
GridARM: AN AUTONOMIC RUNTIME
MANAGEMENT FRAMEWORK FOR SAMR
APPLICATIONS IN GRID ENVIRONMENTS

�

Sumir Chandra
�

, Manish Parashar
�

, and Salim Hariri
�

Abstract

Structured adaptive mesh refinement (SAMR) techniques offer the potential
for accurate solutions of physically realistic models of complex physical phe-
nomena, and are being effectively used in many domains including computa-
tional fluid dynamics, numerical relativity, astrophysics, subsurface modeling
and oil reservoir simulation. However, the inherent space-time heterogeneity
and dynamism of SAMR applications coupled with a similarly heterogeneous
and dynamic execution environment such as the computational Grid present
significant challenges in application composition, runtime management, op-
timization, and adaptation. This paper presents the design of GridARM –
an autonomic runtime management framework that monitors application and
system state and provides appropriate distribution, configuration, scheduling,
and adaptation strategies to optimize performance and support the efficient
and scalable execution of SAMR implementations in Grid environments.

Keywords: GridARM framework, Autonomic runtime management, Struc-
tured adaptive mesh ref inement, Grid computing.

1 Introduction

Dynamically adaptive techniques such as structured adaptive mesh refinement
(SAMR) (Berger 1984) can yield highly advantageous ratios for cost/accuracy
when compared to methods based upon static uniform approximations. SAMR
provides a means for concentrating computational effort to appropriate regions
in the computational domain. These techniques can lead to more efficient and
cost-effective solutions to time dependent problems exhibiting localized features.
Distributed implementations of SAMR methods offer the potential for accurate
solutions of physically realistic models of complex physical phenomena and are
being effectively used in several application domains including computational

�
This research was supported in part by NSF via grants numbers ACI 9984357 (CAREERS),

EIA-0103674 (NGS) and EIA-0120934 (ITR), and by DOE ASCI/ASAP (Caltech) via grant numbers
PC295251 and 1052856.�

ECE Dept., Rutgers University, Piscataway, NJ, USA; E-mail: sumir@caip.rutgers.edu�
ECE Dept., Rutgers University, Piscataway, NJ, USA; E-mail: parashar@caip.rutgers.edu�
ECE Dept., University of Arizona, Tucson, AZ, USA; E-mail: hariri@ece.arizona.edu

1



fluid dynamics (Berger 1983), astrophysics (Bryan 1999), and subsurface model-
ing and oil reservoir simulation (Parashar 1997). The phenomena being modeled
by the SAMR applications are, however, inherently multi-phased, dynamic, and
heterogeneous (in time, space, and state) requiring very large numbers of software
components and very dynamic compositions and interactions between these com-
ponents for efficient execution.

Furthermore, the Grid (Foster 1998) is rapidly emerging as the dominant paradigm
for wide area distributed computing. Its goal is to provide a service-oriented in-
frastructure that leverages standardized protocols and services to enable perva-
sive access to, and coordinated sharing of geographically distributed hardware,
software, and information resources. The Grid infrastructure is heterogeneous
and dynamic, globally aggregating large numbers of independent computing and
communication resources, data stores, and sensor networks. The inherent space-
time heterogeneity and dynamism of SAMR applications coupled with a simi-
larly heterogeneous and dynamic execution environment such as the computa-
tional Grid results in development and management complexities that break cur-
rent paradigms, and present significant challenges in application composition,
runtime management, optimization, and adaptation. The complexity, heterogene-
ity, and dynamism associated with scientific applications has made current pro-
gramming environments and infrastructure unmanageable and insecure, and has
led researchers to consider alternative programming paradigms and management
techniques that are based on strategies used by biological systems. Systems based
on this approach, known as autonomic computing (Kephart 2003), have the ca-
pabilities of being self-defining, self-healing, self-configuring, self-optimizing,
self-protecting, contextually aware, and open.

This paper presents the design of GridARM – an autonomic runtime management
framework that monitors application and system state and provides appropriate
distribution, configuration, scheduling, and adaptation strategies to optimize the
performance of SAMR applications. The GridARM framework models the com-
putational resources as a hierarchy of virtual resource units (VRUs) and the appli-
cation domain as a hierarchy of virtual computational units (VCUs). GridARM
monitors and characterizes application and system state, deduces the appropriate
optimization strategy to manage the application at runtime, and then maps and
executes VCUs onto available VRUs in a hierarchical manner. The overall goal of
GridARM is to manage dynamism and space-time heterogeneity and support the
efficient and scalable execution of SAMR implementations in Grid environments.

The rest of the paper is organized as follows. Section 2 presents an overview of
SAMR and the motivations and challenges for autonomic runtime management of
SAMR applications. Section 3 presents an architectural overview of the GridARM
framework. Section 4 details the design and operation of the components of the
GridARM framework. Section 5 describes the current status of the framework and
evaluation of its prototype components. Section 6 presents concluding remarks.

2



2 SAMR: Motivations and Challenges

2.1 Overview of SAMR

SAMR techniques track regions in the domain that requires additional resolution
and dynamically overlay finer grids over these regions. These methods start with a
base coarse grid with minimum acceptable resolution that covers the entire com-
putational domain. As the solution progresses, regions in the domain requiring
additional resolution are tagged and finer grids are overlaid on these tagged re-
gions of the coarse grid. Refinement proceeds recursively so that regions on the
finer grid requiring more resolution are similarly tagged and even finer grids are
overlaid on these regions. The adaptive grid hierarchy of the SAMR formulation
by Berger and Oliger (Berger 1984) is shown in Figure 1. Figure 2 shows a 2-D
snapshot of a sample Grid-based SAMR application that investigates the simula-
tion of flames (Ray 2003). This figure shows the mass-faction plots of various
radicals produced during the ignition of ��� -Air mixture in a non-uniform temper-
ature field with 3 “hot-spots”. The combustion application is highly dynamic and
heterogeneous in space and time, and is representative of the nature of simulations
targeted by this research.

G
1

0


G
1

1


G
1

2


G
k

3


G
1

0


G
1

1
 G
2


1

G
n


1


G
1

2
 G
2


2
 G
i

2
 G
j


2


G
k

3


Figure 1: 2-D adaptive grid hierarchy
(Berger-Oliger AMR scheme)

Figure 2: Flames simulation: ignition
of ��� -Air mixture in a non-uniform
temperature field (Courtesy: J. Ray, et
al, Sandia National Labs, Livermore)

2.2 Challenges in SAMR

Parallel/distributed implementations of SAMR applications lead to interesting com-
putational and computer science challenges in dynamic resource allocation, data-
distribution and load balancing, communications and coordination, and runtime
management. As a result, key requirements for an efficient runtime management
framework for SAMR applications include:

� Dynamic Partitioning Support: The overall efficiency of the algorithms
is limited by the ability to partition the underlying data-structures at run-
time so as to expose all inherent parallelism, minimize communication and
synchronization overheads, and balance load.

3



� Adaptive Communication Support: A critical requirement while parti-
tioning adaptive grid hierarchies is the maintenance of logical locality, both
across different levels of the hierarchy under expansion and contraction of
the adaptive grid structure, and within partitions of grids at all levels when
they are decomposed and mapped across processors. The former enables
efficient computational access to the grids while the latter minimizes the
total communication and synchronization overheads.

� Dynamic Application Configuration Support: Application adaptation re-
sults in application grids being dynamically created, moved and deleted on-
the-fly, making it necessary to efficiently re-partition the hierarchy so that
it continues to meet these goals. Furthermore, Grid computing environ-
ments require selecting and configuring application components based on
available resources.

2.3 Application and System Heterogeneity in SAMR

Unlike static applications where requirements are typically known a priori, the
dynamic behavior of SAMR applications is based on the current state of the phys-
ical phenomenon being simulated and can only be determined at runtime. Thus,
it is important to abstract the state of the SAMR application in order to deter-
mine its current computational, communication, and storage requirements. This
information can then be used to determine an appropriate decomposition of the ap-
plication and mapping of the computations to available processing elements of the
computational environment, and to drive the selection of appropriate algorithms
and implementations, both at the application level (solvers, preconditioners) as
well as the system level (communication mechanism).

Furthermore, networked computational environments such as the computational
Grid are highly dynamic in nature. Thus, it is imperative that the application
management system be able to react to this dynamism and make runtime deci-
sions to ensure that the application’s requirements are satisfied and its perfor-
mance optimized. These decisions include selecting the appropriate number, type,
and configuration of the computing elements, appropriate distribution and load-
balancing schemes, the most efficient communication mechanism, as well as the
right algorithms and parameters at the application level.

However, the dynamism and heterogeneity of Grid environments introduces a new
level of complexity and makes the selection of a “best” match between system re-
sources, application algorithms, problem decompositions, mappings and load dis-
tributions, communication mechanisms, etc., non-trivial. System dynamics cou-
pled with application adaptation makes application composition, runtime manage-
ment, optimization, and adaptation a significant challenge.

3 GridARM: Architectural Overview

The overall goal of GridARM autonomic runtime framework is to reactively and
proactively manage and optimize SAMR application execution using current sys-

4



tem and application state, online predictive models for system behavior and ap-
plication performance, and an agent based control network. It builds on the con-
cept of vGrid proposed by M. Parashar and S. Hariri (Khargharia 2003). The
GridARM architecture provides application developers with a convenient abstrac-
tion of a virtual Grid that may be significantly larger and more reliable than cur-
rently available resources. The autonomic runtime framework manages physical
Grid resources, allocates them “on-demand”, and spatially and temporally maps
the virtual resources to these physical nodes. The mapping exploits the space,
time, and functional heterogeneity of the simulations and underlying numerical
methods to define application “working-sets”. GridARM infrastructure services
are responsible for collecting and characterizing the operational, functional, and
control aspects of the application and using this information to define autonomic
components, decomposing the application into natural regions (NRs) and the NR
into virtual computational units (VCUs), and applying innovative allocation and
scheduling strategies to map VCUs to physical Grid resources. Together, these
solutions will allow application developers to concentrate on the science and its
formulations without having to worry about explicitly addressing the number, lim-
itations, and availability of resources or targeting and tuning their implementations
to specific architectures and machines.

Figure 3: Conceptual model of GridARM framework

The conceptual GridARM architecture is shown in Figure 3. The framework has
three components: (1) services for monitoring Grid resource capabilities and ap-
plication dynamics and characterizing the monitored state into natural regions; (2)
deduction engine and objective function that define the appropriate optimization
strategy based on runtime state and policies; and (3) autonomic runtime man-
ager which is responsible for hierarchically partitioning, scheduling, and mapping
VCUs onto VRUs, and tuning application execution within the Grid environment.

5



4 GridARM: Operation

4.1 Monitoring and Characterization

Figure 4: GridARM operation: monitoring and characterization

The monitoring and characterization mechanisms in the GridARM framework
consist of embedded application-level and system-level sensors/actuators and are
illustrated in Figure 4. The application is characterized into “natural regions”
(NRs) which are regions of relatively homogeneous activity in the application do-
main and can span various levels of the SAMR grid hierarchy. Application sensors
monitor the structure and state of the SAMR grid hierarchy and the nature of the
refined regions. One way to track such natural regions for SAMR applications
is using the refinement patterns based on local truncation errors. For example, a
“hot-spot” in the flame simulation application described in Section 2 represents a
natural region in the application domain. The application state is abstracted us-
ing these natural regions and is characterized in terms of application-level metrics
such as computation/communication requirements, storage requirements, activity
dynamics, and the nature of adaptations (Steensland 2002).

Similarly, system sensors, built on existing infrastructures such as NWS (Network
Weather Service) and MDS (Metacomputing Directory Service), sense the current
state of underlying computational resources in terms of CPU, memory, bandwidth,
availability, and access capabilities. These are fed into the system state synthesizer
along with history information (current state stored over time in the history mod-
ule) and performance estimates (obtained using performance functions from the
prediction module) to determine the overall system runtime state. The current ap-
plication and system state are provided as inputs to the deduction engine and are
used to define the autonomic runtime objective function.

6



4.2 Deduction and Objective Function

The deduction engine and the autonomic runtime manager provide the primary de-
cision making capabilities within the GridARM framework. As shown in Figure 5,
the current application and system state and the overall “decision space” are the
inputs to the deduction engine. The decision space comprises the adaptation poli-
cies, rules, and constraints defined in terms of application metrics, and enables
autonomic configuration, adaptation, and optimization. Application metrics in-
clude application locality, communication mechanism, data migration, load bal-
ancing, memory requirements/constraints, adaptive partitioning, adaptation over-
heads, and granularity control. Based on current runtime state and policies/-
constraints within the decision space, the deduction engine formulates prescrip-
tions for algorithms, configurations, and parameters that are used to define the
objective function for adapting the behavior of the SAMR application. The de-
duction engine may be capable of self-learning by augmenting its decision space
with new rules and constraints. The prescriptions provided by the deduction en-
gine along with the objective function yield two metric – normalized work metric
(NWM) and normalized resource metric (NRM) that characterize the current ap-
plication state and current system state, respectively. These metric are self-defined
based on the current application/system context and enable autonomic runtime
management by helping to configure the SAMR application with appropriate pa-
rameters and execute optimally within the heterogeneous Grid environment.

Figure 5: GridARM operation: deduction and optimization

4.3 Autonomic Runtime Manager

The normalized metric, NWM and NRM, form the inputs to the autonomic run-
time manager (ARM). Using these inputs, ARM defines a hierarchical distribution
mechanism, configures and deploys appropriate partitioners at each level of the hi-
erarchy, and maps the application domain onto virtual computational units. A vir-

7



tual computational unit (VCU) is the basic application work unit that is scheduled
by the GridARM framework and may consist of computation patches on a single
refinement level of the SAMR grid hierarchy or composite patches that span mul-
tiple refinement levels. VCUs are dynamically defined at runtime to match the
natural regions (NRs) in the application. Using natural regions to define VCUs
can significantly reduce coupling and synchronization costs.

Subsequent to partitioning, scheduling operations on the virtual Grid are per-
formed first across VRUs (Global-Grid Scheduling (GGS)) and then within a VRU
(Local-Grid Scheduling (LGS)). During GGS, VCUs are hierarchically assigned
to sets of VRUs, whereas LGS is used to schedule one or more VCU within a
single VRU. The entire process is first spatial and then temporal, and combines
a range of partition techniques (domain-based, patch-based, tree-based, etc.) and
scheduling techniques (gang, backfilling, migration, etc.). A virtual resource unit
(VRU) may be an individual resource (compute, storage, instrument, etc.) or a
collection (cluster, supercomputer, etc.) of physical Grid resources. A VRU is
characterized by its computational, memory, and communication capacities and
by its availability and access policy. Finally, the VRUs are dynamically mapped
onto physical system resources at runtime and the SAMR application is tuned for
execution within the dynamic Grid environment.

Note that the work associated with a VCU depends on the state of the computation,
the configuration of the components (algorithms, parameters), and the current
ARM objectives (optimize performance, minimize resource requirements, etc.).
Similarly, the capability of a VRU depends on its current state as well as the ARM
objectives (minimizing communication overheads implies a VRU with high band-
width and low latency has higher capability). The normalized metric NWM and
NRM are used to characterize VRUs and VCUs based on current ARM objectives.

5 Current Status

The GridARM framework is currently under development at The Applied Soft-
ware Systems Laboratory (TASSL) at Rutgers University, with current efforts fo-
cussed on the design, implementation, and evaluation of the core building blocks
of the framework. The application used in the experimental evaluation of the Gri-
dARM prototype components is the 3-D Richtmyer-Meshkov instability solver
(RM3D1) encountered in compressible fluid dynamics.

Application aware partitioning (Chandra 2002) uses current runtime state to char-
acterize the SAMR application in terms of computation/communication, appli-
cation dynamics, and the nature of adaptations. This adaptive strategy selects
and configures the appropriate partitioner that matches current application re-
quirements, thus improving overall execution time by 5-30% as compared to
non-adaptive partitioning schemes. The adaptive hierarchical partitioning scheme
(Li 2003) dynamically creates a group topology based on SAMR natural regions

1 RM3D has been developed by Ravi Samtaney as part of the virtual test facility at the Caltech
ASCI/ASAP Center.

8



and helps to reduce the synchronization costs needed to maintain the global hi-
erarchy state, resulting in improved application communication time by up to
70% as compared to non-hierarchical schemes. System sensitive partitioning
(Sinha 2001) uses current system state obtained using NWS to select and tune dis-
tribution parameters by dynamically partitioning and load balancing the SAMR
grid hierarchy based on the relative capacities for each processor. In contrast to
the non-heterogeneous scheme, the system sensitive approach improves overall
execution time by 10-40%.

In addition, various optimizations have been incorporated within the GridARM
framework that aim to improve SAMR application runtime parameters. Architec-
ture sensitive communication mechanisms select appropriate messaging schemes
that are suited for the underlying hardware architecture and help to improve ap-
plication communication time by up to 50%. The workload sensitive load balanc-
ing strategy uses binpacking-based partitioning to distribute the SAMR workload
among available processors while satisfying application constraints such as min-
imum patch size and aspect ratio. This approach reduces application load imbal-
ance to 2-15% as compared to default schemes that employ greedy algorithms.
Furthermore, performance prediction using performance functions can be used to
estimate the application execution time based on current loads, available com-
munication bandwidth, current latencies, and available memory. This approach
helps to determine when the costs of dynamic load redistribution exceed the costs
of repartitioning and data movement, and can result in 25% improvement in the
application recompose time.

6 Conclusions and Future Work

This paper presented the design of the GridARM autonomic runtime management
framework that monitors application and system state and provides appropriate
distribution, configuration, scheduling, and adaptation strategies to optimize the
performance of SAMR applications. The overall goal of the GridARM framework
is to manage dynamism and space-time heterogeneity and support the efficient and
scalable execution of SAMR applications in Grid environments. Future work in
this research aims to integrate all autonomic components (currently developed and
evaluated as independent building blocks) within the GridARM framework using
a component-based architecture with an intelligent deduction engine to achieve
highly flexible and orchestrated self-adapting, self-optimizing performance and
self-learning behavior for Grid-based SAMR implementations.

Acknowledgements

The authors would like to thank Xiaolin Li and Taher Saif for collaboration and
valuable research discussions, and Ravi Samtaney for making the applications
available for use.

9



References

Berger, M., Hedstrom, G., Oliger, J., and Rodrigue, G. (1983), “Adaptive Mesh
Refinement for 1-Dimensional Gas Dynamics”, In Scientif ic Computing
(IMACS/North Holland Publishing), pp. 43-47.

Berger, M. and Oliger, J. (1984), “Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations”, In Journal of Computational Physics, Vol.
53, pp. 484-512.

Bryan, G. (1999), “Fluids in the Universe: Adaptive Mesh Refinement in Cos-
mology”, In Computing in Science & Engineering, pp. 46-53.

Chandra, S. and Parashar, M. (2002), “ARMaDA: An Adaptive Application-
sensitive Partitioning Framework for Structured Adaptive Mesh Refinement
Applications”, In IASTED International Conference on Parallel and Dis-
tributed Computing Systems (PDCS ’02), pp. 446-451, Cambridge, MA.

Foster, I. and Kesselman, C. (1998), “Computational Grids”, In The Grid:
Blueprint for a New Computing Infrastructure, editors: I. Foster and C.
Kesselman, Morgan Kaufmann Publishers.

Kephart, J. and Chess, D. (2003), “The Vision of Autonomic Computing”, In
IEEE Computer, Vol. 36, No. 1, pp. 41-50.

Khargharia, B., Hariri, S., and Parashar, M. (2003), “vGrid: A Framework for
Building Autonomic Applications”, In 1st International Workshop on Het-
erogeneous and Adaptive Computing - Challenges of Large Applications in
Distributed Environments (CLADE ’03).

Li, X. and Parashar, M. (2003), “Dynamic Load Partitioning Strategies for Manag-
ing Data of Space and Time Heterogeneity in Parallel SAMR Applications”,
In 9th International Euro-Par Conference (Euro-Par ’03), Austria.

Parashar, M., Wheeler, J., Pope, G., Wang, K., and Wang, P. (1997), “A New
Generation EOS Compositional Reservoir Simulator: Part II - Framework
and Multiprocessing”, In Society of Petroleum Engineering Reservoir Simu-
lation Symposium, Dallas, TX.

Ray, J., Najm, H., Milne, R., Devine, K., and Kempka, S. (2003), “Triple Flame
Structure and Dynamics at the Stabilization Point of an Unsteady Lifted Jet
Diffusion Flame”, To be published in Proc. Combust. Inst.

Sinha, S. and Parashar, M. (2001), “Adaptive Runtime Partitioning of AMR Appli-
cations on Heterogeneous Clusters”, In 3rd IEEE International Conference
on Cluster Computing.

Steensland, J., Chandra, S., and Parashar, M. (2002), “An Application-centric
Characterization of Domain-based SFC Partitioners for Parallel SAMR”, In
IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No. 12, pp.
1275-1289.

10


