CaltechAUTHORS
  A Caltech Library Service

Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations

Adams, P. J. and Seinfeld, J. H. (2003) Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations. Geophysical Research Letters, 30 (5). Art. No. 1239. ISSN 0094-8276. doi:10.1029/2002gl016303. https://resolver.caltech.edu/CaltechAUTHORS:20230221-68028600.1

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:20230221-68028600.1

Abstract

Estimates of indirect aerosol radiative forcing have focused on increased sulfate aerosol mass concentrations caused by anthropogenic emissions of gas-phase sulfur dioxide, implicitly neglecting the impact of direct particulate emissions. Emissions of primary particles and gas-phase precursors have different effects on cloud condensation nuclei (CCN) concentrations as they impact CCN concentrations via different microphysical pathways. We present a theoretical analysis and evidence from a three-dimensional global model of aerosol microphysics to show that particulate emissions are more efficient per unit mass than gas-phase emissions at increasing CCN concentrations. Both analyses show that the few percent of anthropogenic sulfur emitted as particulate sulfate results in an increase in CCN concentrations comparable to that resulting from much larger emissions of gas-phase sulfur dioxide. Therefore, models should explicitly distinguish between the microphysical impacts of particulate and gas-phase emissions to accurately estimate the magnitude of the indirect effect of aerosols on climate.


Item Type:Article
Related URLs:
URLURL TypeDescription
https://doi.org/10.1029/2002GL016303DOIArticle
ORCID:
AuthorORCID
Adams, P. J.0000-0003-0041-058X
Seinfeld, J. H.0000-0003-1344-4068
Additional Information:This study has been supported by a graduate fellowship from the Fannie and John Hertz Foundation as well as by the NASA Earth Observing System Interdisciplinary Science program (NASA EOS-IDS). We also wish to thank Graham Feingold for assistance with the microphysics algorithms.
Funders:
Funding AgencyGrant Number
Fannie and John Hertz FoundationUNSPECIFIED
NASAUNSPECIFIED
Issue or Number:5
DOI:10.1029/2002gl016303
Record Number:CaltechAUTHORS:20230221-68028600.1
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:20230221-68028600.1
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:119339
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:21 Feb 2023 23:07
Last Modified:21 Feb 2023 23:07

Repository Staff Only: item control page