CaltechAUTHORS
  A Caltech Library Service

Galaxy Zoo: Clump Scout – Design and first application of a two-dimensional aggregation tool for citizen science

Dickinson, Hugh and Adams, Dominic and Mehta, Vihang and Scarlata, Claudia and Fortson, Lucy and Serjeant, Stephen and Krawczyk, Coleman and Kruk, Sandor and Lintott, Chris and Mantha, Kameswara Bharadwaj and Simmons, Brooke D. and Walmsley, Mike (2022) Galaxy Zoo: Clump Scout – Design and first application of a two-dimensional aggregation tool for citizen science. Monthly Notices of the Royal Astronomical Society, 517 (4). pp. 5882-5911. ISSN 0035-8711. doi:10.1093/mnras/stac2919. https://resolver.caltech.edu/CaltechAUTHORS:20221206-901120000.2

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20221206-901120000.2

Abstract

Galaxy Zoo: Clump Scout  is a web-based citizen science project designed to identify and spatially locate giant star forming clumps in galaxies that were imaged by the Sloan Digital Sky Survey Legacy Survey. We present a statistically driven software framework that is designed to aggregate two-dimensional annotations of clump locations provided by multiple independent Galaxy Zoo: Clump Scout volunteers and generate a consensus label that identifies the locations of probable clumps within each galaxy. The statistical model our framework is based on allows us to assign false-positive probabilities to each of the clumps we identify, to estimate the skill levels of each of the volunteers who contribute to Galaxy Zoo: Clump Scout and also to quantitatively assess the reliability of the consensus labels that are derived for each subject. We apply our framework to a data set containing 3561 454 two-dimensional points, which constitute 1739 259 annotations of 85 286 distinct subjects provided by 20 999 volunteers. Using this data set, we identify 128 100 potential clumps distributed among 44 126 galaxies. This data set can be used to study the prevalence and demographics of giant star forming clumps in low-redshift galaxies. The code for our aggregation software framework is publicly available at: https://github.com/ou-astrophysics/BoxAggregator


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1093/mnras/stac2919DOIArticle
ORCID:
AuthorORCID
Dickinson, Hugh0000-0003-0475-008X
Adams, Dominic0000-0003-1939-5180
Mehta, Vihang0000-0001-7166-6035
Scarlata, Claudia0000-0002-9136-8876
Fortson, Lucy0000-0002-1067-8558
Serjeant, Stephen0000-0002-0517-7943
Krawczyk, Coleman0000-0001-9233-2341
Kruk, Sandor0000-0001-8010-8879
Lintott, Chris0000-0001-5578-359X
Mantha, Kameswara Bharadwaj0000-0002-6016-300X
Simmons, Brooke D.0000-0001-5882-3323
Walmsley, Mike0000-0002-6408-4181
Additional Information:HD and SS were partly supported by the ESCAPE project; ESCAPE – The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 824064. SS also thanks the Science and Technology Facilities Council for financial support under grant ST/P000584/1. MW gratefully acknowledges support from the Alan Turing Institute, grant reference EP/V030302/1. This research is partially supported by the National Science Foundation under grants AST 1716602 and IIS 2006894.. This material is based upon work supported by the National Aeronautics and Space Administration (NASA) under Grant No. HST-AR-15792.002-A. This publication uses data generated via the Zooniverse.org platform, development of which is funded by generous support, including a Global Impact Award from Google, and by a grant from the Alfred P. Sloan Foundation. This research made use of the open-source PYTHON scientific computing ecosystem, including NUMPY (Harris et al. 2020), MATPLOTLIB (Hunter 2007), and PANDAS (McKinney 2010). This research made use of Astropy, a community-developed core PYTHON package for Astronomy (The Astropy Collaboration et al. 2018). This research made use of NUMBA (Lam, Pitrou & Seibert 2015). DATA AVAILABILITY. The data underlying this article were used in Adams et al. (2022) and can be obtained as a machine-readable table by downloading the associated article data from https://doi.org/10.3847/1538-4357/ac6512.
Funders:
Funding AgencyGrant Number
European Research Council (ERC)824064
Science and Technology Facilities Council (STFC)ST/P000584/1
Engineering and Physical Sciences Research Council (EPSRC)EP/V030302/1
NSFAST-1716602
NSFIIS-2006894
NASAHST-AR-15792.002-A
Alfred P. Sloan FoundationUNSPECIFIED
GoogleUNSPECIFIED
Issue or Number:4
DOI:10.1093/mnras/stac2919
Record Number:CaltechAUTHORS:20221206-901120000.2
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20221206-901120000.2
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:118253
Collection:CaltechAUTHORS
Deposited By: Research Services Depository
Deposited On:06 Jan 2023 20:59
Last Modified:06 Jan 2023 20:59

Repository Staff Only: item control page