CaltechAUTHORS
  A Caltech Library Service

Three-Dimensional Geometry as Carrier of Information about Time

Baierlein, Ralph F. and Sharp, David H. and Wheeler, John A. (1962) Three-Dimensional Geometry as Carrier of Information about Time. Physical Review, 126 (5). pp. 1864-1865. ISSN 0031-899X. doi:10.1103/PhysRev.126.1864. https://resolver.caltech.edu/CaltechAUTHORS:BAIpr62

[img]
Preview
PDF - Published Version
See Usage Policy.

369kB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:BAIpr62

Abstract

A geometry of curved empty space which evolves in time in accordance with Einstein's field equations may be termed a "geometrodynamical history." It is known that such a history can be specified by giving on a 3-dimensional space-like hypersurface ("initial surface") (1) the geometry intrinsic to this surface and (2) the extrinsic curvature of this surface (having to do with how the surface is imbedded, or is to be imbedded, in a yet-to-be-constructed 4-dimensional manifold). However, the intrinsic and extrinsic curvatures of the surface cannot be specified independently, but have to satisfy the initial value equations of Foures and Lichnerowicz (analogous to div E=0 and div B=0 in electromagnetism). An alternative way of specifying a history is outlined here in which the intrinsic geometry is given freely on each of two hyper-surfaces, and nothing is specified as to the extrinsic curvature of either. In the special case in which the two so-specified 3-geometries are nearly alike—in a sense specified more precisely in the text—a procedure is outlined in order to find the following from Einstein's equations: (1) the invariant space-time interval between an arbitrary point on one surface and a nearby point on the other surface (and thus the 4-geometry interior to the thin sandwich); (2) the extrinsic curvature of the sandwich; hence (via the rest of Einstein's equations) (3) the entire enveloping 4-geometry or geometrodynamical history); and thus finally (4) the time-like separation of the original surfaces and their location in spacetime. In this sense two 3-geometries carry latent information about time.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1103/PhysRev.126.1864DOIUNSPECIFIED
http://link.aps.org/abstract/PR/v126/p1864PublisherUNSPECIFIED
Additional Information:© 1962 The American Physical Society. Received 25 January 1962. We acknowledge many helpful discussions with V. Bargmann, P. Bergmann, C.W. Misner, and D.C. Spencer. An account of the wider bearing of these considerations and their applications is being prepared for publication. Based in part on the A.B. Senior Thesis of David Sharp, Princeton University, May 1960 (unpublished). [R.F.B. was a] National Science Foundation Fellow; work in summer of 1961 supported by the U.S. Air Force Office of Scientific Research contract with Princeton University. [D.H.S. was a] National Science Foundation Fellow at California Institute of Technology, Pasadena, California; work in August of 1960 supported by Lawrence Radiation Laboratory. Appreciation is expressed to Dr. David Judd for the privilege of association with his group.
Funders:
Funding AgencyGrant Number
National Science FoundationUNSPECIFIED
Air Force Office of Scientific ResearchUNSPECIFIED
Lawrence Radiation LaboratoryUNSPECIFIED
Issue or Number:5
DOI:10.1103/PhysRev.126.1864
Record Number:CaltechAUTHORS:BAIpr62
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:BAIpr62
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:11894
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:09 Oct 2008 00:14
Last Modified:08 Nov 2021 22:22

Repository Staff Only: item control page