
OPTIMAL STRATEGIES FOR EFFICIENT PEER-TO-PEER FILE SHARING

Mortada Mehyar, WeiHsin Gu, Steven H. Low, Michelle Effros, Tracey Ho

Engineering and Applied Science, California Institute of Technology
�morr, wgu, slow, effros, tho�@caltech.edu

ABSTRACT
We study a model for peer-to-peer le sharing. The goal is to dis-
tribute a le from a server to multiple peers. We assume the upload
capacity of each peer is the only bottleneck. We examine the nish
times of peers under different transmission strategies. Pareto opti-
mality, min-max nish time, and optimal average nish time of the
model are studied. We believe the results provide fundamental in-
sights into practical peer-to-peer systems such as BitTorrent.

Index Terms— Peer-to-Peer networks, Mathematical Analy-
sis/Optimization

I. INTRODUCTION
Peer-to-peer le sharing has become a signi cant part of internet

traf c in recent years. According to web analysis rm CacheLogic,
peer-to-peer traf c accounted for an astounding 60% of all internet
traf c at the end of 2004.

Much research has gone into analyzing and understanding peer-
to-peer le sharing systems such as BitTorrent [2], Slurpie [7], and
Avalanche [3]. A uid model for analyzing BitTorrent networks is
proposed and studied in [6]. Issues related to the service capacity of
peer-to-peer networks are studied in [8]. The work in this paper is
motivated by the results in [4].

The model used in this work is introduced in [4] as the “uplink
sharing model”. A related model has been analyzed before in the
context of message broadcasting among parallel processors [1]. One
major difference between peer-to-peer systems and systems of par-
allel processors is that peer-to-peer systems are usually extremely
heterogenous. Parallel processors, on the other hand, are usually as-
sumed to be identical.

We extend the results in [4] and study different performance crite-
ria. We also propose new directions for related research that we be-
lieve are promising for gaining insights on fundamental understand-
ing of peer-to-peer le sharing systems.

II. PROBLEM SETUP
Consider a network of� peers where each peer’s goal is to obtain

the same content, a le of size � . The le is divided into � pieces
of equal size to facilitate distribution. When a peer has received a
piece completely, it can help distribute the piece by sending it to
other peers. This method of le dissemination is used by le sharing
systems such as BitTorrent [2], Slurpie [7], and Avalanche [3].

In addition to the � peers who initially have no le pieces, we
assume there is a server that initially has the whole le. This server is
called a seed node in BitTorrent. The upload capacity of each peer is
assumed to be the only constraint, which is an assumption motivated
by the fact that many peers have larger download capacities than
upload capacities (e.g., DSL lines) on the Internet. We also assume

that the overlay network is a complete graph, and therefore that there
is no connectivity constraint.

We are interested in the time it takes for each peer to obtain the
whole le. We denote by �� the nish time of peer �, which is de-
ned to be the earliest time at which peer � receives the whole le.

The value of each �� depends on the strategy with which the system
allocates capacity and distributes data among peers.

When � , the number of pieces that make up the given le, is vary
large, we can treat the data as a continuous ow. In this work, we
focus on the case where � is in nity.

The notation for this model is as follows.
� : size of the le
� : total number of peers (not including the server)
��: upload capacity of the server
��: upload capacity of peer �� � � ��� �� ���� ��
�����: amount of le that peer � has at time �

Notice that by de nition, we must have

� � ����� � �� ��� (1)

Without loss of generality, we assume that the peer indices are or-
dered so that �� � �� whenever � 	
. We also de ne the total
capacity of the system to be

� �� �� �

��
���

���

We will also call the time ���� to be the bottleneck time of the
system, since it is the least amount of time the server needs to upload
the le � to any peer.

Notice that in this model, the analysis is not simply about allo-
cating capacities. Peers can only upload they have already received.
Also, an upload is only useful if the receiving peer has not already
received the data. The analysis, therefore, has to take into account
how different le segments are distributed, in addition to how capac-
ities are allocated.

III. LAST FINISH TIME
We will call the amount of time for all peers to obtain the le

the last nish time. Precisely �� �� 	
������. This is called the
“minimum makespan” in [4].

When the server and only the server has the le initially, it can
be shown [5] that the minimal last nish time ��

� is given by the
following simple expression.

Theorem 1: [5, Theorem 3.3] The minimal last nish time is
given by

� �

� � 	
�

�
�

��

�
��

�

�
� (2)

IV ­ 13371­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 13, 2008 at 15:22 from IEEE Xplore. Restrictions apply.

Mundinger et al. [4] discovered the following strategy that
achieves the minimal last nish time as in (2), which we will denote
by ��.
(i) When

�� �

�
� ��

� � �
� (3)

it is possible for the server to allocate to each peer � an upload
rate of ��

���
. Peer � can therefore upload at the rate of

��
� � �

to all of its � � � peers, without exceeding its capacity con-
straint ��. The server’s remaining upload capacity is

�� �

�
� ��

� � �
�

This will be shared equally among the � peers. Therefore, for
any � � ��� �� � � � � ��, the total capacity peer � receives equals

�� �
��
��� ��

���

�
�

��

���

��
� � �

�
�

�
� (4)

(ii) When

�� �

�
� ��

� � �
� (5)

the server can allocate to each peer � an upload rate of

������
��� ��

� (6)

without exceeding its capacity constraint ��. Peer � can there-
fore upload at the rate of

������

��� ��

to all of its � � � peers without exceeding its capacity con-
straint ��, because by 5

�� � ��
������
��� ��

� ��� (7)

Therefore the capacity each peer � receives is equal to

��

���

������
��� ��

� ��� �� � ��� �� � � � � ��� (8)

Unfortunately, minimizing the last nish time is not always good
objective for peer-to-peer le sharing systems. Notice that the ex-
pression of � �� suggests that peers with small capacity can have an
arbitrarily large impact on system performance. This is certainly not
true in a BitTorrent network, for example. In fact, since strategy ��
forces all peers to nish at the same time, the ef ciency of the system
is compromised. We skip the proof of following two lemmas.

Lemma 1: When � � �, strategy �� is always Pareto-optimal.
Strategy �� is not Pareto-optimal in general.
Lemma 2: When � � � and ��� 	
���, strategy �� is not

Pareto-optimal.

IV. OTHER OPTIMALITY CRITERIA
IV-A. Average Finish Time

In the context of peer-to-peer le sharing, the last nish time may
not be as important as other objectives such as average nish time,
for example. The average nish time �� is de ned to be the average
of all nish times

�� ��
�

�

��

���

��� (9)

A simple example illustrates why the average nish time may be a
better measure of performance. Consider the special case where all
peer capacities are 	. If server capacity �� is split equally among all
peers, every peer will nish at the same time

�� �
�

��
� �� � ��� �� � � � � ��� (10)

However if the downloads are done sequentially, the nish times can
be

�� �
�

��
� �� � ��� �� � � � � ��� (11)

Therefore the average nish time in (11) becomes

�� � ��

���
� (12)

nearly half of the average value of the nish times in (10). The over-
all user experience is undoubtedly better in (11), and it can be shown
that the nish times in (11) are actually optimal for average nish
time.

IV-B. Min-Min Finish Times
As an alternative, we also consider the following “min-min” op-

timality criterion for the nish times, where each nish time �� is
sequentially minimized, in the order from fast to slow peers. We
de ne

��� ��
�� �� �

��
� (13)

��� ��
��
�
����� � ��� � �
 � �

�
� (14)

In words, the min-min nish time ��� of peer �, is the minimal pos-
sible value of �� subject to the constraints that the nish time of any
peer
 with an index
 � � is equal to �� � ��� .

V. GENERAL PROPERTIES
We rst mention without proving that within any period ���� ����
,

where no peer nishes, we can assume without loos of generality that
no le segment is uploaded by more than two nodes. In other words,
no le segment traverses more than two “hops” when it is sent.

Theorem 2: (Multiplicity Theorem) It is possible to let the rst
� peers nish at bottleneck time if and only if

�� �
	�

���

��
� � �

�
��

��	��

��
�

� (15)

For any given system, we de ne the multiplicity of the system to
be the largest � such that inequality (15) holds. In other words,

IV ­ 1338

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 13, 2008 at 15:22 from IEEE Xplore. Restrictions apply.

the multiplicity is � if it is possible to nish the rst � peers at
bottleneck time, but not the rst� � � peers.

Note that the multiplicity of any system is at least �, since it is
always possible to nish peer � at bottleneck time. This fact can also
be seen from the right hand side of (15), as it becomes in nity when
� � �, and therefore inequality (15) is true for any nite ��.

One important consequence of the Multiplicity Theorem (Theo-
rem 2) is that it suggests a natural decomposition of our model into
cases according to the multiplicity.

VI. OPTIMAL AVERAGE FINISH TIME
Suppose the objective now is to minimize the average nish time.

We next show that in many cases, the optimal average is achieved by
the min-min nish times de ned in Section IV-B.

First, we note that the optimal average nish time is easy to derive
when the multiplicity � equals � , namely, when

�� �

�
�

���
��

� � �
� (16)

Here since �� � ���� for all � � ��	 �	 ���	 ��, the optimal average
nish time must satisfy

 �

� �
�

��
� (17)

When � � � , strategy �� achieves

�� �
�

��

for all �. Therefore �� achieves min-min nish times and gives

 �

� �
�

��
, if � � �� (18)

When the multiplicity is � � �, namely, when�
�

���
��

� � �
� �� �

�
���

���
��

� � �
�

��
� � �

� (19)

We can always write �� in the form of

�� �

�
����
���

��

�
�

��
� � �

	 (20)

where
 is a constant such that

�

� � �
�
 �

�

� � �
�

Consider the following strategy:
(i) The server uploads different le segments to each peer �, � �

��	 �	 � � � 	 � � ��, at the rate of
��.
Peer � broadcasts the data it receives from the server to every
other peer �. Peer � has remaining capacity ����� � ��
��,
which it uses to upload information to peer � .

(ii) The server uploads to peer � at rate

��
� � �

, and peer � broadcasts the data it receives from the server to
all other peers in the network. Note that the upload capacity

of the server is saturated, and so is the upload capacity of peer
� .

One can show that the above strategy results in nish times

�� �
�

��
	 �� � ��	 �	 � � � 	 � � ��	 (21)

�� �
�

��

��� � ��
� � ��

(22)

which minimizes the average nish time.

VI-A. Networks of Three Peers
When � � �, the above analysis describes how to achieve the

optimal average nish time provided � � �. We next treat the case
when � � �. This is the case when

�� � �� ��� �
��

�
� (23)

Theorem 3 treats this case.
Theorem 3: When � � � and � � �, the following strategy is

optimal in average nish time:
(i) During time period �		 ��
, the server sends different le seg-

ments to peers �, �, and � at rates �� � �� � ��, ��, and ��
respectively, where

�� ��
��� � ��

��� � ��� ���

��� (24)

Since

��

�
� �� � �
����	 �� ��� � ���	 (25)

the server can allocate rate �� to peer �. Then peer � uploads
to peer � at rate ��, peer � uploads to peer � at rate ��, peer �
uploads to peer � at rate ��, and to peer � at rate �� � ��.

(ii) During time period ���	 ��
, peer � continues to upload to peer
� the data it received from the server during �		 ��
. The server
and peer � each upload at full rate to peer �, and peer � uploads
at its full rate to peer �.

(iii) During time period ���	 ��
, the server and peers � and � upload
to peer � at a combined rate of �� � �� � ��, and nish the
last peer.

Proof: Let the set of the peers � � ��	 �� be set �, then an
upper bound of the total amount of data that can go into set � by
time �� is

��� ������ � ���� �
��

�
��� (26)

The rst term follows since the server and peer � can potentially up-
load data to set � at full capacity during �		 ��
. The second term
follows since peer � can only upload to � during �		 ��
. During
���	 ��
, there is no destination in set � for peer � to upload to any-
more. Since peer � can at most upload the same data to two peers,
the net contribution from peer � to set � is at most

�
������	 �������� � ������	

which is at most
��

�
���

IV ­ 1339

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 13, 2008 at 15:22 from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

t1
*

t2
*

t3
*

TL
*

TA
*

Fig. 1. An illustration of the nish times achieved by the strategy
that minimizes average nish time. The parameters chosen are�� �
���, �� � ���, �� � ��, and �� � ��. We also plot the optimal
values � �

� and � �

�.
gure

Now, since peers � and � have both nished at time �� � ��, at least
�� data must have been received. Therefore we have

���� ����� � ���� �
��

�
�� � ��� (27)

which is equivalent to

�� �
�� � ����

�� � �� �
��

�

� (28)

On the other hand, one can easily get

�� � �� �
	� � ���

� ���

� (29)

Adding �� to both sides of (28), and adding �� � �� to both sides
of (29) with � � 	 gives

�� �
�

��
(30)

��

���

�� �
�� �
�� � �� �

��

�
� �����

�� � �� �
��

�

(31)

��

���

�� �
	� ����� �
� � ����
�� � ���

� ���

(32)

Plugging (30) and (31) into the right side of (32) gives a lower bound
on �� � �� � ��. Any strategy that achieves equality in each of the
three inequalities (30-32), minimizes the average nish time. Since
the strategy we propose achieves all three equalities, it minimizes
average nish time.

Figure 1 illustrates numerically the nish times achieved by the
strategy that minimizes average nish times. The optimal average
nish time � �

� is signi cantly better than the optimal last nish time
� �

�.

VII. SUMMARY AND CONCLUSION
We study a model for peer-to-peer le sharing with respect to dif-

ferent optimality criteria. We have derived general properties of the
system, and analyzed special cases of system behavior. Intuitively,
the results suggest that ef cient peer-to-peer le sharing should have
two components. One is that le segments should be spread out to
as many peers as possible, in order to utilize every peer’s upload
capacity.

The other component is that fast peers should be favored over slow
peers, but they should be not be favored to the exclusion of their
peers. It seems that fast peers should receive more le segments ear-
lier (but not all le segments), while at the same time the capacities
of slow peers should also be utilized.

ACKNOWLEDGMENTS

We would like to thank Lachlan Andrew and Aliekber Gurel for
helpful discussions.

VIII. REFERENCES
[1] A. Bar-Noy, S. Kipnis, and B. Schieber. Optimal multiple mes-

sage broadcasting in telephone-like communication systems.
Discrete Applied Mathematics, 100:1-15, 2000.

[2] B. Cohen. Incentives build robustness in BitTorrent. Proceed-
ings of Workshop on Economics of Peer-to-Peer Systems, 2003.

[3] C. Gkantsidis and P. Rodriguez. Network Coding for Large
Scale Content Distribution. Proceedings of IEEE Infocom, Mi-
ami, 2005.

[4] J. Mundinger and R. Weber. Ef cient File Dissemination using
Peer-to-Peer Technology. Technical Report, Statistical Labo-
ratory Research Reports 2004-01, Cambridge, January 2004

[5] J. Mundinger, R. R. Weber, and G. Weiss. Analysis of Peer-
to-Peer File Dissemination amongst Users of Different Up-
load Capacities. Performance Evaluation Review, Performance
2005 Issue.

[6] D. Qiu and R. Srikant. Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks. Proceedings of ACM
SIGCOMM, Portland, 2004.

[7] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A Co-
operative Bulk Data Transfer Protocol. Proceedings of IEEE
Infocom, Hong Kong, 2004.

[8] X. Yang and G. de Veciana. Service capacity of peer to peer
networks. Proceedings of IEEE Infocom, Hong Kong, 2004.

IV ­ 1340

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on October 13, 2008 at 15:22 from IEEE Xplore. Restrictions apply.

