A Caltech Library Service

Integrated electroplated heat spreaders for high power semiconductor lasers

Fu, Jianping and Yang, Ronggui and Chen, Gang and Fleurial, Jean-Pierre and Snyder, G. Jeffrey (2008) Integrated electroplated heat spreaders for high power semiconductor lasers. Journal of Applied Physics, 104 (6). Art. No. 064907. ISSN 0021-8979. doi:10.1063/1.2986888.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


Thermal management of high power semiconductor lasers is challenging due to the low thermal conductivity of the laser substrate and the active device layers. In this work, we demonstrate the use of a microfabricated laser test device to study the thermal management of edge emitting semiconductor lasers. In this device, metallic heat spreaders of high thermal conductivity are directly electroplated on structures that mimic edge-emitting semiconductor lasers. The effects of various structural parameters of the heat spreader on the reduction of the thermal resistance of the laser test device are demonstrated both experimentally and theoretically. Without resolving to computational costive simulations, we developed two independent analytical models to verify the experimental data and further utilized them to identify the dominant thermal resistance under different laser mounting configurations. We believe our approach here of using microfabricated devices to mimic thermal characteristics of lasers as well as the developed analytical models for calculating the laser thermal resistance under different mounting configurations can potentially become valuable tools for thermal management of high power semiconductor lasers.

Item Type:Article
Related URLs:
URLURL TypeDescription
Snyder, G. Jeffrey0000-0003-1414-8682
Additional Information:©2008 American Institute of Physics. Received 9 June 2008; accepted 3 August 2008; published 22 September 2008. We acknowledge financial support from DARPA HERETIC project (through JPL). We acknowledge valuable comments and suggestions on the manuscript by S. Pei and C. Dames. The UCLA Microfabrication Laboratory is acknowledged for support in fabrication.
Funding AgencyGrant Number
Defense Advanced Research Projects AgencyUNSPECIFIED
Subject Keywords:semiconductor lasers, thermal conductivity, thermal resistance
Issue or Number:6
Record Number:CaltechAUTHORS:FUJjap08
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:11805
Deposited By: Archive Administrator
Deposited On:30 Sep 2008 03:21
Last Modified:08 Nov 2021 22:02

Repository Staff Only: item control page