these last two constructions yield graphs that 
require twice the degree of the target graph, it will be shown 
in Sections IV-C-2 and IV-C-3 that the actual implementations 
can have a much smaller degree. 

B. Renaming Algorithm 
When the target graph is circulant and Theorem 3.1 is used 

to create a fault-tolerant graph, the problem of locating a 
healthy target graph in the fault-tolerant graph is relatively 
simple. Any healthy node can be selected to play the role of 
node 0, and the ith healthy node following the selected node 
plays the role of node i .  However, when the target graph is 

diagonal and Theorem 4.3 is used to create a fault-tolerant 
graph, the location of a healthy target graph is more involved. 
In particular, only certain healthy nodes can be selected to play 
the role of node 0. We will now present an efficient algorithm 
for locating a fault-free d -dimensional mesh contained in the 
fault-tolerant graph defined in Theorem 4.5. We will need the 
following definition to present the algorithm. 

Definition: An ordering of the nodes in a d-dimensional 
mesh A4 is a row-major order if for each pair of nodes 
n = (fig. u1. . . . , n d - 1 )  and b = (bo.  b l ,  . . . , h d - l ) ,  u precedes 
b whenever there is some ,J' such that ai = hi for 0 5 i <: j 
and u j  < b, . Thus a row-major order is simply a lexicographic 
order of the nodes according to their positions. A row-maior 
labeling of the nodes in an n,-node mesh assigns the labels 
0, I , . . .  , n  - 1 to the nodes in row-major order: 

Let M be the desired healthy mesh and let Mk denote the 
fault-tolerant circulant graph Cn+k,T as defined in Theorem 
4.5. The Renaming Algorithm assigns the labels O , l , - .  . . , n - 1 
to the 71, healthy nodes in the fault-tolerant graph h f k .  These 
labels correspond to  the row-major labeling of a healthy mssh 
M contained in Mk. 

Renaming Algorithm: The input to the Renaming Ngo- 
rithm is a fault-tolerant graph Mk as defined earlier, with a 
set of at most k faulty nodes. We will assume that exactly 
k of the nodes are faulty, because if there are .T < k: failts 
we can arbitrarily select any IC - 5 healthy nodes and consider 
them to be faulty. Recall that the nodes in h.r, are numbered 0 
through n + k: - 1. These nodes will be viewed as being ordc red 
cyclically, with nodes n, + k - 1 and 0 being adjacent. Thus, 



BRUCK et al .:  FAULT-TOLERANT MESHES AND HYPERCUBES IO9 7 

when the nodes are traversed in ascending order node 0 follows 
node n+k- l ,  and when they are traversed in descending order 
node n + k - 1 follows node 0. In the following description, let 
y = [n/31. The Renaming Algorithm consists of three steps. 

The first step uses two counters, one to count faulty 
nodes and one to count healthy nodes. The following 
routine is performed for all values of ‘i where 0 5 
i 5 71 + k - 1. First, both counters are set to 0. Then 
the nodes are visited in ascending order, starting with 
node 1;. As each node is visited, the appropriate counter 
is incremented. That is, if the visited node is faulty 
the counter for faulty nodes is incremented, and if the 
visited node is healthy the counter for healthy nodes is 
incremented. The counter for healthy nodes is checked 
after it is incremented. If this counter is greater than y. 
the process of visiting the nodes in ascending order is 
terminated, and the counter for faulty nodes is checked. 
If the counter for faulty nodes is greater than k / 2 .  node 
z is designated as being “marked,” whereas if i t  is less 
than or equal to k / 2 .  node i is designated as being 
“unmarked.” 
The second step figures out which healthy node should 
play the role of node 0 in the healthy mesh. The second 
step uses a single counter and i t  consists of three phases. 
Phase 1 begins by setting the counter to 0. Then the 
nodes are visited in descending order, starting with any 
arbitrarily selected node. As each node is visited, the 
node is checked to see whether it is faulty and whether 
it is marked. There are three cases that are possible: 

If the node is healthy and unmarked, the counter 
is incremented. 
If the node is healthy and marked, the counter is 
reset to 0. 
If the node is faulty, the counter is left unchanged. 

Next, the counter is checked and Phase 1 is terminated 
if the counter is greater than or equal to y. We will call 
the node that is being visited when the counter reaches 
node d. Phase 2 then visits the nodes in descending order 
beginning with node d.  It terminates when i t  encounters 
a healthy node that is marked. This healthy marked node 
will be called node c. Phase 3 then visits the nodes in 
ascending order beginning with node c. I t  terminates 
when it encounters an unmarked healthy node, which 
will be called node z .  
The third step then assigns numbers to the healthy nodes. 
The nodes are visited in ascending order, starting with 
node z ,  and the healthy nodes are assigned the values 
0.1, . . ,TI ,  - 1 in order. Thus node z is assigned 0, the 
next healthy node that is visited is assigned 1, and the 
last healthy node that is visited is assigned 71 - 1. These 
numbers correspond to the row-major labels of a healthy 
mesh. 

a) 

b) 

c) 

Notice that in the case of a single fault, the preceding 
algorithm will result in a new labeling that starts immediately 
after the fault. For example, consider the fault-tolerant mesh in 
Fig. 5(a) and assume that node 13 is faulty. Fig. 5(b) presents 
the new labeling of the mesh. The edges of the new mesh 

are highlighted with thick lines and the unused edges are 
represented by dashed lines. 

Theorem 4.8: The Renaming Algorithm presented earlier 
correctly labels the healthy nodes in  the fault-tolerant graph 
according to a row-major labeling of the nodes in the target 
mesh. 

Proof: It is straightforward to verify that the first step of 
the Renaming Algorithm marks exactly those healthy nodes 
that are in the set ~ r r ~ m - k c d ( g )  (recall that = [ ~ t , / 3 1 ) .  Then 
Phase 1 of the second step finds a block of y consecutive 
(ignoring faulty nodes) unmarked healthy nodes. Such a block 
is guaranteed to exist, because from Lemma 4.2 all of the 
marked healthy nodes are located in  a block of g consecutive 
(ignoring faulty nodes) healthy nodes. Phase 2 of the second 
step then finds a marked healthy node followed by at least 
y unmarked healthy nodes and labels this node c. It is clear 
that this node c must correspond to thc node h,. defined in 
the proof of Theorem 4.3, because all other marked healthy 
nodes have another marked healthy node within the following 
y healthy nodes. Phase 3 of the second step then labels a node 
z that must correspond to the node h Z  defined in the proof of 
Theorem 4.3. Finally, the third step labels the healthy nodes 
in order from node z .  It was shown in the proof of Theorem 
4.5 that this labeling corresponds to a row-major labeling of 

0 
I t  is easy to verify that the Renaming Algorithm, as pre- 

scnted earlier, requires (-)(n(n + X:)) time. However, note 
that steps 2 and 3 require only O(r/ + X )  time. In addition, 
note that step 1 simply calculates the number of faulty nodes 
between each node i and the yth healthy node following I .  

This calculation could be performed in O ( n  + k )  time as well 
by noting that the calculations for successive healthy nodes 
i and , j  differ only by the number of faults between i and 
, j  and by the number of faults between the yth healthy node 
following i and the yth healthy node following , j .  Thus, the 
Renaming Algorithm can be modified to run  in O ( 7 1 - t  k )  time, 
which is optimal (as every node may require a new label). 

the nodes in the target mesh. 

C. Eficient Implementations 

Many of the constructions for fault-tolerant meshes and 
hypercubes given by Theorem 4.5 can be implemented effi- 
ciently. First, we will show how the fault-tolerant two- and 
three-dimensional meshes can be laid out in two and three 
dimensions, respectively, using only short wires. We will then 
show how multiplexers and buses can be used to reduce the 
degree of the fault-tolerant graphs. 

1) Layouts with Short Wires: When considering layouts 
with short wires, we will assume that the processors are 
arranged in a two- or three-dimensional array, and we will 
consider lengths in  terms of the Manhattan distance between 
processors (ignoring the area or volume required by the wires). 
However, these constructions also yield efficient layouts in 
terms of area and volume. 

It  is clear from Fig. S(a) that the fault-tolerant construction 
for two-dimensional meshes given by Corollary 4.7 are very 
closely related to torus networks. In fact, when A. = 0 the 
construction yields what is known as a “singly twisted torus” 



IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. ' 2 ,  SEPTEMBER 19'13 

P 1 2 3 4 5 6 7  

(b) 

1. g. 7. Layout of a cycle using (a) normal ordering and (b) interleaved 

3 

Fig. 8. Layout of 6 x 6 one-fault-tolerant two-dimensional mesh. ordering. 

1181. As a result, known techniques for laying out torus 
retworks with short wires can be used for the fault-tolerant 
constructions. 

The key idea for obtaining these short connections is to 
I iterleave the first and second halves of each row and column. 
':'his idea can be exemplified by considering a cycle of m 
I odes that are labeled from 0 to m-I .  Clearly, if we lay out the 
I odes on a line according to this labeling, we will have m - 1 
5hort edges (of length 1) and one long edge (of length m - 1) 
t letween node 0 and node m- 1 [see Fig. 7(a)]. However, if we 
[dace the nodes in the order 0, m - 1, I ,  m - 2 ,2 , .  . . , Im/2], 
1 hen each edge is of length at most 2 [see Fig. 7(b)]. Formally, 
rve can define a function 

m 
2 { i i m  - i )  - 1, otherwise. 

if i 5 1-1, 
m)  = 

Then node i in a cycle of m nodes is mapped to posi- 
lion &( i ,  m).  We will call this ordering of the indices the 
.nterleaved ordering. It is easy to verify the following two 
xoperties: 

Property I :  mdist(q51(i,m),q51(i + 1 , m ) )  5 2 for all 
1 5  i 5 m - 2 , a n d  

Property 2: mdist(&(m - 1, m), &(0, m) )  = 1, 
where mdist(i ,  j )  returns the Manhattan distance between two 
grid points i and j. 

Layout for one-fault-tolerant two-dimensional mesh: 
Assume that we have an m x m mesh with one additional 
spare node. 

I) Label the elements in each row in the m x m mesh from 

2) Lay out the elements in each row according to the 

3) Lay out the rows according to the interleaved ordering. 
4) Place the spare node next to the upper left corner of the 

See Fig. 8 for an example of a layout of a 6 x 6 one- 
fault-tolerant mesh. Formally, let x ( i ,  772) = i mod m and let 
y ( i ,  m) = li/m,J. Then, node z, where 0 5 i 5 m 2 ,  is mapped 
to a position 

0 to m - 1. Label the rows from 0 to m - 1. 

interleaved ordering. 

mesh layout. 

( 4 1 ( 4 i , m ) , m )  + L d l ( Y ( i , m ) , m ) ) ,  
if i < m2, { (o ,o) ,  if i = m 2 ,  

42(i,m) = 

in ii two-dimensional layout. In the figure, the first axis 
corresponds to the horizontal direction and the second axis 

corresponds to the vertical direction with the upper leftmclst 
position being (0, 0). We now prove the following lemma. 

Lemma 4.9: The layout for the one-fault-tolerant two- 
dimensional mesh has edges of length at most 3 (using 
Manhattan distance). 

Proof: First, it is easy to prove that the four edges of the 
last node (Le., node m2) are of length at most 3 in the layoit. 
Thus, we now consider lengths (with respect to the layout) of 
the edges in the remaining m2 node graph. For convenience, 
we refer to X-edges as the edges with offset 1 and Y-edges 
as those with offset m in the graph. Further partition Y- 
edges into internal edges and wraparound edges with the latter 
edges being of the form (2, z + 1) where (i + 1) mod m = 0. 
[For instance, edges (5,  6), (11, 12), . . .  , (29, 30) in Fig. 
5(a) are wraparound X-edges.] Similarly, partition the Y- 
edges into internal edges and wraparound edges with the latter 
edges being of the form ( A ,  ( 7  + m) mod (7n2 + 1)) where 
m(m - 1) < z < m2.  [For instance, edges (31, O), (32, I), 
. . .  , (35, 4) in Fig. 5(a) are wraparound Y-edges.] It is easy 
to see that all internal X-edges and internal Y-edges are of 
length at most 2 in the layout (by Property 1). The length cf a 
wraparound X-edge (z ,  z + 1) is no more than the sum of the 
lengths of edges (z,z + 1 - m) and (z + I - m,z + 1). Since 
the former is of distance 1 (by Property 2) and the lattei is 
of distance at most 2 (by Property I), the total distance i: at 
most 3. The length of wraparound Y-edges can be simikrly 
derived to be at most 3. 0 

For three-dimensional meshes we present an efficient three- 
dimensional layout. 

Layout for one-fault-tolerunt three-dimensional mesh: 
Assume that we have an m x m x m mesh with one additicnal 
spare node. 

1) Label the elements in each row from 0 to m - 1. L bel 
the rows in each m x m plane from 0 to m - 1. Label 
the two-dimensional m x m planes from 0 to m - 1. 

2) Lay out the elements in each row according to the 
interleaved ordering. 

3) Lay out the rows in each plane according to the inter- 
leaved ordering. 

4) Lay out the planes according to the interleaved ordering. 
5 )  Place the spare node next to the corner of the mesh 

layout that is the node labeled zero according to row- 
major ordering. 

See Fig. 9 for an example of a layout of a 4 x 4 x 4 
one-fault-tolerant mesh. Formally, let ~ ( i ,  711) = z mod m, let 
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r = 4  r = 3  ’ r = 2  r = l  I z = o  

Fig. 9. Layout of 4 x 4 x 4 one-fault-tolerant three-dimensional mesh. 

y(i, m) = (Li/m]) modm, and let z ( i ,  m) = Li/m2]. Then, 
node i ,  where 0 5 a 5 m3, is mapped to a position 

( 4 l ( Z ( i :  m): m): 41(di, m),  m),  
4 l ( z ( i ,  m) + 1, m)).  if i < m3, { ( O , O , O ) ,  if i = m3, 

$3(i1m) = 

in a three-dimensional layout. We now prove the following 
lemma. 

Lemma 4.10: The three-dimensional layout for the one- 
fault-tolerant three-dimensional mesh has edges of length at 
most 4 (using Manhattan distance). 

Proof: First, we list a few properties related to the two- 
dimensional layout using interleaved ordering, which can be 
derived from Properties 1 and 2 and the definition of 4 2  ( s i  ~ m).  
For brevity, we omit the second argument of 42 in the follow- 
ing, which is always m. Property 3: mdist(42(0), 42(m2 - 
1)) = 2; Property 4: mdist(42(0),42(m(m - 1))) = 1; 
Property 5: mdist(4z(i), 42(i + m(m - 1) + 1)) 5 3 for all 
0 5 i 5 m - 1; and Property 6: mdist(42(i), 42(i + 1)) I 3 
(from Lemma 4.9). 

It is easy to prove that the six edges of the last node 
(Le., node m3) are of length at most 4. We now consider 
the remaining edges in the graph according to three different 
offsets: X-edges (offset l) ,  Y-edges (offset m), and Z-edges 
(offset m2). There are two types of X-edges: internal edges 
are those within the same plane, and external edges are those 
between different planes. Clearly, internal edges are of length 
at most 3 (Property 6). External edges are of lengths at most 
2 + 2 (Property 3 and Property 1, respectively). 

There are three types of Y-edges: internal edges are those 
within the same plane, external edges are those between planes 
except for that between the last and the first planes, and 
wraparound edges are those between the last and first planes. 
Internal Y-edges are of length at most 3 (Property 6). External 
Y-edges are of length at most 1 + 2 (Property 4 for the former 
and Property 1 for the latter). Wraparound Y-edges are of 
length at most 1 + 3 (Property 2 for the former and Property 
5 for the latter). 

There are two types of Z-edges: wraparound edges are 
those between the last and first planes, and all other edges 
are internal edges. Internal Z-edges are of length at most 2 
(Property 1). Wraparound Z-edges are of length at most 1 + 3 
(Property 2 for the former and Property 6 for the latter). 0 

Although we have considered only layouts for the case 
where k = 1, it is possible to generalize these layouts for 
larger values of k .  In particular, a k-fault-tolerant m x m 
mesh can be layed out in two dimensions as follows. First, 
label a row of m processors using the interleaved ordering. 
Next, take the processors from this row, in order from left 
to right, and lay them in a & x m/& array in column- 

major order. Thus, the first & processors are placed in the 
first column, the next & processors are placed in the second 
column, etc. This completes the layout of processors 0 through 
m-1. Now repeat this process until m such f i x m l f i  arrays 
have been formed, and place these arrays one above the other 
in interleaved order. This completes the layout of processors 
0 through m2 - 1. Finally, place the k spare processors in a 
fi X & square next to the upper left corner of the mesh 
layout. It is straightforward to verify that all of the wires are 
of length O(&) (using the Manhattan distance). A similar 
approach can be used to obtain three-dimensional layouts of k 
-fault-tolerant three-dimensional meshes with wires of length 
O(k1/3). Thus the fault-tolerant constructions retain many of 
the favorable properties of meshes. 

2) Implementations with Multiplexers: The one-fault-toler- 
ant graph for the d-dimensional hypercube presented in Section 
IV has degree 2d. This is because each node j is connected to 
both node (~ ‘+2~)11 iod(n+ l )  andnode ( ~ ’ - 2 ~ ) m o d ( n + l ) ,  
where 0 5 a < d. However, only one out of each of these 
pairs of connections actually will be used once a healthy 
hypercube has been found. As a result, a 2-to-1 multiplexer 
can be used to connect processor j to the pair of processors 
(j+22) mod ( n + l )  and ( ~ ’ - 2 ~ )  mod ( n + l ) .  This reduces the 
degree of the fault-tolerant architecture to d, which is equal 
to the degree of the target graph. Note that the multiplexers 
do not have to be assumed to be immune to faults, as a faulty 
multiplexer can be avoided by treating the processor to which 
it is attached as being faulty. In addition, a similar technique 
of using 2-to-1 multiplexers to connect each processor j to 
pairs of processors of the form ( j  + x)mod(n  + k )  and 
( j  - z)mod (n  + k )  can be used to reduce the degree of 
k-fault-tolerant hypercubes. However, it should be noted that 
the use of multiplexers does not reduce the number of wires. 

3) Implementations with Buses: Finally, we can also use 
buses to reduce the degree of the fault-tolerant architectures. 
For example, when k is odd and the target graph is a 
two-dimensional mesh M with r rows and c columns, the 
fault-tolerant graph f i k  given by Corollary 4.7 is a circulant 
graph with offsets 1, 2 , .  . . ~ ( k  + 1)/2 and e,  e-+ 1,. . . , c + 
( k -  1)/2. However, for each healthy node i in Mk,, the target 
mesh M will use only at most one of the edges of the form 
(i, ( i  + x) mod (n  + k ) ) ,  where 1 I x I ( k  + 1)/2,  and at 
most one of the edges of the form ( i ,  (z  + x) mod (n  + k ) ) ,  
where c 5 x 5 c + ( k  - 1)/2.  As a result, we can use a bus 
to connect each node i in &fk to all of the nodes of the form 
( i+x)  mod ( n + k ) ,  where 1 5 z 5 (k+1) /2 ,  and we can use 
a separate bus to connect node i to all of the nodes of the form 
( i+x)  mod ( n + k ) ,  where 1 5 z I c+(k-1)/2.  An example 
of the case k = 3 is shown in Fig. 10. Note that the layout 
is quite compact and that most of the connections are short. 
Although a few of the connections appear to be relatively long 
in the figure, they are, in fact, of constant length and need not 
be made longer to create larger meshes. 

A similar approach can also be used when k is even and 
when d > 2. In general, the use of buses results in a fault- 
tolerant architecture with degree at most d(k + 3)/2 if k 
is odd and d(k + 4)/2 if k is even. Note that if the bus 
connecting node i to some set of consecutive nodes of the 
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'ig. 10. Detailed layout of three-fault-tolerant two-dimensional mesh with 
6 rows and 8 columns using buses. 

form ( i  + x) mod (n + k ) ,  where x > 0, is faulty, we can 
avoid using the bus by viewing node i as being faulty. Thus, 
even bus faults can be tolerated with this architecture. 

V. OTHER GRAPHS 
In this section we will present fault-tolerant graphs for target 

graphs that are tori, eight-connected meshes and hexagonal 
meshes. 

A. Torus Construction 

A torus with r rows and c columns, denoted MKc, is a mesh 
Mr,c to which "wraparound" connections have been added that 
connect the first and last nodes in each row and the top and 
bottom nodes in each column. We will show that given any 
torus MTc, we can construct a (k,MT,)-tolerant graph with 
r c  + k nodes and degree at most 

2k + 4, 
2k + 6, 

if r and c are relatively prime, 
if at least one of r and c is odd, { 4k + 6, if both r and c are even. 

1) Case 1-r and c are Relatively Prime: The construction 
of a fault-tolerant torus MKc for which r and c are.relatively 
prime is based on the wraparound diagonal-major order. 

Lemma 5.1: Let T and c be relatively prime, let x be the 
integer satisfying x c m o d r  = 1 and 1 5 x < r, and let 
S = {zc-1, xc}. The torus MTc is a subgraph of the circulant 
graph crc,s. 

Proof: Let f ( i )  = xamodr  and let 4(i,j) = f ( z - j ) c +  
j. The proof is analogous to that of Lemma 3.10 and will not 
be repeated here. 

An example of the numbering given by the function 4 in 
the previous lemma is shown in Fig. ll(a). 
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Fig. 11. Three orderings of torus nodes: (a) gcd(r, c )  = 1. (b) r is odd and 
c is even, and (c) both T and c are odd and r 5 c. 

Theorem 5.2: Let r and c be relatively prime, let x be 
the integer satisfying x c m o d r  = 1 and 1 5 x < r,  let 
S = {xc - l ,xc},  and let T = ezpand(S,k). The circulant 
graph Crc+k,T is (k, MKc)-tolerant and has degree at most 
2k + 4. 

Proof: Follows from Theorem 3.1 and Lemma 5.1. 0 
Note that gup(S,rc)  = ( r  - 2x)c - 1 if x < r /2 ,  and 

(ax - r ) c  - 3 otherwise. It is possible to reduce the gap by 
two for the former case by doing an antidiagonal traversal 
instead of a diagonal traversal. As before, for k 2 gap(S, rc) ,  
the additional edge per node is one for each additional fault 
@e., for each increment in k). 

2) Case 2 4  is Odd and c is Even: The construction of 
fault-tolerant torus MTc for which r is odd and c is even is 
based on the interleaved zigzag-major order [see Fig. ll(b)]. 

Lemma5.3: Let r be odd, let c be even, and let S = 
{ ( r  - 1)c/2 - 1, ( r  - 
is a subgraph of the circulant graph CrC,s.  

Proof: Let 4 ( i , j )  = [ ( [ i  - (jm0d2)]( '+~)/~)modr], :+ 
j .  The proof is analogous to that of Lemma 3.10 and will not 
be repeated here. 0 

Theorem 5.4: Let r be odd, let c be even, let S = 
{ ( r  - l )c /2  - 1, ( r  - l )c /2 ,  ( r  - l )c /2  + l}, and let T = 
expand(S, IC). The circulant graph Crc+k,T is (IC, ~4::~)- 
tolerant and has degree at most 

( r  - 1)c/2 + I}. The torus 

if k 5 c - 3, { ?:c> 3, otherwise. 

Proof: The fact that the circulant graph Crc+k ,~  is 
( k ,  MTc)-tolerant follows from Theorem 3.1 and Lemma 5.3. 
The degree follows from the fact that gap(S, rc )  = c-3,)6'1 = 

Note that if the same zigzag-style ordering is apFlied 
without interleaving between successive zigzag rows, the 
degree is still 2k + 6 but the gap is much larger. 

3) Case 3 4 0 t h  r and c are Odd: Assume without loss of 
generality that r 5 c. The construction is based on a hybrid 
method combining the wraparound diagonal-major ordei (of 
Case 1) with the zigzag-major order (similar to Case 2). See 
Fig. l l (c )  as an example of labeling a 7 x 7 torus. 

Lemma 5.5: Let r and c be odd integers with r 5 c and 
let S = {2c - 1,2c, 2c + 1). The torus MTc is a subgraph of 
the circulant graph CrC,S. 

Proof: The zigzag ordering is applied to the (T + 1)/2 
leftmost columns if r mod 4 = 3, and to the ( r  - 1)/2 leftmost 
columns if r mod 4 = 1. The wraparound diagonal ordering is 
applied to the rest of the columns on the right. 

3, and Lemma 3.13. 0 
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‘(2’’) = ‘ 

1101 

r + l  
2 

r - 1  

i f r m o d 4  = 3 a n d j  2 -. 
f 2 ( i  - ( j m o d 2 ) ) c +  j ,  

i f r m o d 4  = 1and.j  < O .  

Formally, let f l ( i )  = i ( r  - 2) mod r,  let f 2 ( i )  = 27 mod r,  
and let 

‘(2’’) = I 
~ ( z  - ( j  mod 2 ) ) ~  + .i. 

i f r m o d 4  = 3 a n d j  < 7, r + l  I’ 
r + l  i f r m o d 4  = 3 a n d j  2 - 

2 .  

r - 1  
i f r m o d 4  = 1and.j  < O .  

f 2 ( i  - ( j m o d 2 ) ) c +  j ,  

, I  

- j + y ) c + j ,  

It is straightforward to verify that 4 defines an embedding of 

Theorem5.6: Let r and c be odd and 7‘ 5 e. let S = 
(2c - 1,2c,  2c + l) ,  and let T = erpand(S ,  k ) .  The circulant 
graph C r c + k , ~  is (k,MTc)-tolerant and has degree at most 
2k + 6. 

Proof: The fault tolerance of C r c + k . ~  follows from 
Theorem 3.1 and Lemma 5.5. Since T = (2c- 1 , 2 c , .  . . , 2 c +  
k+1) ,  the degree of C r c + b , ~  is Iclose(T.rc+k)l = 2 k + 6 . 0  

4) Case 4 4 0 t h  r and c are Even: In this case, we simply 
use row-major order as used in Section 111-A for the first fault- 
tolerant mesh construction. The proof of the following lemma 
is analogous to that of Lemma 3.2 and will not be included. 

Lemma 5.7: Let S = (1 , c  - 1 , ~ ) .  The torus M:c is a 
subgraph of the circulant graph CrC,s. 

Theorem 5.8: Let S = (1,. - 1,c)  and let T = 
ezpand(S,  k ) .  The circulant graph C r c + k , ~  is ( k ,  MTc)-  
tolerant and has degree at most 4k + 6. 

Proof: Follows from Theorem 3.1 and Lemma 5.7. 0 
Note that Theorem 5.8 does not require that T and e have any 

special properties. Finally, it should be noted that some of the 
constructions for fault-tolerant meshes can also be used to add 
fault tolerance to twisted torus networks [ 181. For example, 
Mesh Construction 2 presented in Theorem 3.5 yields a degree 
2k + 4 fault-tolerant singly twisted torus when r = e. 

MTc into Crc,s. 0 

B. Eight-Connected Meshes 

An eight-connected mesh with r rows and c columns, 
denoted M:,,,, is a mesh Mr,c to which connections between 
nodes that are diagonal or antidiagonal neighbors have been 
added. We will use row-major order to construct its fault- 
tolerant graph. The proofs are analogous to those of the 
previous section and are omitted. 

Lemma 5.9: Let S = ( 1 , c  - 1 , c , c  + 1). The eight- 
connected mesh M:,,. is isomorphic to the diagonal graph 

Theorem 5.10: Let S = (1.c - l . c , c  + 1) and let T = 
ezpand(S ,  L k / 2 ] ) .  If r > 3,  the circulant graph C r c + k . ~  is 
( k ,  M:,c) tolerant and has degree at most 2k + 6 if k is odd 
and 2k + 8 if k is even. 

Drc,s. 

Fig. 12. Wraparound hexagonal mesh of order 4 

C. Hexagonal Meshes 

A hexagonal mesh (H-mesh) of order c is a six-connected 
mesh with hexagonal boundary. Each node is connected to 
two horizontal neighbors, two diagonal neighbors, and two 
antidiagonal neighbors, if they exist. The order is the length 
of one coordinate. Chen et al. [7] defined the wraparound 
connection of H-meshes, termed C-type wrapping, such that 
they become node symmetric graphs. In the C-type wrapping, 
the rightmost node at row a ,  where 0 5 z < 2c- 1, is connected 
to the leftmost node at row ( z  + e )  mod (2c - 1). The same 
wrapping scheme is applied to two other coordinates after 
rotating the H-mesh. Fig. 12 shows the C-type wrapping H- 
mesh of order 4. Chen et al. [7] also showed the isomorphism 
between the C-type wrapping H-meshes and a family of 
circulant graphs (as described by the following lemma), which 
is useful in constructing the fault-tolerant graphs for H-meshes. 
In the following, we denote M/ the C-type H-mesh of order 
c and N ( c )  = 3c2 - 3c + 1 the number of nodes in M F .  

Lemma 5.11 [7]: Let S = (1,3c - 2,3c - 1) and let 
N ( c )  = 3c2 - 3c + 1. The wraparound hexagonal mesh M P  
is isomorphic to the circulant graph CN(~),S.  

Theorem 5.12: Let S = (1 ,3c - 2,3c  - l), let N ( c )  = 
3c2 - 3c + 1, and let T = erpand(S,  k ) .  The circulant graph 
C , V ( ~ ) + ~ , T  is ( k ,  MF)-tolerant and has degree at most 4k + 6. 

Note that an H-mesh of order c without wraparound is also 
a subgraph of a (2( - 1) x (2c - 1) eight-connected mesh. 
However, the latter has c2 - c more nodes than the former. 

VI. CONCLUSION 

We have presented new techniques for tolerating faults in 
d-dimensional meshes and hypercubes. The fault tolerance of 
the constructions relies on properties of circulant and diagonal 
graphs, many of which were derived herein. In particular, 
the construction given in Theorem 4.5 for a fault-tolerant d- 
dimensional mesh tolerates k faults and has degree at most 
( k  + 1)d if k is odd and ( k  + 2)d  if k is even. Thus this 
construction yields a one-fault-tolerant d-dimensional mesh 
that has only one spare node and degree 2d .  We also gave a 
renaming algorithm for locating a healthy mesh in the presence 
of faults, and efficient layouts (with very short edges) for fault- 
tolerant two- and three-dimensional meshes. In addition, we 
showed how multiplexers and buses can be used to reduce the 
degree of the fault-tolerant architectures. Finally, we showed 



, 02 IEEE TRANSACTIONS ON COMPUTERS, VOL. 42, NO. 9, SEPTEMBER l‘J93 

how similar techniques can be used to obtain fault-tolerant 
tori, eight-connected meshes and hexagonal meshes. 

APPENDIX 
This appendix presents the proof of Theorem 3.8. The proof 

r :quires the following definitions and lemmas. 
Definitions: Any node ( i , j )  is a mesh Mr,c will be called 

even if i+j is even, and odd otherwise. The graph Lr,c consists 
( f the [rc/21 even nodes in Mr,c. Any pair of nodes ( 2 1 ,  jl) 
and (i2,jz) in Lr,c are adjacent iff Jil - 221 + Ij, - j 2 l  = 2, 
Note that any pair of nodes adjacent in Lr,c are connected by 
ii path of length 2 in Mr,c. Given a set S of nodes in L,,,, 
t i e  diagonal compression of S ,  denoted d i a g ( S ) ,  is the set 
( lbtained by sliding the nodes in S upward along the diagonals 
i ntil all gaps have been removed. Similarly, the antidiagonal 
compression of S ,  denoted a n t i d i a g ( S ) ,  is the set obtained 
by sliding the nodes in S upward along the antidiagonals until 
;11 gaps have been removed. More formal definitions of the 
diagonal and antidiagonal compression of S are as follows. 
For all i where 1 - c 5 i 5 T - 1, the ith diagonal, denoted 
il);, is the set D; = {(z,y) E Mr,clx - y = i}. Any node 
i 2 . j )  in Lr,c is in d i a g ( S )  if and only if either i 5 j and 

n SI. Similarly, for all 
i where 0 5 i 5 T + c - 2, the ith antidiagonal, denoted Ai,  
Is the set Ai = {(z,y) E M,,clz + y = i}. Any node ( i , j )  
i n  Lr>c is in a n t i d i a g ( S )  if and only if either i + j < c and 
’, < I.4;+j nSI or i + j  2 c and c -  1 - j  < (A;+j nSI .  Given 
i t  graph G and a set S of nodes in G, the neighbors of S in 
‘2 ,  denoted n e i g h b ( S ,  G), is the set of nodes in G that are not 
in  S but are adjacent to a node in S. 

LemmaAl: Let r be any positive integer and let S be 
m y  set of nodes in Lr,r. Then J n e i g h b ( d i a g ( S ) ,  Lr,r)l 5 
n e i g h b ( S ,  Lr,,)1 and ( n e i g h b ( a n t i d i a g ( S ) ,  Lr,r)l 5 ( n e i g h b  

Proofi It will be shown that J n e i g h b ( d i a g ( S ) ,  L , , ) (  5 
neighb(  S ,  L,,,) I. The proof that Ineighb(ant idiag(  S ,  L,,,) I 
5 Ine ighb(S ,  Lr,,)I is analogous and will not be given. 
The proof will first show that, within each diagonal, the 
diagonal compression operator can only decrease the number 
of neighbors. As a result, the overall number of neighbors can 
Imly decrease. 

For notational simplicity, let D; = 0 for all i where either 
: 5 -r or i 2 r. For all i where -T - 1 5 i 5 r + 1, 
et Si = S fl Di and let 5’: = d i a g ( S )  fl D;. Let a be 
my integer where 1 - r 5 a 5 T - 1. Let T-2 = D, fl 
~ e i g h b ( S , - 2 ,  Lr,,,), let To = D,n(ne ighb(S , ,  L,,,)uS,), let 
T1+2 = D , n n e i g h t ~ ( S , + ~ ,  L , , ) ,  and let T = T-~UTOUT+~. 
Similarly, let TL2 = D, n neighb(S:-,,  Lr,,), let TA = D, fl 
:ne ighb(S; ,  Lr,r)USA), let Ti2 = D, fl neighb(SA+,, Lr,r) ,  
md let T’ = T12 U TA u Ti2. 

First, it will be shown that ITL21 5 IT-2). There are three 
:ases: 

Case 1) a 5 2 - r : In this case, D,-z = 0, so 
Z’L2 = T-2 = 0 and ITL2( 5 IT-21. 

Case 2) 3 - T 5 a 5 0 : In this case, IT-2) 2 ISa-zl + 2 
and [Ti2(  = lSA-21 + 2. However, (Sa-21 = lS:-21, so 

< 1Di-j n SI or i > j and j < 

s, Lr,r)I. 

ITl21 I IT-21. 

C a s e 3 ) 2 5 a < r - l :  Inthiscase,if(Sa-21 2 ID,-Zl--l 
then T-2 = D, and TL2 C D,, so JTi2) I IT-2). Conversely, 
if [Sa-21 5 lDa-21 - 2 then IT-21 ISa-21 and ITL21 = 

Next, we will show that IT61 I [TO(. If Sa = D, then 
TA = TO = D, and ITA1 5 [TO(. Conversely, if S, # D, then 
IT01 L (Sal + 1 and ITA1 = IS:( + 1. However, (Sal = (S,il, 

It can also be shown that 5 1T+21. The proof 
is analogous to the proof that 5 IT-21 and will 
not be repeated. Therefore, ITL21 5 ]T-2l,]TA\ 5 IT)[, 
and 5 (T+21. Note that T = T-2 U TO U Tt.2, 
so IT1 2 max(lT-21,ITo(,IT+z(). In addition, note that 
IT’1 = max(lT121, ITol, [ T i 2 [ ) .  As a result, IT’( 5 IYl. 
Furthermore, ID, n n e i g h b ( S ,  L,.,,,)I 2 IT1 - [Sal and ID, fl 
n e i g h b ( d i a g ( S ) ,  L,,,,)I = (T’( - IS:(. However, IS,( = ISil, 
SO ID, fl n e i g h b ( d i a g ( S ) ,  L,.,,)I 5 ID, fl n e i g h b ( S ,  Lp,r) l .  
Because a was chosen arbitrarily, the diagonal compression 
operation can only decrease the number of neighbors 
in each of the diagonals, and Ine ighb(d iag(S) ,  L,,r)l 5 

Lemma A2: Let T be any integer greater than 3 and let S be 
any set of [r2/41 - 1 nodes in Lr,,,. Then ( n e i g h b ( S ,  Lr ,r) l  2 
r. 

Proof: Define the infinite sequence of sets So, SI, . . 
such that S = SO, for each i , O  I i ,Si+l = anti 
d i a g ( d i a g ( S i ) ) .  Let h be the smallest nonnegative integer 
such that sh = Sh+l (such as h is guaranteed to exist, as 
both the diagonal and antidiagonal compression operators only 
move nodes upward in the mesh). Note that sh = dzag(Sh)  = 
Untzdiag(Sh) .  In addition, note that for any node ( i , j )  E :;h, 

it follows that all nodes of the form (i’,j’), where i’-j’ 5 i - j  
and i’ + j ’  I i + j ,  are also in sh. 

Assume for the sake of contradiction that there exists. a 
column j in Lr,r such that all of the nodes in column j ,ire 
in sh. Let node (zlj) be the lowest node in column j of L,,, 
(thus, i = r -  1 if r + j  is odd and i = r - 2  if r + j  is even). 
Let T be the set of all nodes in Lr,, of the form (Z ’ , j ’ )  where 
z ’ - j ’  5 2-j and z’+j ’  5 z+j. Note that T C sh. However, it 
is straightforward (but tedious) to show that IT1 > IS), which 
is a contradiction. 

Next, assume for the sake of contradiction that there exists 
a pair of adjacent columns j and j + 1 in Lr,r such that none 
of the nodes in columns j and j + 1 are in sh. Let a = j if j is 
even and let a = j + 1 if j is odd. Let T be the set of all nodes 
in Lr,r of the form (2, j ’ ) ,  where i’ - j ’  < -a or i’ + j ’  < a. 
Because ( 0 , a )  E sh, it follows that sh C T. However, ii is 
straightforward (but tedious) to show that IT( < (5’1, which 
is a contradiction. 

Thus, there is no column in Lr,, that is completely contained 
in sh and there are no adjacent columns in L,,, that have 
no nodes in sh. As a result, every column contains at 
least one node in n e i g h b ( S h ,  L,,r) and Ineighb(Sh,  Lr,,) L 
T .  However, from Lemma A l ,  Ineighb(Sh,  &,,)I I 
Ineighb(S,  Lr,,)l. As a result, Ineighb(S,  Lr,r)l T .  

Theorem 3.8: Let T and c be integers where 4 I T 5 c and 
let Crc,s be a circulant graph that contains the mesh Mr,c its a 
subgraph. There exists an s E S such that 1s - (rc/2)1 2 ( - + 

However, IS,-zl = ISi-21, so I lT-21. 

so ITA1 5 ITol. 

Ineighb(S,  &,,)I. 0 
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1) /2  if T is odd and C is even, and such that Is- ( r c / 2 ) (  2 r / 2  
ot ienvise. 

(121 J. Hastad, F. T. Leighton, and M. Newman, “Fast computations using 
faulty hypercubes,” in Proc. 21st Annual ACM Symn on Theory c’f _ _  
Computing, 1989, pp. 251-284. 

[I31 J. P. Hayes, “A graph model for fault-tolerant computing systems,” IEEIC 
Trans. Comput., vol. C-25, no. 9, pp. 875-884, 1976. 
C. Kakkimanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. 
Raghavan, S. Rao, C. Thomborson, and A. Tsantilas, “Asymptoticall!, 
tight bounds for computing with faulty arrays of processors,” in Proc 
3Ist Annual IEEE Symp. on Foundaiions of Computer Science, pp 

[15] S. Y. Kung, S. N. Jean, and C. W. Chang, “Fault-tolerant arra) 
processors using single-track switches,” IEEE Trans. C‘omput., vol. C-38. 
no. 4, pp. 501-514, 1989. 

[16] S-Y. Kuo and W. K. Fuchs, “Efficient spare allocation for reconfigurable 
arrays,” IEEE Design and Test, pp. 24-31, 1987. 

(171 F. T. Leighton and C. E. Leiserson, “Wafer scale integration of systolic 
arrays,” IEEE Trans. Computers, vol. C-34, no. 5 ,  pp. 448461,  1985. 

(181 A. J. Martin, “The torus: An exercise in constructing a processing 
surface,” in Proc. 2nd Caltech Con5 on VLSI, 1981, pp. 527-531. 

[I91 M. Paoli, W. W. Wong, and C. K. Wong, “Minimum k-Hamiltonian 
graphs, 11,” J. Graph Theory, vol. 10, pp. 79-95, 1986. 

[20] Setting New Horizons. Aachen, Germany: Parsytec Computer GmbH, 
1991. 

[21] A. L. Rosenberg, “The Diogenes approach to testable fault-tolerant VLSI 
processor arrays,” IEEE Trans. Comput., vol. C-32, no. IO,  pp. 902-910, 

(221 A. L. Rosenberg, “Routing with permuters: Toward reconfigurable and 
fault-tolerant networks,” Tech. Rep. CS-1981-13, Dept. of Computer 
Science, Duke University, Durham, NC, 1981. 

[23] A. L. Rosenberg, “On designing fault-tolerant VLSl processor arrays,” 
Advances in Computing Research, V O ~ .  2, pp. 181-204, 1984. 

the in is [24] v. P. Roychowdhury, J. Bruck, and T. Kailath, “Efficient algorithms for 
reconfiguration in VLSI/WSI arrays,” IEEE Trans. Comput., vol. C-39, 
no, 4, pp. 480-489, 1990, 

[2S]  M. R. Samatham and D. K. Pradhan, “The de Bruijn multiprocessor 
network: A versatile network for parallel computation,” IEEE Trans. 
Comput., vol. 38, no. 4, pp. 567-581, 1989. 

(261 M. Sami and R. Stefanelli, “Reconfigurable architectures for VLSI 
processing arrays,” Proc. IEEE, vol. 74, no. 5,  1986. 

[27] Y. Ueoka, C. Minagawa, M. Oka, and A. Ishimoto, “A defect-tolerant 
design for full-wafer memory LSI,” IEEE J .  Solid-State Circuits, vol. 
SC-19, no. 3, 1984. 

[28] W. W. Wong and C. K. Wong, “Minimum k-Hamiltonian graphs,” J .  
Graph Theory, vol. 8, pp. 155-165, 1984. 

First, we show that in any there exists 
an s E S such that Is - ( rc /2) l  2 r /2 .  Assume for the sake 
(If contradiction that for all E S, Is - (../a)( < r / 2 ,  Let 

i3. j )  be an embedding of Mr,c into c r c , S .  Now consider 
an4 two nodes (i1,jl) and (i2,j2) which are adjacent in LF,r.  
Because there exists a path Of length in Mr,‘ between 
( i l , . d  and ( & ~ 2 ) ,  d W 4 ( i l > . d >  4 ( 2 2 , j 2 ) ,  T C )  i ?- - 1. 
Le q = [ r / 2 ]  and assume without loss of generality that 
$ ! I ( ! ! ,  q )  = ( r /2 ) ( r  - I) (no generality is lost because CFc,s is 
node-symmetric). Note that the distance in LF,F between ( q ,  q )  
ant any other node in LF,r is at most r /2 .  As a result, for any 
node ( i , j )  in Lr,,,O 5 q5(i,j) 5 2 ( r / 2 ) ( r  - 1) = r2 - r. 
Thcrefore, given any two nodes (il,jl) and (iz,jz) that are 
adj,icent in L , r ,  14(il,jl) - 4(iz,j2)1 5 r - 1. 

l e t  A be the set of [r2/41 - 1 nodes in Lr,r that have 
the smallest 4 values [formally, IA( = rr2/4] - 1 and for 

B = neighb(A, L T , ~ ) .  From Lemma A2, IBI 2 r ,  which 
implies that there exists a node (Z1,jl) E A and a node 
( ’ 2 2 .  j 2 )  E which is 
a c( ntradiction. Thus, in all cases, there exists an s E S such 
that Is - ( rc /2) l  2 r / 2 .  N~~ 
odd and c is even. In this case, ( r c / 2 )  - r /2  and ( r c / 2 )  + r / 2  
arc: not integers, so there must exist an s E s such that 

0 

285-296, 1990. 

:Zllal) E A and ( 2 2 > j 2 )  A,4(i1>j1) < 4 ( 2 2 > j 2 ) ] ’  Let 1983. 

such that I4(Zl,jl) - 4 ( i 2 , j 2 ) 1  2 

1.9 - ( r c / 2 ) (  2 ( r  + 1)/2. 
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