DIOS++: A Framework for Rule-Based Autonomic
Management of Distributed Scientific Applications*

Hua Liu and Manish Parashar

The Applied Software Systems Laboratory
Dept of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA
Email: {marialiu, parashg@caip.rutgers.edu

Abstract. This paper presents the design, prototype implementation and exper-
imental evaluation of DIOS++, an infrastructure for enabling rule based auto-
nomic adaptation and control of distributed scientific applications. DIOS++ pro-
vides: (1) abstractions for enhancing existing application objects with sensors
and actuators for runtime interrogation and control, (2) a control network that
connects and manages the distributed sensors and actuators, and enables external
discovery, interrogation, monitoring and manipulation of these objects at runtime,
and (3) a distributed rule engine that enables the runtime definition, deployment
and execution of rules for autonomic application management. The framework
is currently being used to enable autonomic monitoring and control of a wide
range of scientific applications including oil reservoir, compressible turbulence
and numerical relativity simulations.

1 Introduction

High-performance parallel/distributed simulations are playing an increasingly impor-
tant role in science and engineering and are rapidly becoming critical research modal-
ities. These simulations and the phenomena that they model are large, inherently com-
plex and highly dynamic. Furthermore, the computational Grid, which is emerging as
the dominant paradigm for distributed computing, is similarly heterogeneous and dy-
namic, globally aggregating large numbers of independent computing and communica-
tion resources, data stores and sensor networks. As a result, applications must be ca-
pable of dynamically managing, adapting and optimizing their behaviors to match the
dynamics of the physics they are modeling and the state of their execution environment,
so that they continue to meet their requirements and constraints.

Autonomic computing 7] draws on the mechanisms used by biological systems
to deal with such complexity, dynamics and uncertainty to develop applications that
are self-defining, self-healing, self-configuring, self-optimizing, self-protecting, con-
textually aware and open. This paper presents the design, prototype implementation
and experimental evaluation of DIOS++, an infrastructure for supporting the autonomic
adaptation and control of distributed scientific applications. While a number of existing

* Support for this work was provided by the NSF via grants numbers ACI 9984357(CAREERS),
EIA 0103674 (NGS) and EIA-0120934 (ITR), DOE ASCI/ASAP (Caltech) via grant numbers
PC295251 and 1052856.

systems support interactive monitoring and steering capabilities, few existing systems
(e.g. CATALINA [?] and Autopilot [?]) support automated management and control.
DIOS++ enables rules and polices to be dynamically composed and securely injected
into the application at runtime so as to enable it to autonomically adapt and optimize
its behavior. Rules specify conditions to be monitored and operations that should be
executed when certain conditions are detected. Rather than continuously monitoring
the simulation, experts can define and deploy appropriate rules that are automatically
evaluated at runtime. These capabilities require support for automated and controlled
runtime monitoring, interaction, management and adaptation of application objects.

DIOS++ provides: (1) abstractions for enhancing existing application objects with
sensors and actuators for runtime interrogation and control, (2) a control network that
connects and manages the distributed sensors and actuators, and enables external dis-
covery, interrogation, monitoring and manipulation of these objects at runtime, and (3)

a distributed rule engine mechanism that enables the runtime definition, deployment
and execution of rules for autonomic application management. Access to an object’s
sensors and actuators is governed by access control polices. Rules can be dynamically
composed using sensors and actuators exported by application objects. These rules are
automatically decomposed, deployed onto the appropriate processors using the control
network, and evaluated by the distributed rule-engine.

DIOS++ builds on the DIOSY], a distributed object substrate for interactively mon-
itoring and steering parallel scientific simulations, and is part of the Discogem-
putational collaboratory. Discover enables geographically distributed clients to collab-
oratively access, monitor and control Grid applications using pervasive portals. It is
currently being used to enable interactive monitoring, steering and control of a wide
range of scientific applications, including oil reservoir, compressible turbulence and
numerical relativity simulations.

2 DIOS++ Architecture

DIOS++ is composed of 3 key components: (1) autonomic objects that extend compu-
tational objects with sensors (to monitor the state of an object), actuators (to modify
the state of an object), access policies (to control accesses to sensors and actuators) and
rule agents (to enable rule-based autonomic self-management), (2) mechanisms for dy-
namically and securely composing, deploying, modifying and deleting rules, and (3) a
hierarchical control network that is dynamically configured to enable runtime accesses
to and management of the autonomic objects and their sensors, actuators, access poli-
cies and rules.

2.1 Autonomic objects

In addition to its functional interfaces, an autonomic object exports three aspects: (1) a
control aspectwhich defines sensors and actuators to allow the object’s state to be ex-
ternally monitored and controlled, (2) ancess aspegcivhich controls accesses to these

! http://www.discoverportal.org

sensors/actuators and describes users’ access privileges based on their capabilities, and
(3) arule aspectwhich contains rules that can autonomically monitor, adapt and control

the object. These aspects are described in the following subsections. A sample object
that generates a list of random integdRaidomListis used as a running example. The
number of integers and their range are allowed to be set at run time.

Control aspect The control aspect specifies the sensors and actuators exported by an
object. Sensors provide interfaces for viewing the current state of an object, while ac-
tuators provide interfaces for processing commands to modify the object’s state. For
example, aRandomLisiobject would provide sensors to query the current length of
the list or the maximum value in the list, and an actuator for deleting the current list.
Note that sensors and actuators must be co-located in memory with the computational
objects and must have access to their internal state, since computational objects may
be distributed across multiple processors and can be dynamically created, deleted, mi-
grated and redistributed.

DIOS++ provides programming abstraction to enable application developers to de-
fine and deploy sensors and actuators. This is achieved by deriving computational ob-
jects from virtual base object provided by DIOS++. The derived objects can then selec-
tively overload the base object methods to specify their sensors and actuators interfaces.
This process requires minimal modification to the original computational objects and
has been successfully used by DIOS++ to support interactive steering.

Access aspeciThe access aspect addresses security and application integrity. It controls
the accesses to an object’s sensors and actuators and restricts them to authorized users.
The role-based access control model is used, where users are mapped to roles and each
role is granted specific access privileges defined by access policies.

The DIOS++ access aspect defines three roles: owner, member, and guest. Each user
is assigned a role based on her/his credentials. Owner can modify access policies, de-
fine access privileges for members and guests, and enable or disable external accesses.
Polices define which roles can access a sensor or actuator and in what way. Owners
can also enable or disable a sensor or actuator. Access polices can be defined statically
during object creation using the DIOS++ API, or can be injected dynamically by the
owner at runtime via secure Discover portals.

Rule aspectThe DIOS++ framework uses user-defined rules to enable autonomic man-
agement and control of applications. The rule aspect contains rules that define actions
that will be executed when specified conditions are satisfied. The conditions and actions
are defined in terms of the control aspect (e.g. sensors and actuators). A rule consists
of 3 parts: (1) Condition part, defined by the keyword “IF” and composed of conditions
which are conjoined by logical relationships (AND, OR, NOT etc.), (2) Then action
part, defined by the keyword “THEN” and composed of operations that are executed
when the corresponding condition is true, (3) Else action part, defined by the keyword
“ELSE” and composed of operations that are executed when condition is not fulfilled.
For example, consider tiRandomLisbbject with 2 sensors: (DetLength(}o get
the current length of the list and (BgtMaxValue(}o get the maximal value in the list,

and 1 actuatoappend(length, max, mitfhat creates a list of sizengthwith random
integers betweemaxandmin, and appends it to the current list.

IF RandomlList.getLength()<10 AND RandomlList.getMaxValue()<=50
THEN RandomList.append(10, 100, 0)

Note that rules are separated from the application logic. This provides flexibility
and allows users to dynamically create, delete and change rules without modifying the
application. Users use these rules to monitor and control their applications at run time.
Rules can be added, deleted, changed on the fly without stopping and restarting the
application. Rules are handled by rule agents and the rule engine, which are part of the
control network (described in the following subsection) and are responsible for storing,
evaluating and executing rules.

2.2 Control network

The DIOS++ control network (see Figu®®) is a hierarchical structure consisting of
a rule engine and gateway, autonomic objects (composed of computational objects and
rule agents), and computational nodes. It is automatically configured at run time using
the underlying messaging environment (e.g. MPI) and the available processors.

The lowest level of the

== s il
control network hierarchy con- Computationalnode [k
sists of computational nodes. Autonomic object
H H trol t
Each node mam.tams allo— Computatonal :229’;“;%) Gateway
cal au_to_nom|c object registry L easoed — enm@
containing references to all . <_)
A A rule operations P
autonomic objects currently i =
. . RuleAgent ="
active and registered. Atthe access rules
sensors actuators J L

next level of hierarchy, the
Gateway represents a man-
agement proxy for the en-
tire application. It combines the registries exported by the nodes and manages a registry
of the interaction interfaces (sensors and actuators) for all the objects in the application.
It also maintains a list of access policies related to each exported interface and coor-
dinates the dynamic injection of rules. The Gateway interacts with external interaction
servers or brokers such as those provided by Discover.

Co-located with Gateway, the rule engine accepts and maintains the rules for the ap-
plication. It decomposes these rules and distributes them to corresponding rule agents,
coordinates the execution of rule agents, keeps track of rule execution and reports them
to the user. Each rule agent executes its rules using an execution script, and reports
the rule execution status to the rule engine. The execution script is also defined by the
rule engine and specifies the rule execution sequence and the rule agent’s behavior. The
specification and execution of scripts and the coordination between the rule engine and
rule agents are illustrated in the following subsections.

In DIOS++, although rule execution is coordinated by the rule engine, rules are
evaluated and executed in parallel. This central-control and distributed-execution mech-
anism has the following advantages: (1) Rule execution which can be compute-intensive

Computational nodd

Fig. 1. DIOS++ architecture.

is done in parallel by rule agents. This reduces the rule execution time as compared to
a sequential rule execution. (2) Rule agents are created dynamically and delegated to
autonomic objects. This solution requires less system resources than static rule agents
as the agents are created only when need. It also leads to more efficient rule execution.
(3) Rule agent’s behavior is based on script, which allows it to adapt to the execution
environment and the rules that it needs to execute. Rule agent scripts can be calibrated
at runtime by the rule engine to make rule agents more adaptive.

The operation of the control network is explained below using an example. Consider
a simple application that generates a list of integers and then sorts them. This application
contains two objects: (#lRandomListhat provides a list of random integers, and (2)
SortSelectothat provides several sorting algorithms (bubble sort, quick sort, etc.) to
sort integers.

Initialization During initialization, the application uses the DIOS++ APIs to create
and register its objects, and to export its aspects, interfaces and access policies to the
local computational node. Each node exports these specifications for all its objects to the
Gateway. The Gateway then updates its registry. Since the rule engine is co-located with
Gateway, it has access to the Gateway’s registry. The Gateway interacts with the external
access environment (Discover servers in our prototype) and coordinates accesses to the
application’s sensor/actuators, policies and rules.

Interaction and rule operation At runtime the Gateway may receive incoming inter-
action or rule requests from users. The Gateway first checks the user’s privileges based
on her/his role, and refuses any invalid access. It then transfers valid interaction requests
to corresponding objects and transfers valid rule requests to the rule engine. Finally, the
responses to the user’s requests or from rules executions are combined, collated and
forwarded to the user. Once again we use the example to describe this process.

Rule definition: Supposd&kandomLisexports 2 sensorgetLength()andgetList()
SortSelectoexports no sensors, and 2 actuatseqquentialSort(andquickSort() The
owner can access all these interfaces. Members can only atessgth(andgetList()
in RandomListandsequentialSort(in SortSelectarGuests can only accegstLength()
in RandomlList

Using DIOS++, users can view, add, delete, modify and temporarily disable rules
at runtime using a graphical rule interface integrated with the Discover portal. An ap-
plication’s sensors, actuators and rules are exported to the Discover server and can be
securely accessed by authorized users (based on access control polices) via the portal.
Authorized users can compose rules using the sensors and actuators. Note that rules may
be defined for individual objects or for the entire application and span multiple objects.
Users specify a priority for each rule, which is then used to resolve rule conflicts.

Rule deployment Consider the following rules defined by a user. Let Rulel have a
higher priority than Rule2:

Rulel: IF RandomlList.getLength()<100 THEN RandomlList.getList()
ELSE RandomlList.getLength()

Rule2: IF RandomlList.getLength()<50 THEN SortSelector.sequentialSort()
ELSE SortSelector.quickSort()

Rulel is an object rule, which means that the rule only applies to one object. Rule2
is an application rule, which means that the rule can affect several objects. When the
Gateway receives the two rules, it will first check the user’s privileges. If the rules are
defined by member users, Rule2 will be rejected by Gateway since member users do
not have the privilege to acceggickSort()interface inSortSelectar

The Gateway transfers valid rules to the rule engine. The rule engine dynamically
creates rule agents for the objects if they do not already exist. It then composes a script
for each agent, which defines the rule agent’s lifetime and rule execution sequence based
on rule priorities. For example, the script for the rule agenRfandomLismay specify
that this agent will terminate itself when it has no rules, and that Rulel is executed first.
Note that this script is extensible.

In the case of an object rule, the rule engine just injects the object rule into its
corresponding rule agent. In the case of an application rule, the rule engine will first
decompose the rule into triggers and then inject triggers into corresponding agents. So
Rule2 is decomposed into 3 triggers: @9rtSelector.sequentialSort(R) SortSelec-
tor.quickSort() and (3)RandomList.getLengthg 50. These triggers are injected into
corresponding agents as shown in Figdee

—>| Rule engine Object instance ortSelector Object instance andomList
Trigger1: sequentialSort() Trigger3:
Trigger2: quickSort() getLength()<50
| Rule interface | | Rule interface | | Rule interface |
IF getLength()<100 -
THEN getList() F_iule engine
ELSE getLength() IF Trigger3
THEN Trigger1
Object instance andomList ELSE Trigger2

Fig. 2. Left: rule engine deploys an object rule to its corresponding rule agent. Right: rule engine
decomposes an application rule into triggers and injects triggers to corresponding rule agents.

Rule execution and conflicts During interaction periods in the application’s exe-
cution, the rule engine fires all the rule agents at the same time and rule agents work
in parallel. Rule agents execute object rules and return the results to the rule engine.
The rule engine then reports them to the user through the Gateway. Rule agents also
execute triggers, which are part of application rules, and report corresponding results
to the rule engine. The rule engine collects the required trigger results, evaluates condi-
tion combinations, and then issues corresponding actions if the conditions are fulfilled.
Application rule results are also reported to the user through the Gateway.

While typical rule execution is straightforward (actions are issued when their re-
quired conditions are fulfilled), the application dynamics and user interactions make
things unpredictable. As a result, rule conflicts must be detected at runtime. In DIOS++,
rule conflicts are detected at runtime and are handled by simply disabling the conflict-
ing rules with lower priorities. This is done by locking the required sensors/actuators.
For example, suppose that a user defines two rules for the object inRRandemList
Rulel requires setting the minimal integer value to 5 when the list length is less than

100 and larger than 50, and Rule2 requires the minimal value to be 6 when the list
length is larger than 30 and less than 70. Rulel has higher priority than Rule2. The two
rules conflict with each other, for example, when the list length is 60.

Rulel: IF RandomList.getLength()>50 AND RandomlList.getLength()<100
THEN RandomList.setMinint() = 5

Rule2: IF RandomList.getLength()>30 AND RandomlList.getLength()<70
THEN RandomList.setMinint() = 6

The script asks rule agent to fire Rulel first. After Rulel is executed, the interface
of setMinInt()is locked during the period when the length is less than 100 and larger
than 50. When Rule2 is issued, it cannot be executed as the required interface is locked.
The interface will be unlocked when the length value is not within the range of 50 to
100.

The rule agent at an object will continue existing or destroy itself according to the
lifetime specified in its script. Rule engine can dynamically modify the scripts to change
the behavior of rule agents.

3 Experimental evaluation

DIOS++ has been implemented as a C++ library. This section summarizes an experi-
mental evaluation of the DIOS library using the IPARS reservoir simulator framework
on a 32 node beowulf cluster. IPARS is a Fortran-based framework for developing par-
allel/distributed reservoir simulators. Using DIOS++/Discover, engineers can interac-
tively feed in parameters such as water/gas injection rates and well bottom hole pres-
sure, and observe the water/oil ratio or the oil production rate. The evaluation consists
of 3 experiments:

1600 @ without 120000 @ computation
5 1400 DIOS++ 100000 time
& 1200 m with o
2 1000 DIOS++ [|@ 80000 4 Erule
= 800 g 60000 4 deployment
< time
g 600 < 40000
§ 400 | €
£ 200 ‘ = 20000 -
0 number of 0 4 number of
1 2 4 8 16 32 processors 1 2 3 4 iterations

Fig. 3. Left: Runtime overheads introduced in the DIOS++ minimal rule execution mode. Right:
Comparison of computation and rule deployment time.

Experiment 1 (Figure??, left): This experiment measures the runtime overhead in-
troduced to the application in DIOS++ minimal rule execution mode. In this experiment,
the application automatically updates the Discover server and its connected clients with
current state of autonomic objects and rules. Explicit interaction and rule execution are
disabled during the experiment. The application’s run time with and without DIOS++

are plotted in the left figure in Figur#?. It can be seen that the runtime overheads due
to DIOS++ are very small and are within the error of measurements.

Experiment 2 (Figure??, right): This experiment compares computation time and
rule deployment time for successive iterations. In this experiment, we deployed two
object rules and two application rules in 4 successive iterations (object rules are de-
ployed in the first and third iterations; application rules are deployed in the second and
fourth iterations). The experiment shows that object rules need less deployment time
than application rules. This is true since rule engine only has to inject object rules to
corresponding rule agents, while it has to decompose application rules to triggers, and
inject triggers to corresponding rule agents.

Experiment 3 (Figure??): This ex- — e
periment compares computation time, ob- 100000 time
ject rule execution time and application 80000 1 o0l rule exee
rule execution time for successive appli- oo
cation iterations. The experiment shows 20000
that an application rule requires a larger e
execution time than an object rule, since
rule engine has to collect results fromFig. 4. Comparison of computation, object
all the triggers, check whether the condirule execution and application rule execu-
tions are fulfilled and invoke correspond-tion times.
ing actions.

60000

D app rule
exec time

time (microsec)

4 Summary and Conclusions

This paper presented the design, prototype implementation and experimental evalua-
tion of DIOS++, an infrastructure for supporting the autonomic adaptation and control
of distributed scientific applications. DIOS++ enables rules and polices to be dynam-
ically composed and securely injected into application at runtime so as to enable it to
autonomically adapt and optimize its behavior. The framework is currently being used,
along with Discover, to enable autonomic monitoring and control of a wide range of
scientific applications, including oil reservoir, compressible turbulence and numerical
relativity simulations.

References

1. R. Muralidhar and M. Parashar, “A Distributed Object Infrastructure for Interaction and
Steering”, Concurrency and Computation: Practice and Experience, John Wiley and Sons,
2003 (to appear)

2. R. Ribler, J. Vetter, H. Simitci, and D. Reed, “Autopilot: Adaptive Control of Distributed
Applications”, Proceedings of the 7th IEEE Symposium on High-Performance Distributed
Computing, Chicago, IL, July 1998

3. P. Horn, "Autonomic Computing: IBM’s perspecitive on the State of Information Technol-
ogy”, IBM Corp., October 2001. http://researchweb.watson.ibm.com/autonomic/

4. S. Hariri, C.S. Raghavendra, Y. Kim, M. Djunaedi, R. P. Nellipudi, A. Rajagopalan, P. Vad-
lamani, Y. Zhang, "CATALINA: A Smart Application Control and Management”, the Active
Middleware Services Conference 2000

