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LIMIT GROUPS FOR RELATIVELY HYPERBOLIC
GROUPS, II: MAKANIN-RAZBOROV DIAGRAMS

DANIEL GROVES

ABSTRACT. Let I' be a torsion-free group which is hyperbolic rela-
tive to a collection of free abeian subgroups. We construct Makanin-
Razborov diagrams for I'. We also prove that every system of equa-
tions over I' is equivalent to a finite subsystem, and a number of
structural results about I'-limit groups.

1. INTRODUCTION

This paper is a continuation of [17]. Throughout this paper, I' will
denote a torsion-free group which is hyperbolic relative to a collection
of free abelian subgroups. For an arbitrary finitely generated group G,
we wish to understand the set Hom(G, I') of all homomorphisms from
G toT.

In [17] we considered a sequence of homomorphisms {h; : G — I'}
and extracted a limiting G-action on a suitable asymptotic cone, and
then extracted an R-tree with a nontrivial G-action. This R-tree allows
much information to be obtained. In particular, in case G = I, we
studied Aut(I") and also proved that I' is Hopfian. In this paper, we
continue this study, in case G is an arbitrary finitely generated group.
In particular, we construct a Makanin-Razborov diagram for G, which
gives a parametrisation of Hom(G,I") (see Section 6 below). We build
on our work from [17], which in turn builds on our previous work of
[15] and [16]. The strategy is to follow [27, §1], though there are extra
technical difficulties to deal with.

To a system of equations ¥ over I' in finitely many variables there
is naturally associated a finitely generated group Gy, with genera-
tors the variables in X, and relations the equations. The solutions
to ¥ in I' are in bijection with the elements of Hom(Gyx,I'). Thus,
Makanin-Razborov diagrams give a description of the set of solutions
to a given system of equations over I'. For free groups, building on
the work of Makanin and Razborov, Makanin-Razborov diagrams were
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constructed by Kharlampovich and Miasnikov [20], and also by Sela
[26]. For torsion-free hyperbolic groups, Makanin-Razborov diagrams
were constructed by Sela [27], and it is Sela’s approach that we follow
here. Alibegovi¢ [2] constructed Makanin-Razborov diagrams for limit
groups.

Limit groups are hyperbolic relative to their maximal non-cyclic
abelian subgroups (see [8] and [1]). Limits groups are also torsion-free.
Therefore, the main result of this paper (the construction of Makanin-
Razborov diagrams) generalises the main result of [2]. Alibegovi¢ has
another approach to the construction of Makanin-Razborov diagrams
for these relatively hyperbolic groups (see [2, Remark 3.7]).

The main results of this paper are the following:

Theorem 5.9 Suppose that I' is a torsion-free relatively hyperbolic
group with abelian parabolics, and that G is a finitely generated group.
Then G is a I'-limit group if and only if G is fully residually T'.

Proposition 5.10 Suppose that I is a torsion-free relatively hyperbolic
group with abelian parabolics. Then there are only countably many I'-
limit groups.

Definition 5.14 A group G is a called equationally Noetherian if every
system of equations over G in finitely many variables is equivalent to
a finite subsystem.

Theorem 5.15 Let I' be a torsion-free relatively hyperbolic group with
abelian parabolics. Then I' is equationally Noetherian.

Theorem 6.4 Let G be a finitely generated group and I' a torsion-
free relatively hyperbolic group with abelian parabolics. Associated to G
1s a Makanin-Razborov diagram, with vertices G and I'-limit quotients
of G, and edges a canonical quotient map. Any homomorphism h €
Hom(G,T') can be given by compositions of modular automorphisms of
the I'-limat groups in the diagram with the canonical maps from I'-limat
groups into their mazximal proper shortening quotients, and finally with
either embeddings of a I'-limit group in the diagram into I', or general
homomorphisms of the terminal free groups that appear in the diagram
into T

See Sections 3, 4, 5 and 6 for definitions and discussion of the ter-
minology in Theorem 6.4 above. The output of Theorem 6.4 is a
parametrisation of Hom(G, I') for an aribtrary finitely generated group
G, in terms of successive proper quotients of G (with a fixed canonical
quotient), modular automorphisms, embeddings into I, and homomor-
phisms from a free group to I'. Note that for a fixed finitely generated
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free group F of rank d, the set Hom(F, I') can be naturally parametrised
by F¢, by the universal property of free groups.

Sela [28, 1.8] asked whether Theorems 5.15 and 6.4 hold in the con-
text of CAT(0) groups with isolated flats. We believe that relatively
hyperbolic groups with abelian parabolics are a natural setting for these
questions.

An outline of this paper is as follows. In Section 2 we recall the
definition of relatively hyperbolic groups, and recall the construction
of limiting R-trees from [15] and [17], as well as other useful results. In
Section 3 we improve upon our version of Sela’s shortening argument
from [16] and [17] to deal with arbitrary sequences of homomorphisms
{h, : G — T'} where G is an arbitrary finitely generated group. In
Section 4 we recall Sela’s construction of shortening quotients from
[26], and adapt this construction to our setting. In Section 5 we prove
Theorem 5.2, one of the main technical results of this paper. We also
prove Theorems 5.10, 5.15, and a number of structural results about
[-limit groups. Finally in Section 6 we construct Makanin-Razborov
diagrams over I'.

In the future work [18], we will continue to study the elementary
theory of torsion-free relatively hyperbolic groups with free abelian
parabolic subgroups.

Acknowledgement. [ would like to thank Zlil Sela for providing
me with the proof of [27, Proposition 1.21], which is repeated in the
proof of Proposition 5.13 in this paper.

2. PRELIMINARIES

2.1. Relatively hyperbolic groups. Relatively hyperbolic groups were
first defined by Gromov in his seminal paper on hyperbolic groups [14].
Another definition was given by Farb [13], and further definitions given
by Bowditch [6]. These definitions are all equivalent (see [7] and [29]).
Recently there has been a large amount of interest in these groups (see
(1, 7,9, 10, 11, 21, 30], among others). The definition we give here is
due to Bowditch [6].

Definition 2.1. A group I with a family G of finitely generated sub-
groups s called hyperbolic relative to G if I' acts on a d-hyperbolic graph
IC with finite quotient and finite edge stabilisers, where the stabilisers
of infinite valence vertices are the elements of G, so that K has only
finitely many orbits of simple loops of length n for each positive integer
n.

The groups in G are called parabolic subgroups of I'.
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In this paper we will be exclusively interested in relatively hyperbolic
groups which are torsion-free and have abelian parabolic subgroups.

2.2. The limiting R-tree. In this subsection we recall a construction
from [17] (see also [15] for more details). Suppose that I'is a torsion-free
relatively hyperbolic group with abelian parabolic subgroups. In [17],
we constructed a space X on which I' acts properly and cocompactly
by isometries. For each parabolic subgroup P (of rank n, say) there is
in X an isometrically embedded copy of R", with the Euclidean metric,
so that the action of P leaves this Fuclidean space invariant and this
P-action is proper and cocompact with quotient the n-torus.

Suppose now that G is a finitely generated group, and that {h, :
G — T'} is a sequence of homomorphisms, and suppose that the A, do
not differ only by post-composition with an inner automorphism of I'.
By considering the induced actions of G' on X, and passing to a limit,
we extract an isometric action of G on the asymptotic cone X, of X
such that this action has no global fixed point. There is a separable
G-invariant subset C,, C X, and by passing to a subsequence {f;} of
{h;} we may assume that the (appropriately scaled) actions of G on X
converge in the Gromov-Hausdorff topology to the G-action on C...

The space Cy is a tree-graded metric space, in the terminology of
Drutu and Sapir [10]. Informally, this means that there is a collection of
‘pieces’ (in this case finite dimensional Euclidean spaces), and otherwise
the space is ‘tree-like’ (see [10] for the precise definition and many
properties of tree-graded metric spaces). By carefully choosing lines in
the ‘pieces’, and projecting, an R-tree T is extracted from C.. This
tree T' comes equipped with an isometric G-action with no global fixed
points and the kernel of the G-action on 7' is the same as the kernel of

the G-action on C.. For more details on this entire construction, see
[17] and [15].

Definition 2.2. Suppose that {h, : G — '} is a sequence of homo-
morphisms. The stable kernel of {h,}, denoted @(hn), is the set of
all g € G so that g € ker(hy,) for all but finitely many n.

The following theorem recalls some of the properties of the G-action
on the R-tree T'.

Theorem 2.3 (cf. Theorem 4.4, [15] and Theorem 6.4, [17]). Suppose
that T is a torsion-free group that is hyperbolic relative to a collection
of free abelian subgroups and that G is a finitely generated group. Let
{hyn : G — T'} be a sequence of pairwise non-conjugate homomorphisms.
There is a subsequence {fi} of {h;} and an action of G on an R-tree T
so that if K is the kernel of the action of G on T and L := G/K then
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(1) The stabiliser in L of any nondegenerate segment in T is free
abelian;

(2) If T is isometric to a real line then L is free abelian, and for all
but finitely n the group h,(G) is free abelian,

(3) If g € G stabilises a tripod in T then g € Ker(fi) € K;

(4) Let [y1,y2] C [ys,ya] be non-degenerate segments in T', and as-
sume that Stabr,([ys, ya]) is nontrivial. Then

Staby ([y1, y2]) = Stabr([ys, y4l)-

In particular, the action of L on T is stable; and
(5) L is torsion-free.

Thus T is isometric to a line if and only if L is abelian. If L is not
abelian then K = Ker (f:)-

We now recall the definition of I'-limit groups. There are many ways
of defining I'-limit groups. We choose a geometric definition using the
above construction.

Definition 2.4 (cf. Definition 1.11, [27], Definition 1.2, [17]). A strict
[-limit group is a quotient G/ K where G is a finitely generated group,
and K is the kernel of the action of G on T, where T is the R-tree
arising from a sequence of non-conjugate homomorphisms {h, : G —
I'} as described above.

A T'-limit group is a group which is either a strict I'-limit group or
a finitely generated subgroup of T'.

Remark 2.5. There are finitely generated subgroups of torsion-free
hyperbolic groups which are not finitely presented (see, for example,
22]).  Therefore, when I' is a torsion-free relatively hyperbolic group
with free abelian parabolic subgroups, a I'-limit group need not be finitely
presented. This presents substantial complications (many of which are
already dealt with by Sela in [27]), some of which are solved by the
application of Theorem 5.7 below.

2.3. Acylindrical accessibility and JSJ decompositions. In [24],
Sela studied acylindrical graph of groups decomposition, and proved
an accessibility theorem for k-acylindrical splittings. Unlike other ac-
cessibility results such as [12] and [3], Sela’s result holds for finitely
generated groups, rather than just for finitely presented groups.

We can apply acylindrical accessibility to our limiting construction
because (i) tripod stabilisers are trivial; and (ii) maximal abelian sub-
groups of I'-limit groups are malnormal. See [16] for a more detailed
discussion of this and of JSJ decompositions.
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The construction of the limiting R-tree immediately implies that the
abelian JSJ of a non-abelian, freely indecomposable strict I'-limit group
is nontrivial.

We can also apply the arguments of [26, Theorem 3.2] and [25, The-
orem 3.2], as adapted in [16] (this adaptation also applies to the results
in [17]) to prove that the cyclic JSJ decomposition of such a group is
nontrivial — see Theorem 5.1 below. But first, we recall the shortening
argument.

3. THE SHORTENING ARGUMENT

In [16] and [17] we described a version of Sela’s shortening argument
which worked for sequences of surjective homomorphisms to I', and
described in [16] why this notion is insufficient for all sequences of
homomorphisms.

In this section we present another version of the shortening argument,
which works for all sequences of homomorphisms {h, : G — I'}, for
any finite generated group G. This version was stated but not proved
in [17], and we give the proof here.

There are two equivalent approaches to this version of the shortening
argument. The first is to find a group G which contains G and shorten
using elements of Mod(G), rather than just elements of Mod(G) (this
approach was used in the proof of [16, Theorem 7.9]) . The second ap-
proach is to use the ‘bending’ moves of Alibegovi¢ [2]. We use the sec-
ond approach, because it yields a simpler parametrisation of Hom(G, I)
when we construct Makanin-Razborov diagrams in Section 6.

Recall the definition of Mod(G) for a finitely generated group G.

Definition 3.1. Let G be a finitely generated group. A Dehn twist is
an automorphism of one of the following two types:

(1) Suppose that G = A xc B and that ¢ is contained in the centre
of C. Then define ¢ € Aut(G) by ¢(a) = a for a € A and
(b)) = cbe™! forb € B;

(2) Suppose that G = Axc, that c is in the centre of C', and that t is
the stable letter of this HNN extension. Then define ¢ € Aut(G)
by ¢(a) = a fora € A and ¢(t) = tc.

Definition 3.2 (Generalised Dehn twists). Suppose G has a graph of
groups decomposition with abelian edge groups, and A is an abelian ver-
tex group in this decomposition. Let Ay < A be the subgroup generated
by all edge groups connecting A to other vertex groups in the decom-
position. Any automorphism of A that fires Ay elementwise can be
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naturally extended to an automorphism of the ambient group G. Such
an automorphism is called a generalised Dehn twist of G.

Definition 3.3. Let G be a finitely generated group. We define Mod(G)
to be the subgroup of Aut(G) generated by:

(1) Inner automorphisms;

(2) Dehn twists arising from splittings of G with abelian edge groups;
and

(3) Generalised Dehn twists arising from graph of groups decompo-
sitions of G with abelian edge groups.

Similar definitions are made in [26, §5] and [4, §1].

We will try to shorten homomorphisms by precomposing by elements
of Mod(G). However, as seen in [16, §3], this is not sufficient to get the
most general result. Thus, we also define a further kind of move (very
similar to Alibegovi¢’s bending move, [2, §2].

Definition 3.4. Suppose that I is a torsion-free group which is hyper-
bolic relative to free abelian subgroups, that G is a finitely generated
group and that h : G — T" is a homomorphism. We define two kinds of
‘bending’ moves as follows:

(B1) Let A be a graph of groups decomposition of G, and let A be an
abelian vertex group of G. Suppose that h(A) is contained in a
parabolic subgroup P < G. A mowve of type (B1) replaces h by a
homomorphism h' which is such that (i) h'(A) < P; and (ii) b/
agrees with h on all edge groups adjacent to A, and all vertex
groups other than A.

(B2) Let A be a graph of groups decomposition of G, and let A be an
abelian edge group associated to an edge e. Suppose that h(A) is
contained in a parabolic subgroup P < T'. A move of type (B2)
replaces h by a map which either (1) conjugates a component of
m(A N e) by an element of P, in case e is separating; or (ii)
multiplies the stable letter associated to e by an element of P,
m case e s non-separating.

Definition 3.5 (cf. Definition 4.2, [4]; Definition 2.11, [2]). We define

the relation ‘~’ on the set of homomorphisms h : G — T to be the

equivalence relation generated by setting hy ~ hy if hy is obtained from
hl by

(1) precomposing with an element of Mod(G);
(2) postcomposing with an inner automorphism of I'; or
(3) a bending move of type (B1) or (B2).
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Definition 3.6. Let A be an arbitrary finite generating set for G, and
let X be the space upon which I' acts properly, cocompactly and isomet-
rically, with basepoint x. For a homomorphism h : G — T" define ||h||

by
[A]l == r;leajcdx(x, h(g).z).

A homomorphism h : G — I is short if for any h' such that h ~ h’
we have ||h|| < ||W]].

The following is the main result of this section.

Theorem 3.7. Suppose that I" is a non-abelian, freely indecomposable
and torsion-free group which is hyperbolic relative to a collection of free
abelian subgroups. Let G be a freely indecomposable finitely generated
group and {h, : G — I'} be a sequence of non-conjugate homomor-
phisms which converges to a faithful action of G on C as above. Then,
for all but finitely many n, the homomorphism h,, is not short.

Proof. Suppose that the sequence {h, : G — '} converges into a faith-
ful G-action on C.. From this we extract a faithful G-action on an
R-tree T

The group G is freely indecomposable and the stabiliser in G of any
tripod in T is trivial, so we can apply the decomposition theorem of Sela
— [24, Theorem 3.1] — and decompose T into subtrees of three types:
axial, IET, and discrete (note that because G is freely indecomposable
and tripod stabilisers are trivial, there are no thin components in 7).
This decomposition of T induces a graph of groups decomposition of
G, which will allow us to shorten h,, for sufficiently large n. See [24] or
[16, §4] for more information.

Note that there are two sources for segments in 7. There are seg-
ments in C.,, and there are flats in C,, which are projected to lines in
T. We treat these as two separate cases. However, we can make the
following simplifications (let P be the collection of lines in 7" which are
projections of flats in C.):

(1) Suppose that Y is an IET subtree of 7" and that pg € P is a
line in 7T". Then the intersection Y Npg contains at most a point
([16, Proposition 4.3]);

(2) Suppose that a line  C T is an axial subtree of 7" and and let
the line pg be in P. If [ N pgp contains more than a point then
| = pg ([16, Proposition 4.5));

(3) If an edge e in the discrete part of 7" has an intersection of
positive length with pg € P then e C pg ([16, Lemma 4.7]).
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Fix a finite generating set A for G. Let y be the basepoint in T,
and consider the paths [y, u.y] for u € A. If there is any IET com-
ponent of T" which intersects any segment [y, u.y| nontrivially then we
can apply [23, Theorem 5.1] and [16, Corollary 4.4] to shorten these
intersections whilst leaving the remaining segments unchanged (to see
that we can have G finitely generated rather than finitely presented,
see [16, Remark 4.8]).

Suppose that some segment [y, u.y| has an intersection of positive
length with some axial component [ C T so that [ is not contained
in any pg € P. Then [16, Theorem 5.1] can be used to shorten those
segments [y, u;.y] intersecting the orbit of pr nontrivially, and leaving
other segments unchanged.

Suppose that [y, u.y] intersects some line pr nontrivially, and that
pg is an axial component of 7. The only place where the proof of [16,
Theorem 5.2] breaks down is that the images h;(G) may not intersect
parabolics in its image in denser and denser subsets (when measured
with the scaled metric). However, this is exactly what the bending
move (B1) is designed to deal with.

We have the following analogue of [16, Proposition 5.4]: Let E denote
the flat in Co, which projects to pg. The subgroup Stabg(FE) is an
abelian subgroup of GG. There is a sequence of flats F; C X; so that
E; — FE in the Gromov topology. The subgroups h;(Stabg(E)) are
abelian, and fix the flat E;, for sufficiently large i. Thus h,;(Stab,(£))
is contained in a unique maximal abelian subgroup Ag, of I'. If we fix
a finite subset W of Stabg(F) and € > 0, then for sufficiently large 1,
there is an automorphism o; : Ap, — Ap, so that

(1) For every w € W, and every r; € E;,
dXi(Tia hZ(O'Z(U)))TZ> < €,

(2) Forany k € Stabg(F) which acts trivially on £ we have o;(h;(k))
hi(k).

The proof of the existence of such a o; is the same as the proof of
[16, Proposition 5.4]. Such a ¢; induces a move of Type (Bl) in a
straightforward manner, since the adjacent edge groups to the vertex
group Stabg(FE) contain elements which act trivially on E, therefore
we replace h; by the homomorphism which agrees with h; on all edge
groups and on all vertex groups which are not Stabg(F), and replaces
hi|Stabg(E) by o; 0 hilStabG(E)-

We now construct shortening elements for all but finitely many of
the intervals [y, h,(uw).y,] by following the proof of [23, Theorem 5.1]
(see [16, §5] for more details).
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Finally, we are left with the case where [y, u.y] is contained entirely
in the discrete part of 7. We follow the proof of [16, Theorem 6.1],
which in turn followed Section 6 of [23]. This argument naturally splits
into a number of cases.

Case 1: y is contained in the interior of an edge e.

Case la: e is not contained entirely in a line pp € P and e € T/G
is a splitting edge.

This case follows directly as in [16, §6].

Case 1b: e is not completely contained in a line pp € P and e is
not a splitting edge.

This case also follows directly as in [16, §6].

Case 1c: e is contained in a line pp € P and € is a splitting edge.

In this case, we have a graph of groups decomposition G = Hy* 4, H,
where Ap = Stabg(F) (and E is the flat in C,, which projects to pg).
The Dehn twist which is found in [16, §6] is naturally replaced by a
bending move of type (B2).

Case 1d: e is contained in a line py € P and é is not a splitting
edge.

Once again the Dehn twist is replaced by a bending move of Type
(B2).

Case 2: y is a vertex of T'.

Once again here there are four cases, depending on whether on edge
adjacent to y is or is not a splitting edge and is or is not contained in
a line pp € P. In case an edge e is not contained in a line pg € P, we
proceed exactly as in [16], following [23] directly. In case e C pg, we
replace the shortening Dehn twists by bending moves of type (B2) as
in Case 1 above.

Therefore, in any case, we can find moves which shorten all but
finitely many of the h;, as required. O

4. SHORTENING QUOTIENTS

We now recall the concept of shortening quotients from [26] and [27].

Let G be a finitely generated group, I' a torsion-free relatively hy-
perbolic group with abelian parabolics and {h, : G — I'} a stable
sequence of homomorphisms, with associated I'-limit group L., and
suppose that L., is d-generated. The shortening procedure constructs
a sequence of homomorphisms {v; : F; — I'} which has a subsequence
converging to a I'-limit group )., equipped with a canonical epimor-
phism 7 : Lo, — Q. We follow the construction from [26, §3] and [25]
(see [16] for more details in this context).
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Given the situation described in the previous paragraph, we now
describe the construction of {v;}, Q and 7. Let Ay be the canonical
abelian JSJ decomposition for L., with vertex groups V.1 ... V™ and
edge groups EL ... E3.

As in [26] and [16] we do not yet know that the edge groups are
finitely generated (though this will eventually turn out to be the case;
see Proposition 5.11 below).

We can ‘approximate’ the finitely generated group L., by finitely
presented groups U, each equipped with a graph of groups decompo-
sition A, which is a ‘lift” of A. See [26, §3] and [16] for more details
of this. The output of this is a commutative diagram:

Kn— n
Wy s Wy oo S0 W, gy,
1

S

U, s Uy - 2N U, -2 U,
)\()J/ )\1J/ )\nflj/ )\nl
I I I T

The I'-limit group L is the direct limit of the sequence {(W;, k)}.

The group U, comes with a generating set, and a graph of groups
decomposition. The equivalence relation used to define short homo-
morphisms in the previous section is naturally defined also for the set
of homomorphisms Hom(U,,,I"). When defining the equivalence rela-
tion for ‘short’, we restrict to those elements of Mod(U,,) which come
from the graph of groups decomposition A,,.

The group W; is a subgroup of U,, (and the map ¢, is inclusion), and
comes with a generating set {z{,...,2;,....20", ..., 2", y1,..., U},
which corresponds to a generating set for L., coming from the graph
of groups decomposition Ay__. For a homomorphism h : W; — I define
the following stretching constant:

pi(h) = max dx(z,h(z}).z), and

1<j<l;
xr(h) = dx(z, h(y,).z).
Also define the corresponding (m + b)-tuple

tup(hJ ::(Ml(h)v”'7lhn(h)7Xl(h)v‘”7Xr(h))

Now for each n > 1 choose a homomorphism X; : W, — I so that
An ~ Aoty and so that tup()\,,) is minimal amongst all homomorphisms
equivalent to A, o, (the set of (m+b)-tuples is given the lexicographic
order).
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Passing to a subsequence of {Xn}, we obtain an associated I'-limit
group (o. There are two cases to consider here: (i) Q. is a strict
[-limit group; and (ii) Q« is not a strict I'-limit group. In case (ii),
let m, : F; — I be given by 7, = Xn o 1, where Fy is the free group
of rank d and v, : Fy; — U, is the canonical quotient map. Since
(@ 1s not a strict I'-limit group, we may assume that the (convergent)
subsequence of {m,} is constant, and (), is isomorphic to a subgroup
of T'. In this case, since each image \,(U,) is isomorphic to A(U,,) via
the natural map between generating sets, it is not hard to see that L.,
and () are isomorphic via the natural map between generating sets.

In case Qo is a strict [-limit group, each vertex group V. is embed-
ded canonically in Q. (see [26, §3] or [16, §7] for more details). We
also claim that there is a canonical epimorphism 7 : Lo, — Q. To see
this, it remains to see that each of the relations corresponding to sta-
ble letters in Ay are preserved when the canonical generating set for
L., is mapped to the canonical generating set for (). For each such
relation w, there is some n so that for all m > n the group U, includes
w = 1 as a defining relation. This defining relation is preserved by the
shortening moves, and so holds in the I'-limit group Q).

The above group (0 is called the shortening quotient of L., associ-
ated to {h, : G — T'}.

Although we speak of the shortening quotient, it depends on the
choices of shortest homomorphism in thg\ equivalence class of h,,, and
also on the convergent subsequence of {h,} chosen. Of course, it also

depends on the choice of finite generating set for GG, but we assume this
is fixed.

Proposition 4.1 (cf. Proposition 1.15, [27]). Let G be a finitely gener-
ated group, and I a torsion free relatively hyperbolic group with abelian
parabolics, and let {us : G — '} be a sequence of homomorphisms that
converges into an action of a non-abelian, freely indecomposable strict
[-limit group L on an R-tree T. If for every index s, the group us(Q)
s not isomorphic to L by the natural map that sends the images of the
generators of G in us(G) to the images of these generators in L, then
every shortening quotient of L which is obtained from the sequence {u}
s a proper quotient of L.

Proof (of Proposition 4.1). Suppose that () is the shortening quotient
of L associated to {us} as described above, and let {m, : Fy — I'} be
the homomorphism arising from Xn o 1, where ¢, : F; — U, is the
canonical quotient map. Let {mg, } denote the convergent subsequence.
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The hypothesis of the proposition implies that () is a strict ['-limit
group, and that {m, } do not belong to finitely many conjugacy classes.
Since each of the 7, is short, the shortening argument implies that the
limiting action cannot be faithful, which is to say that () is a proper
quotient of L. O

5. I'-LIMIT GROUPS

In this section we follow [27] in order to understand I'-limit groups,
and Hom(G,T"), where I is an aribitrary finitely generated group. The
main technical results of this section are Theorem 5.1, Theorem 5.2
and Theorem 5.7.

These results are then applied to prove various applications of these
results: Theorem 5.9, Proposition 5.10, Theorem 5.15, and in the next
section the construction of Makanin-Razborov diagrams.

Theorem 5.1 (cf. Theorem 3.2, p. 14, [26]). Let I' be a torsion-
free group which is hyperbolic relative to a collection of free abelian
subgroups, and let L be a strict I'-limit group which is nonabelian and
freely indecomposable. Then L admits a principal cyclic splitting.

Proof. The strategy is to follow the proof of [26, Theorem 3.2], which
is very similar to the proof of [25, Theorem 3.2], the difference being
in [26] that there might be abelian subgroups of the limit group which
are not locally cyclic.

In the proof of the Hopf property for I', we have already adapted [25,
Theorem 3.2] to the current context (see [16] and [17]), and we already
there had to deal with abelian subgroups of the I'-limit group which
are not locally cyclic. Therefore, the proof of this theorem proceeds
almost exactly as in [16] (with the translations made in [17]).

The only substantial difference is that we need to use the improved
version of the shortening argument presented in Section 3 of this paper.
One of the key points of the proof is a construction very similar to that
of shortening quotients as in the previous section, although for this
proof this construction is used in the process of deducing an elaborate
contradiction. 0

Let G be a fixed finitely generated group. Define an order on the set
of I'-limit groups that are quotients of GG as follows: suppose R; and Ry
are both I'-limit groups that are quotients of G, and that n; : G — R;
are the (fixed) canonical quotient maps. We say Ry > Ry if there
exists an epimorphism with non-trivial kernel 7 : Ry — Rs so that
ny = T omn. We say that Ry and Ry are equivalent if there is an
isomorphism 7 : Ry — Ry so that 1, = 7o
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The following is one of the main technical results of this paper.

Theorem 5.2 (cf. Theorem 1.12, [27]). Let I be a torsion-free group
which is hyperbolic relative to free abelian subgroups, and let G be a
finitely generated group. FEvery decreasing sequence of I'-limit groups
that are quotients of G:

R1>R2>R3>...,
terminates after finitely many steps.

For limit groups, the analogous result has a short proof using alge-
braic geometry (see [4]). However (as observed by M. Kapovich; see,
for example, [5, §1.4]), not all hyperbolic groups are linear and the
same is therefore true for relatively hyperbolic groups.

Before we prove Theorem 5.2, we prove the following lemma (implicit
in [27, p. 7]):

Lemma 5.3. Let = be a finitely generated group, let L be a =-limit
group and suppose that L is d-generated. Then L can be obtained as a
limit of homomorphisms {h,, : Fy — Z}, where Fy is the free group of
rank d.

Proof. It L can be embedded in =, then we can take the constant
sequence {h : Fy; — Z}, where h = com, for a fixed surjection 7 : F; —
L and fixed embedding ¢ : L — =.

Otherwise, suppose that L is obtained from a sequence {h, : G —
=}. Suppose that {zy,...,x4} is a generating set for L. For each
n, define G,, < G to be generated by elements yi,,...,Y4n, Where
hi(Yin) = ;. Now define 7, : Fy — G by fi = yin, where {f1,..., fa}
is a basis of F;. It is not difficult to see that L is realised as the limit
of the sequence of homomorphisms {h, o, : F; — =}. O

Proof (of Theorem 5.2). We follow the proof of [27, Theorem 1.12]. In
order to obtain a contradiction, we suppose that there exists a finitely
generated group G, for which there exists an infinite descending se-
quence of ['-limit groups:

Ry >Ry >Ry > ....

Without loss of generality, we may assume that G = Fy, the free group
of rank d. Let {f1,..., fa} be a basis for Fy, and let C' be the Cayley
graph of F,; with respect to this generating set. We construct a par-
ticular descreasing sequence of I'-limit groups as follows. Let R; be a
[-limit group with the following properties:

(1) Ry is a proper quotient of Fy;
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(2) Ry can be extended to an infinite decreasing sequence of I'-limit
groups: Ry > Lo > L3 > ..

(3) The map n; : F; — R; maps to the identity the maximal num-
ber of elements in the ball of radius 1 about the identity in
C among all possible maps from F; to a I'-limit group L that
satisfies the first two conditions.

Continue to define the sequence inductively. Suppose that the finite
sequence Ry > Ry > ... > R,_1 has been constructed, and choose R,
to satisfy:

(1) R, is a proper quotient of R, 1;
(2) The finite decreasing sequence of I'-limit groups R; > Ry >
. > R, can be extended to an infinite decreasing sequence;

and

(3) The map 7, : Fy; — R, maps to the identity the maximal
number of elements in the ball of radius n about the identity
in C' among all possible maps from F, to a I'-limit group L,
satisfying the first two conditions.

It is worth noting that we do not insist that the I'-limit groups R,, be
strict I'-limit groups. This will be important later, because to study a
single homomorphism, we consider a constant sequence, which leads to
a ['-limit group which need not be strict.

Since each of the I'-limit groups R, is a quotient of F;, each R, is d-
generated. Let {ri,,...,7q¢n} be a generating set for R,,. By Lemma
5.3, R, can be obtained as a limit of a sequence of homomorphisms
{vl": Fy — I'}, with the quotient map n, : Fy; — R, sending f; to r;,.

For each n, choose a homomorphism v}’ : F;y — I" for which:

(1) Every element in the ball of radius n about the identity in C'
that is mapped to the identity by 7, : F; — R, is mapped to
the identity by v . Every such element that is mapped to a
nontrivial element by 7, is mapped to a nontrivial element by
vt 5 and

(2) There exists an element f € F; that is mapped to the identity
by Nny1 @ Fq — Ryqq for which of (f) # 1.

Denote the homomorphism v;' by h,,. By construction, the set of homo-
morphisms {h, : F; — I'} does not belong to a finite set of conjugacy
classes. Therefore, from the sequence {h,} we can extract a subse-
quence that converges into a (strict) I-limit group, denoted R.,. By
construction, the I'-limit group R, is the direct limit of the sequence
of (proper) epimorphisms:

Fd—>R1—)R2—)"'.
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Let 1y : Fy — R be the canonical quotient map.

Lemma 5.4 (cf. Lemma 1.13, [27]).

(1) the set of homomorphisms {h, : Fy — T'} do not belong to
finitely many conjugacy classes, hence R, is a strict I'-limit
group;

(2) Ry is not finitely presented;

(3) R is mot the free product of a finitely presented group and
freely indecomposable I'-limit groups that do not admit a cyclic
splitting;

(4) Let Ry = Uy % ---x Uy % I be the most refined (Grushko) free
decomposition of R.,, where I is a finitely generated group.
Then there exists an index j, with 1 < j <'t, for which:

(a) U; is not finitely presented;

(b) If B is a finitely generated subgroup of Fy such that ny(B) =
U; then the restrictions hy,|p do not belong to finitely many
conjugacy classes. Furthermore, if by, ..., b, is a generat-
ing set for B, then for every index n, the group h,(B) is
not isomorphic to n.(B) by an isomorphism that sends
hu(bi) to 1100 (bi).

Proof (of Lemma 5.4 ). Given Theorem 5.1, the proof of this is identical
to that of [27, Lemma 1.13]. O

The TI'-limit group R, is a proper quotient of each of the I'-limit
groups R,. For each index n, the group R, was chosen to maximise
the number of elements in the ball of radius n about the identity in C'
that are mapped to the identity in [' among all I'-limit groups that are
proper quotients of R,_; and that admit an infinite descending chain
of I'-limit groups. Therefore, it is not difficult to see that R., does not
admit an infinite descending chain of I'-limit groups.

We now obtain a finite resolution of Ry.:

Proposition 5.5 (cf. Proposition 1.16, [27]). Let {h, : Fy — I'} be
the sequence of homomorphisms constructed above. Then there exists
a finite sequence of I'-limit groups:

R — Ly — -+ — L,

so that

(1) The epimorphisms along the sequence are proper epimorphisms;
(2) Let Ly = Hy x---x H. % F be the (possibly trivial) Grushko
free decomposition of Ls. There exists a subsequence {h,,} of
{hyn : Fy — T'} so that each of the homomorphisms h,, can be
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written in the form;
hnt =Vt OMNs—1 qu; Ons—2"'o¢fi © 7o,

where each ¢t € Mod(L;), and v, : Ly — T is a homomorphism
that embeds each of the factors H; of Ls into I';

(8) The sequence of homomorphism {h,,} converges into a faithful
action of Ry on ann R-tree T'. Furthermore, the entire sequence
of homomorphisms h,, factors through the epimorphism 1. :
Fd — Roo

Proof (of Proposition 5.5). Given Lemma 5.4 and Proposition 4.1 the
proof is identical to that of [27, Proposition 1.16].

We note that the groups Lq,..., Ly are found by taking successive
shortening quotients, so that L is a shortening quotient of R... U

The homomorphisms {h, : F; — I'} were chosen so that for every
index n there exists some element f € Fj for which n,.1(f) = 1 and
hn(f) # 1. Since R, is a proper quotient of all of the I-limit groups
R, for every index n and every element f € Fj, if n,.1(f) = 1 then
Neo(f) = 1. By Part 3 of Proposition 5.5 it is possible to extract
a subsequence {h,, : F; — I'} that factors through the group R,
which is to say that there is a homomorphism m; : R, — I' so that
hn, = T 0 Neo. Hence, for every index ¢, and every element f € Fj,
if 9p,+1(f) = 1 then n(f) = 1, which implies that h,, (f) = 1, in
contradiction to the way that the homomorphisms h, were chosen.
This finally ends the proof of Theorem 5.2. U

Corollary 5.6. Let I' be a torsion-free relatively hyperbolic group with
abelian parabolics, and let L be a I'-limit group. Then L is Hopfian.

Corollary 5.6 generalises one of the main results of [17], and implies
that the relation defined on I'-limit groups which are quotients of a
fixed group G is a partial order. The proof of the following theorem is
identical to that of [27, Theorem 1.17].

Theorem 5.7 (cf. Theorem 1.17, [27]). Let G be a finitely gener-
ated group and I' a torsion-free relatively hyperbolic group with abelian
parabolics, and let {h, : G — '} be a sequence of homomorphisms.
Then there exists a finite sequence of I'-limit groups:

G—L—Ly— - — L,
for which

(1) no : G — Ly is an epimorphism and n; : L; — L;1 is a proper
epimorphism for each 1 <i < s—1;
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(2) Let Ly = Hy*---x H.x F be the Grushko free decomposition of
Ls. Then there exists a subsequence {hy,,} os {h,} so that each
of the homomorphisms h,, can be decomposed as:

3 t
hnt:Vtons—lO¢5—1Ons—2o"'o¢1on07

where ¢t € Mod(L;) and vy : Ly — T embeds each of the freely
indecomposable factors H; of Ls into I';

(8) The sequence of homomorphisms h,, : G — T is either constant
or converges into a faithful action of Ly on a tree-graded space
Coo- Furthermore, the entire sequence of homomorphisms hy,
factor through the epimorphism ny : G — Ly.

Given Theorem 5.7, if a sequence {h, : G — '} converges into a
[-limit group L, then by passing to a subsequence we may assume that
each h,, factors through the canonical quotient map n: G — L, so we
may replace {h,} by a sequence of homomorphisms from L to I'. This
simplifies the definition of shortening quotients considerably, since we
may start with a sequence {h,, : L — I'}. Proposition 4.1 still holds in
this context (in fact the proof is easier).

Definition 5.8. Let I' and G be finitely generated groups. We say that
G s fully residually I' is for every finite F C G there is a homomor-
phism h : G — T which is injective on F.

Theorem 5.9. Let I' be a nonabelian torsion-free relatively hyperbolic
group with abelian parabolics. A finitely generated group G is a I'-limit
group if and only if it is fully residually T".

Proof. If G is a fully residually I' then it is certainly a I'-limit group.
Suppose that G is a [-limit group, obtained from a sequence {h,, : U —
['}. By Theorem 5.7, by passing to a subsequence we may assume that
each of the h,, factor through the I'-limit group G. Now it is clear that
G is fully residually T'. O

Proposition 5.10. Let I' be a torsion-free relatively hyperbolic group
with abelian parabolics. Then there are only countably many I'-limit
groups.

Proof. If T' is abelian, then all I'-limit groups are finitely generated
abelian groups, of which there are only countably many.

Suppose then that I' is nonabelian. We apply the proof of Theorem
5.7, along with the construction of shortening quotients. By Theorem
5.7, for any I'-limit group L there is a finitely generated free group G
and a sequence

G—>L—Ly,—...— L,
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where each of the non-free factors in the Grushko decomposition of L;
admits an embedding into I', and each L; is a shortening quotient of
the previous term in the sequence. We consider the limit groups which
arise with sequences of increasing lengths, and note that there are only
countably many for each length.

If L = L, then L is the free product of finitely many finitely gen-
erated subgroups of I' and (possibly) a finitely generated free group.
Since there are countably many finitely generated subgroups of I', there
are countably many such ['-limit groups.

We now consider hot to obtain L;_; from L;. First, L; admits a
Grushko free decomposition into freely indecomposable nonabelian I'-
limit groups, along with possibly a free group and a free product of
finitely generated free abelian groups. Each freely indecomposable non-
abelian factor H;_;; of L, admits a graph of groups decomposition
Ap, . ;, whose edge groups are free abelian groups. By induction on
1, and the fact that abelian subgroups of I' are finitely generated, we
may assume that these edge groups are finitely generated. The vertex
groups of Ay, , . are either abelian groups, surface groups, or embed in
L; (by the construction of shortening quotients; see Section 4). There-
fore, each such free factor of L;_; can be formed by taking finitely many
HNN extensions and amalgamated free products of finitely generated
subgroups of L; over finitely generated abelian subgroups. There are
only countably many such constructions. This completes the proof. [J

The following result follows from the proof of Proposition 5.10.

Corollary 5.11. Any abelian subgroup of a I'-limit group is finitely
generated free abelian.

Proposition 5.12 (cf. Proposition 1.20, [27]). Let G be a finitely
generated group and I' a torsion-free relatively hyperbolic group with
abelian parabolics. Let Ry, Ry ... be a sequence of I'-limit groups that
are all quotients of G so that

Ry < Ry<---.

Then there exists a I'-limit group R, a quotient of G, so that R > R,
for all m.

Proof. For each m, choose a homomorphism h,, : G — I' that factors
through the quotient map 7, : G — R,, as h,, = h!, on, and so
that h! is injective on the ball of radius m in R,,. This is possible by
Theorem 5.7.

A subsequence of {h,,} converges to a I'-limit group R, which is a
quotient of G. By Theorem 5.7, we may assume that each element of
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this subsequence factors through the canonical quotient map n : G —
R.

We prove that R > R, for each m. We have quotient maps n: G —
R, and n; : G — R;. Since R; < R;yq there exists 7; : R;11 — R; so
that 7; = 7; 0 ;1. In particular, ker(n; 1) C ker(n;).

Let A be the fixed finite generating set for G. We attempt to define
a homomorphism &; : R — R; as follows: for a € A, define x;(n(a)) =
n;(a). This is well-defined if and only if ker(n) C ker(n;). Therefore,
suppose that g € ker(n). Since each h; factors through 7, we have
h;(g) = 1 for all j. Suppose that g lies in the ball of radius n about the
identity in the Cayley graph of G. Then for all j, the element 7;(g) lies
in the ball of radius n about the identity in R;. Since h;(g) = 1, for
all j, and by the defining property of the h;, if £ > n then n,(g) = 1.
Thus since for all j we have ker(n;41) C ker(n;) we have n;(g) = 1, as
required. We have constructed a homomorphism x; : R — R; so that
1; = K; o1, which is to say that R > R;. This finishes the proof. U

Propositions 5.10 and 5.12 imply that there are maximal elements
for the set of I'-limit groups which are quotients of a fixed finitely
generated group G, under the order described before Theorem 5.2.

Recall that we say that two ['-limit groups which are quotients of G,
m : G — Ry and 15 : G — R, are equivalent if there is an isomorphism
7: Ry — Ry sothat no =mny07.

Proposition 5.13 (cf. Proposition 1.21, [27]). Let G be a finitely
generated group and I' a torsion-free group hyperbolic relative to free
abelian subgroups. Then there are only finitely many equivalence classes
of mazximal elements in the set of I'-limit groups that are quotients of

G.

Proof. The following proof was explained to me by Zlil Sela in the
context of torsion-free hyperbolic groups. The same proof works in the
current context.

Suppose on the contrary that there are infinitely many non-equivalent
maximal ['-limit groups Ry, Ro, ..., each a quotient of G. Let n; : G —
R; be the canonical quotient map. Fixing a finite generating set A for
G, we fix a finite generating set for each of the R;, and hence obtain
maps v; : Fy — R;, where d = |A|. There is a fixed quotient map
7w Fy — G so that for each ¢ we have v; = n; o 7.

For each i, consider the set of words of length 1 in F}; that are mapped
to the identity by v;. This set is finite for each i, and there is a bound
on its size, so there is a subsequence of the R; so that this set is the
same for all 7. Starting with this subsequence, consider those words of



LIMIT GROUPS FOR RELATIVELY HYPERBOLIC GROUPS, II 21

length 2 in F; which are mapped to the identity by v;, and again there
is a subsequence for which this (bounded) collection is the same for all
7. Continue with this process for all lengths of words in F};, passing to
finer and finer subsequences, and consider the diagonal subsequence.
We continue to denote this subsequence by Ri, Ra, .. ..

Now, for each i, choose a homomorphism h; : F; — I' so that for
words w of length at most ¢ in Fy, we have h;(w) = 1 if and only if
v;(w) = 1, and so that h; factors through the quotient map 7 : F; — G.
This is possible because each R; is a I'-limit group which is a quotient
of G.

A subsequence of {h; : F; — I'} converges into a [-limit group M,
which is a quotient of G since all h; factor through 7. Let ¢ : Fy — M
be the canonical quotient, and ¢ : G — M the quotient for which
1 = ¢ o . Note that a word w of length at most ¢ in F; maps to the
identity under 1 if and only if v;(w) = 1.

Now, Ry, Rs,... are non-equivalent maximal I'-limit quotients, so
(possibly discarding one R; which is equivalent to M) are all non-
equivalent to M. Therefore, for each ¢ there does not exist a homo-
morphism p : M — R; so that v; = p o). That is to say that for each
i there exists u; € Fy so that ¢(u;) = 1 but v;(u;) # 1.

We now construct a new sequence of homomorphisms 7; : fy — I’
that all factor through 7 : F; — G so that

e a word w € Fy of length at most ¢ satisfies 7;(w) = 1 if and only
if v;(w) = 1; and

o 7;(u;) # 1.
By Theorem 5.5 there is a subsequence {7,,} of {7;} which converges
into a I'-limit group (which must be M) so that each 7, factors through
v Fy — M. Therefore, there is r; : M — I' so that 7,, = r; o ¥.
However, we have that ¢(u,,) = 1, but 1 # 7,,(u,,) = ri(¥(uy,)) =
r;(1) = 1, a contradiction. This contradicts the existence of Ry, Ra, .. .,
and finishes the proof. U

Definition 5.14. A group G is a called equationally Noetherian if
every system of equations over G in finitely many variables is equivalent
to a finite subsystem.

The following theorem answers a question (essentially) asked by Sela
(28, 1.8(ii)]. We believe that relatively hyperbolic groups with abelian
parabolics form a more natural context for this question than CAT(0)
groups with isolated flats. In this context, [28, 1.8(i)] was answered by
the author in [17] and [28, 1.8(iii)] is answered in Theorem 6.4 below.
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Theorem 5.15 (cf. Theorem 1.22, [27]). Suppose that I is a torsion-
free relatively hyperbolic group with abelian parabolics.

Proof. We follow the proof of [27, Theorem 1.22].

Let X be a system of equations in finitely many variables over I'. We
iteratively construct a directed locally finite tree as follows. Start with
the first equation oy in X, and associate with it a one relator group
G, generated by the variables of ¥ with relator corresponding to oy.
By Proposition 5.13, to GGy is associated finitely many maximal I'-limit
groups Ry, ..., R, which are quotients of G;. Place G at the root
node of a tree, and a directed edge from G to each R;.

Now let o9 be the second equation in ¥, and consider each R; in
turn. If o, represents the trivial element of R;, leave it unchanged. If
0y is nontrivial in Ry, define R; = R;/{02)™. With R;, we associate its
finite collection of maximal I'-limit quotients, and extend the locally
finite tree by adding new vertices for these quotients of R;, and directed
edges joining R; to each of its quotients.

Continue this procedure iteratively. By Theorem 5.2, each branch
of this locally finite tree is finite, and therefore by Konig’s Lemma the
entire tree is finite. This implies that the construction of this tree
terminates after finitely many steps, which implies that ¥ is equivalent
to a finite subsystem. O

Guba [19] proved the analogous theorem for free groups, whilst Sela
[27] proved it for torsion-free hyperbolic groups.

6. MAKANIN-RAZBOROV DIAGRAMS

In this final section, we describe the construction of Makanin-Razborov
diagrams for I', which give a description of the set Hom(G,T"), where
I' is an arbitrary finitely generated group. This is analogous to the
constructions in [26, §5] and [27, §1].

Let R be a freely indecomposable I'-limit group, and let r{,...,r,, €
R be a fixed generating set for R. We assume that we always use the
generating set {71, ..., 7, } to define the length of homomorphisms, and
hence to find short homomorphisms.

We need to understand those shortening quotients of R obtained
from sequences of homomorphisms {h, : R — '} so that each h,(R)
is a proper quotient of R. By Proposition 4.1, each such shortening
quotient is a proper quotient of R.

Following [26, 27] we say that two proper shortening quotients Sy, So
of R are equivalent if there is an isomorphism 7 : S — S5 so that the
canonical quotient maps n; : R — S;, for i = 1,2 satisfy n, = 7 0 n;.
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This defines an equivalence relation on the set of shortening quotients
of R, paired with the canonical quotient maps: {(S;,n; : R — S;)}.

Let SQ(R,71,...,7rm) be the set of (proper) shortening quotients of
R. On the set SQ(R,r1,...,r,) we define a partial order as follows:
given two proper shortening quotients S7, S5 of R, along with canonical
quotients n; : R — S;, we say that S; > S, if there exists a proper
epimorphism v : S; — S5 so that ny = v on;.

Lemma 6.1 (cf. Lemma 1.23, [27]). Let R be a freely-indecomposable
I-limit group. Let Sy < Sy < Sy < --- (where S; € SQ(R,11,...,7m))
be a properly increasing sequence of (proper) shortening quotients of R.
Then there exists a shortening quotient S € SQ(R,71,...,Tm) So that
for each j we have S > 5.

Proof. Restricting to short homomorphisms throughout, the proof is
identical to that of Proposition 5.12 above. O

Lemma 6.2 (cf. Lemma 1.24, [27]). Let R be a freely-indecomposable
[C-limit group. The set, SQ(R,r1,...,rm), of (proper) shortening quo-
tients of R contains only finitely many equivalence classes of mazimal
elements with respect to the partial order.

Proof. Once again, restricting throughout to short homomorphisms,
the proof is identical to the of Proposition 5.13 above. U

We can now use shortening quotients to ‘encode and simplify’ all
homomorphisms from a freely-indecomposable I'-limit group into I'.

Proposition 6.3 (cf. Proposition 1.25, [27]). Suppose that R is a
freely-indecomposable I'-limit group. Letry,...,r, € R be a generating
set for R, and let My, ..., My be a set of representatives of the (finite)
set of equivalence classes of maximal (proper) shortening quotients in
SQ(R,T1,...,Tm), equipped with the canonical quotient maps n; : R —
M;, fori=1,... k.

Let h : R — T' be a homomorphism which is not an embedding.
Then there exist a (not necessarily unique) index 1 < i < k, a modular
automorphism ¢, € Mod(R), and a homomorphism hy, : M; — T so
that h o ¢, = hy, 0 m;/

Proof. Choose h ~ h so that h is short. The constant sequence /fz,/f\L, e
converges into a proper shortening quotient S of R. Now, S = ?L(R),
and the canonical quotient map is just h. There exists some M; so that
M; > S or M; is equivalent to S. In either case, we get the required
conclusion. O
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Finally, we now construct Makanin-Razborov diagrams over I'. Let
G be an aribtrary finitely generated group. By Proposition 5.13, G
has finitely many (equivalence classes of) maximal T'-limit quotients,
Ry,..., Ry, say. We now continue with each of the R; in parallel.
Let R be one such maximal I'-limit quotient of G. The there is a
free factorisation, R = H; * ... * H; * Fy,, where each H; is a freely-
indecomposable non-cyclic subgroup of R and F} is a finitely generated
free group. Let ry,...,r, € R generate Hy, and r{,...,72 € R
generate Hs, etc.

By Lemma 6.1 the set of (proper) shortening quotients of H; contain
maximal elements, and by Lemma 6.2 there are only finite many equiv-

alence classes of maximal I'-limit quotients of each H;. Fori=1,...,1,
let Mi,..., M,g be a collection of representatives of the equivalence
classes of maximal proper shortening quotients in SQ(H;,r}, . .. ,rjm_),

and let 7} : H; — M be the canonical quotient map.

We now define the Makanin-Razborov diagram of G iteratively. Start
by mapping G to its finite collection of maximal I'-limit quotients,
and continue with each of the maximal I'-limit quotients in parallel.
Denote such a maximal I'-limit quotient of G by R. Factor R into
Hy*---xH;xF, as above. To each of the factors H; associate k; directed
edges starting at H; and terminating at M;, a maximal shortening I'-
limit quotient of H;. Do not proceed from Fj,.

Now for each M JZ we find a free product factorisation and to each
(nonfree) factor associate the finitely many maximal shortening quo-
tients. This procedure terminates after finitely many steps by Theorem
5.2 (and Konig’s Lemma). We have constructed the Makanin-Razborov
diagram associated to G.

In summary, we have

Theorem 6.4 (cf. Theorem 1.26, [27]). Let G be a finitely gener-
ated group and I' a torsion-free relatively hyperbolic group with abelian
parabolics. Associated to G is a Makanin-Razborov diagram, with ver-
tices I'-limit quotients, and edges the canonical quotient map. Any ho-
momorphism h € Hom(G,T") can be given by compositions of modular
automorphisms of the I'-limit groups in the diagram with the canon-
ical maps from U'-limit groups into their maximal proper shortening
quotients, and finally with either embeddings of a I'-limit group in the
diagram into I', or general homomorphisms of the terminal free groups
that appear in the diagram into I'.

Theorem 6.4 answers a question (essentially) asked by Sela [28, Prob-
lem 1.8(iii)]. See the discussion above Theorem 5.15 above.
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In the future work [18] we will continue the study of the elementary
theory of T'.
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