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Ambiguity of the Moment Tensor

by Jean-Paul Ampuero* and F. A. Dahlen

Abstract An earthquake on a fault separating two dissimilar materials does not
have a well-defined moment density tensor. We present a complete characterization
of this bimaterial ambiguity in the general case of slip on a fault in an anisotropic
medium. The ambiguity can be eliminated by utilizing a potency density rather than
a moment density representation of a bimaterial source.

Introduction

Earthquake seismology is being nourished by a growing
body of observational constraints on the structure of fault
zones, including geological field studies of exhumed faults
(Chester et al., 1993), classical and guided-wave fault-zone
tomographic studies (Catchings et al., 2002; Thurber et al.,
2003; Ben-Zion, 1998; Li et al., 2000), high-resolution micro-
earthquake relocations (Got et al., 1994; Waldhauser and
Ellsworth, 2002), and active fault-zone drilling projects such
as the San Andreas Fault Observatory at Depth, the Corinth
Rift Laboratory, and the geophysical boreholes into the No-
jima Fault Zone (Ohtani et al., 2000). These new constraints
are driving fundamental investigations of fault-zone controls
on earthquake processes, including both theoretical and ob-
servational studies of the dynamics of earthquake rupture on
a fault separating two dissimilar materials. Source dynamics
on such a bimaterial interface is enriched by the coupling
between slip and normal stress, leading naturally to pulse-
like rupture and directivity (Andrews and Ben-Zion, 1997;
Cochard and Rice, 2000). Recently, Rubin and Gillard
(2000) and Rubin (2002) observed a pronounced northwest—
southeast asymmetry in the distribution of microearthquake
aftershocks along sections of the San Andreas fault that have
a strong velocity contrast, up to 20%, across the fault zone.
They attributed this along-strike aftershock asymmetry to
bimaterial directivity effects. McGuire et al. (2002) have
suggested that this mechanism may be a general feature of
plate-boundary earthquakes, which may act to enhance the
predominance of unilateral rupture on a global scale.

From an observational standpoint, especially when deal-
ing with microseismicity or teleseismic data, the details of
earthquake kinematics are usually poorly resolved, and the
seismic moment remains one of the few fundamental mac-
roscopic properties of the source that can be reliably esti-
mated from seismograms (Nadeau and Johnson, 1998). The
moment tensor has been widely adopted as the preferred
phenomenological description of an earthquake in the point-
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source approximation, ever since it was first introduced into
seismology by Kostrov (1970) and Gilbert (1971). A short-
coming of this representation is the inherent ambiguity of
the surficial moment density tensor in the case of slip on a
bimaterial interface. Fundamentally, this ambiguity arises
because the scalar moment of an earthquake is defined by
M, = u{Au)A, where u is the rigidity in the vicinity of the
source, (Au) is the average slip, and A is the fault area (Aki,
1966). In the case of a bimaterial interface with a disconti-
nuity in the rigidity, #* # p~, there is no obvious choice
for “the” fault rigidity u, so the earthquake moment M, is
not well defined. The reasons for this and other discontinu-
ous source ambiguities have been discussed in a variety of
contexts by Woodhouse (1981), Heaton and Heaton (1989),
and Ben-Zion (1989, 2001). Nevertheless, a recent article by
Wu and Chen (2003) suggests that some confusion may still
exist regarding this issue in the seismological community.
We present a tutorial review of the phenomenological rep-
resentation of indigenous seismic sources and provide a
complete analysis of the moment density ambiguity for
earthquakes characterized by slip on a finite bimaterial in-
terface in this article. The analysis allows for the possibility
of a general elastic anisotropy but neglects the earth’s initial
stress, self-gravitation, and rotation, for simplicity.

Strain and Stress Glut

Let x be the position vector within an anisotropic elastic
medium with mass density p(x) and stiffness tensor Cy,(X).
There are only 21 independent components of the fourth-
order tensor Cy,, by virtue of the elastic symmetries:

Cijkl = Cjikl = Cijlk = Cklij- (D

In the absence of any earthquake source, the equations of
motion governing the medium are

@

Gij = Cijkl Et - 3
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The quantity u,(x, t) is the infinitesimal displacement of par-
ticle x at time 7, whereas ¢;; and &, = "2(9,u; + o) are
the associated stress and strain; a dot denotes partial differ-
entiation with respect to time, d/9¢, and 9; is shorthand for
d/dx;. Equations (2) and (3) must be solved subject to the
initial conditions
u(x,0) = 0 u;(x,0) = 0, “)

and to an appropriate boundary condition, stipulating either
that there are only outgoing waves at infinity or that there is
no traction on the free surface of a finite earth model. Backus
and Mulcahy (1976a) made the elementary but profound ob-
servation that the unique solution of equations (2-4) is an
eternally quiescent and, therefore, seismologically uninter-
esting earth: u,(x, 1) = 0 at all positions x and for all times
t. Newton’s second law pii; = 9,0, is a genuine law of me-
chanics, so an indigenous seismic source must be due to a
breakdown of Hooke’s constitutive “law” a; = Cypéy.

Generalizing the description of a static transformational
phase change introduced by Eshelby (1957), we may rep-
resent a source phenomenologically by a specified stress-
free strain, denoted by &;(x, 7). The stress-strain constitutive
relation g; = Cyyéy is replaced by

gij = Cijkl(gkz - &), (5)

where it is assumed that ¢;; is nonzero only for # = 0, and
only inside some nonelastic source region V, within which
Hooke’s “law” is violated. The quantity

& —
0 =

Czjjklgzl (6)
is the stress glut within the source region V (Backus and
Mulcahy, 1976a); by analogy, we may alternatively refer to
the stress-free strain &, as the strain glut. On inserting equa-
tion (5) into equation (2), we may write the equation of mo-
tion in an inhomogeneous form that allows for the possibility
of an earthquake, namely,

pii; = 0,(Cyer) + Jj* @)

The quantity

fi = —0,0; = —0,(Cyer) (8)
is the equivalent body force, which gives rise to the same
response u; as the earthquake. We assume, for the moment,
that both the stiffness tensor Cy; and the strain glut ¢, are
smooth functions of position x within the source region V,
so that the derivative 9; in equation (8) is well defined. We
also assume, for simplicity, that the source region V is buried
within the earth, so that we need not be concerned with an
equivalent surface force in addition to the equivalent body

force (Backus and Mulcahy, 1976a).
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Displacement, Strain, and Stress Green Tensors

Following Burridge and Knopoff (1964) and Aki and
Richards (2002, section 2.4) we write the displacement
Green tensor of the medium in the form G,,(r, #; s, 7). By
definition, Gq,,(r, t; s, 7) is the gth component of the dis-
placement at a receiver point r and at time ¢, due to an im-
pulsive force,

fi(x, 0 = 3,06(x — s)d(t — 1), )
applied in the nth direction at a source point s and at time .
We denote the pgth component of strain and the ijth com-
ponent of stress at point r and time ¢ due to the applied force

(9) by

G, (r,t; s, aG,, (r,1; s,
qun(rst; ng) = l |: qn( T) + §2 ( 'L')
ar, ary,

], (10)

\8}

Tyu(r,1; 8,7) = Cypy(D)E,,,, (v, 15 8,7). (11)
These associated strain and stress Green tensors are sym-
metric in the customary sense E,,, = E,,, and Ty, = Tj,.

In addition to differentiating the displacement Green
tensor with respect to the receiver coordinates r, as in equa-
tion (10), we can differentiate it with respect to the source
coordinates s. Anticipating the reciprocity relation (equation
[15]) we introduce the symmetrized source derivative

3G, (x,t; 8,7) N 9G,,,(r,1; 8,7)
as s,

P

Epteisn =1 |

q

which can be interpreted as the nth component of the dis-
placement at a receiver point r and at time #, due to a double-
couple body force

D = = 30,8, = 96 = 1)
— 2 = D — D (13)

applied at a source point s and at time 7. The symmetry
E,,, = E,,p 1s associated with the indistinguishability of the
pth and gth directions of the double couple (13).

The principle of source-receiver reciprocity stipulates

that

Gun(r,1; 8,7) = Guy(s,1; 1,7). (14)
The nth and gth directions must be interchanged, in addition
to the locations of the source s and receiver r (Aki and Rich-
ards, 2002, equation 2.39). The Green strains (10) and (12)

satisfy an analogous reciprocity relation, namely,

E,gn(r.1; 8,7) = E, (8.1, T, 7). 5)
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No reciprocity relation analogous to (14) or (15) involves
the stress tensors Ty,(r, 1; 8, T) = Cy,(V)E,,, (¥, t; s, T) and
T,is, t;x, 1) = Cyp(SE,,, (s, 1; 1, T), because the former
involves the stiffness C;;,, at the receiver r, whereas the latter
involves Cy,, at the source s. We shall assume that the dis-
placement, strain, and stress Green tensors are available for
the elastic medium under consideration; they may be com-
puted using a variety of numerical techniques, including nor-
mal-mode summation (Dahlen and Tromp, 1998, section
4.1.7) or the spectral element method (Komatitsch and Vil-
otte, 1998; Komatitsch and Tromp, 1999, 2002a, 2002b).

Response to a Smooth Strain-Glut Source

The Green tensors can be used, in conjunction with the
principles of superposition and causality, to represent the
response of the medium to more general phenomenologi-
cally prescribed forces. Specifically, we can express the dis-
placement response u,(r, f) to a smoothly varying imposed
body force fi(x, £) within a source region V in the form

u,(r,f) = Lt dt JJL G,(r,t; X,7) fi(x,7) d” x.  (16)

On inserting the strain-glut-equivalent body force equation
(8) into equation (16) and integrating by parts, we obtain

u,(r,f) = JO dr jJL E,;(r,t; X,7) Cyu(X) &(x,7) d° X,
(17)

where we have assumed that &;,(x,7) goes to zero smoothly
outside the source region V, to eliminate the integral over
the boundary dV. The first of the stiffness symmetries (1)
has been used to express the result (17) in terms of the sym-
metrized derivative E,(r, t; X, 7). On associating the stiff-
ness tensor C;;,(X) with g;(x,7) and making the identification
in equation (6), we can rewrite equation (17) in the form

u,(r,f) = J: dt JJL E,;(r,t; X,7) 0;;(x,7) d° x. (18)

Equation (18) expresses u,(r, f) as the response to a space-
time superposition of double couples, weighted by the stress
glut o(x, 7).

Alternatively, we can invoke the reciprocity relation
(15) in equation (17), and associate the stiffness tensor
Ciu(x) = Cy(x) with the Green strain E;,(X, f; ¥, 7), to
obtain

u,(r,1) = Lt dr JJL Tyn(X.1; 1,7) £5(x,7) d° x. (19)
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Equation (19) expresses u,(r, f) in terms of the strain glut
&r(x,7) rather than the stress glut o;(x, 7). The associated
Green tensor in this case is the klth component of the stress
at the source point x and at time ¢, due to an impulsive force
exerted in the nth direction at the receiver r and at time 7.
A more seismologically familiar interpretation of the rep-
resentation (19) in terms of forces or couples situated in the
source region is precluded by the absence of a reciprocity
relation for the Green stresses, Ty;,(r, 1; 8, T) # T,,(s, £, T, 7).

Slip on an Ideal Fault

Thus far, we have considered a source specified by a
smoothly varying strain glut &;; within a three-dimensional
source volume V. Suppose instead that the source region is
a two-dimensional fault surface X; let & denote the position
of points on the surface, and let fi(§) be the unit normal to
the fault. The side toward which the normal points is referred
to as the plus or front side of the fault surface, whereas the
other side is referred to as the minus or back side. For any
function ¢(§) that is discontinuous across X, we let

q=©) = }lirol q(& £ hi) (20)

denote the values at juxtaposed points on either side. The
slip Auy(&, 7) of the front side relative to the back side is
then

Au, = ub — ug . (21)

We denote the magnitude of the slip vector by Au(g, ) and
we denote its instantaneous direction by e,(E, 7), so that

Au, = Au ¢. (22)

The fault may be a bimaterial interface, with different physi-
cal properties, p= (&) and Cjj(§), on either side.

An ideal fault is one that can be completely character-
ized by such a kinematically prescribed tangential slip dis-
tribution Auy(€, 7). The earth model is assumed to be per-
fectly elastic everywhere except on the fault surface . The
breakdown of Hooke’s “law” is confined to the fault; the
strain glut is a singular distribution, given explicitly by
(Backus and Mulcahy, 1976b)

0x7) = f L PO — &) %, (23)

where

—_

Pu = 5 Au (e, + njep). (24)
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Ben-Menahem and Singh (1981), Heaton and Heaton
(1989), and Ben-Zion (1989, 2001) refer to the product of
the average slip on a fault and the fault area, (Au)A, as the
earthquake potency. We are unable to suggest a more ap-
propriate or expressive term, so we shall (reluctantly) refer
to pu(&, 1) = pu(E, 1) as the potency density tensor.

Equation (19) was derived under the assumption that
the strain glut &;,(x,7) is smooth and nonsingular; however,
it is valid for a singular strain glut as well, provided that the
products and integrations are properly interpreted in the
sense of distributions. On inserting the representation (23),
we can express the response to a specified fault slip in the
form

(1) = L dr f L T Cts 1.0) puE ) 6. (25)

The tractions n, Ty, and n,T},, are continuous across the fault
surface X, so it is immaterial whether the Green stress Ty,
in this representation is evaluated on the front side or the
back side. We have written equation (25) in terms of T, to
emphasize this immateriality.

We have obtained the preceding result by recognizing
that a fault-slip source has an associated singular strain glut,
given by equation (23); however, it is also possible to derive
equation (25) without recourse to distribution theory, by
means of a more classical argument based on the Volterra
representation theorem. In fact, it follows immediately from
equation (3.2) of Aki and Richards (2002), by relabeling
X — r, invoking the principle of source-receiver reciprocity,
G, (r, t; &, 1) = G,,(&, t; 1, 1), and recognizing the product
Cipg(8) G, (€, t; 1, r)/aéq as the Green stress 7;;,(E, t; 1, 7).
In the classical derivation it is abundantly clear that the result
(25) is applicable to a bimaterial interface, with p* # p~
and C,;;d # Cyy. In our alternative distribution theory deri-
vation, the applicability to a bimaterial interface is guaran-
teed by the continuity of the Green tractions n, Ty, and n,T,,.
Upon inserting the singular strain-glut representation (23)
into equation (19), we are never confronted with the product
of a Dirac delta distribution and a Heaviside step function,
which is undefined.

The potency density representation (25) of the response
u,(r, 1) to a prescribed slip Auy(&, ) on a possibly bimaterial
interface is more useful for many computational purposes
than the representation advocated by Ben-Zion (1989),
which is of the form

Uy (1) = L dr f L Bu(r.t: 67) AuEr) d%.  (26)

The quantity B,,(r, ; &, 7) in equation (26) is, by definition,
the nth component of the displacement response at a receiver
point r and time ¢, due to a unit point dislocation in the kth
direction at a point § and time 7 on the fault plane. Analytical
expressions for B, (T, t; &, 7) in the special case of slip Auy(E,
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7) on a fault separating two dissimilar, isotropic half-spaces
are given by Ben-Zion (1990, 1999). In general, numerical
computation is needed; however, the dislocation response
B,(r, t; €, ) cannot be computed using conventional wave
propagation codes without the introduction of “split nodes”
on the fault. In contrast, all that is needed to compute the
Green kernel T};,(&, t; r, 7) in equation (25) is the synthetic
stress history at the nodes on the fault plane, due to impulsive
sources situated at the receivers r.

Ambiguity of the Moment Density Tensor

The integrand in the unambiguous potency density rep-
resentation (25) can be manipulated as follows:

Tkiln P = Cki;ijEi;;npkl
= E;,CiuPu 27)

+

— +
= Enij Cijklpkl .

The Green tensors E,f,;,-(r, t; &, 7) obtained by utilizing the
reciprocity relation (15) in the final line of equation (27) are
the displacement responses at point r and time ¢, due to dou-
ble couples,

+ 1 +
Jex 0 = — Eékjaiéi(x - &t — 1) (28)

— 2 BT = DO — 1)

situated at adjacent points on either side of the fault. The
front-side and back-side Dirac delta functions in equation
(28) are defined by limiting relations analogous to those for
a nonsingular but discontinuous function in equation (20):

0% (x — &) = lim d(x — (§ * hh)). (29)
"0

The stiffness factors C ,«fk,(é) in the final line of equation (27)
can be associated with the tensor p,, (&, 7) to form front-side
and back-side moment density tensors,

mi = Ciﬁlpkl- (30
Equation (25) can be rewritten in terms of these tensors in
the form

u,(r,f) = JO dr sz E(r,r; &) my (&1 d°€.  (31)

The result (31) stipulates that the prescribed fault slip
Au(&, 7) is equivalent either to a superposition of double
couples situated on the front side of the fault, with moment
density my; (€, 1), or to a superposition of double couples
situated on the back side of the fault, with moment density
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my (€, 7). This illustrates the fundamental ambiguity of the
moment density tensor in a bimaterial interface, with a con-
trast in elastic stiffness, C,;;, # Cyy- Observed seismograms
u,(r, t) can either be inverted for the front-side moment den-
sity tensor m;; using E,};, as the Green tensor, or they can be
inverted for the back-side moment density tensor m,; using
E, . as the Green tensor. The resulting moment density ten-
sors are obviously different; nevertheless, they produce an
identical response (31) at every receiver r and for all times ¢.

If the stiffness is continuous across the fault, then the
Green strain will be continuous also, E,; = E,;;. Only in
that case is there a unique, unambiguous moment density
tensor,

i = Cijklpkl > (32)

-t -
where Cyy = Ciy =
stress glut

Ciy is the stiffness. The singular

o;(x,7) = fL my (&, 1)0(x — &) d*§ (33)
and associated equivalent body force

ff(x,r) = — JL m;(&,7) 0,0(x — &) d’, (34
are then also both well defined.

Characterization of the Ambiguity

More generally, as we shall show in this section, it is
possible to rewrite equation (31) in the discontinuous case,
Cyu # Ciy, in the form

wn = [ o [ [ B eo meo e 69

where E); (r, t; &, 7) is a weighted linear combination of the
front-side and back-side Green strains, of the form

= yE+

nij

+ A= pE,;, 0=y=1. (@36
The quantity y is a parameter specifying the fraction of the
strain E},; (r, t; €, 1) associated with the front side of the
fault. No summation over y is implied in equation (36), or
in other equations containing products of y-dependent quan-
tities in what follows.

To find the quantities m}; (€, 7), 0 = y = 1 in the rep-
resentation (35), we make use of the compliance tensor, Sy;,
which relates the elastic strain g to the stress g;;, rather than
vice versa:

ij>
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aij = lefklgkl =&y = Skl,]O'l] (37)
The invertibility (37) of the stress-strain relation is guaran-
teed by the positive definite character of both the stiffness
and compliance tensors:

&;Cyery > 0 for all ¢; # 0, (38)

Uszklij

g; >0 forall gy # 0, 39)
There are only 21 independent components S;;;;, by virtue of
the compliance symmetries, analogous to the stiffness sym-

metries in equation (1),
Sklij = Slkij = Sklji = Sijkl~ (40)

The stiffness and compliance tensors of a general anisotropic
medium are related by Cy;,, Sy = 2(040; + 0;0).

As we shall now demonstrate, the y-dependent moment
density tensors m{j(é 7) in the representation (35) are defined

implicitly by
Pu = Slglijmz}}’ (41

where S};;(€) is a weighted linear combination of the front-
side and back-side compliances,

Shy = Sy + (1 — PSuy» 0=y =1, (42
analogous to the weighted Green strains E},(r, t; &, 7) de-
fined in equation (36). To verify that the definition (41) leads
to the ambiguous 0 = y = 1 representation (35), we return
to the unambiguous representation (25) and manipulate the
integrand in the following manner:

+ = T & 7
TinPu = Tk[nSklijmij

T Sl

= T [ySia + (1 = P)Sglm);

[SiuTin + (1 = DS Tl (43)
= DE;, + (I = DE;]mj

E; + (1 = DElm}

nij

This step-by-step argument confirms that the displacement
u,(r, ) can be written in the form (35), with m}; (€, ) defined
implicitly by equation (41).

The defining relation can be inverted in a manner anal-
ogous to (37), to find the moment density tensor mi(&, 7)
explicitly in terms of the potency density tensor py/(&, 1),
rather than vice versa:

Pu = Skymy < myy = Clyupy. (44)
The physically appealing restriction of the weighting param-
eter y to the range 0 = y = 1 guarantees the positive defi-
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niteness of S}, and thus the invertibility (44), for arbitrary
material contrasts, Sgj; # Sg; and Cjp; # Cyy. The depen-
dence of the compliance Sj,; on the parameter 0 = y < 1 is
a simple linear combination (42), corresponding to y percent
of the stiffness on the front side and 1 — y percent on the
back side of the fault. The inversion (44) will “scramble”
the y dependence, so that neither the y-dependent stiffness

l4a nor the y-dependent moment density m}; = Cjpy will
be such a simple linear combination of the front-side and
back-side tensors Cj;; and m;; .

The relations (35), (36), (42), and (44) completely en-
capsulate the ambiguity of the bimaterial moment density
tensor. Any choice of the stiffness weighting parameter 0 =
y = 1 is permissible, and every choice leads to a different
moment density tensor m; (€, 7). If we wish to invert ob-
served seismograms u,,(r, t) for a partlcular m}; (&, 1), then
it is necessary to use a Green tensor E),; (r, t &, 1) corre-
sponding to a superposition of double couples,

Ax o = &0+ A - phix o, @5
that are situated y percent on the front side and I — y percent
on the back side of the fault. If y = 0 the couples are entirely
situated on the back side, and their moment density is
my; = Cyupu, Whereas if y = 1 they are situated on the
front side, and their moment density ism; = Cj,p,,. These
two limiting cases represent the binary m; ambiguity that
is inherent in equation (31); we see, however, that there is
actually a continuum of ambiguity associated with the con-
tinuum of choices 0 = y = 1 for “the” fault stiffness tensor
Ci-

In summary, the response u,(r, f) to a specified slip
Auy (€, 7) is identical with the motion produced by an infinite
suite of possible body forces:

£ = j L FE DK —Ed%E, 0=y =1, (46)

where
Vx —& =p"x—-8& + 1 - x—-8& @

is a weighted linear combination of front-side and back-side
Dirac delta functions. The ambiguous equivalent body force
(46) is the generalization of equation (34) to the case of slip
on a bimaterial interface.

Shear Fault in an Isotropic Medium

The preceding results are simplified in an isotropic elas-
tic medium, with stiffness and compliance tensors of the
form

Ciu = (K )5 O+ 100y + 0405, (48)

D-)ll\)
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1 1
@> 00y + m ©Oudy + 00,),  (49)

1
Swij = <9—K -

where x(x) and u(x) are the incompressibility and rigidity,
respectively. For the first time in this article, we shall also
restrict attention to a fault whose walls are not allowed to
open or interpenetrate, that is, we shall assume that the slip
is purely tangential, so that

nge, = 0. (50)

The front-side and back-side moment density tensors (30)
reduce in that case to

m* = u- Au(ne + nje), (G29)]

where the tangency condition (50) eliminates any depen-
dence on the incompressibility. More generally, upon sub-
stituting equation (48) into the relation p,, = Si;m}, and
inverting to find the y-dependent moment density tensor, we
obtain

= wAu(ne; + ne), (52)
where
1 y , 1=y ,. wope
— = — + or y = — . (53
I 2 R RV

Equations (52) and (53) characterize the moment density
ambiguity in the case of a prescribed tangential slip Auy(E,
7) on a finite bimaterial interface in an isotropic medium. As
in the anisotropic case, every choice of the weighting param-
eter 0 =< y = 1 gives rise to a different fault rigidity x(§)
and a different moment density tensor mj(&, 7). As before,
every such choice is associated with a dlfferent equivalent
body force (46).

Wu and Chen (2003) advocate defining “the” moment
density tensor at a bimaterial interface by

m; = uAu(ne; + ney), (54)
where
utp”
p=HHE (55)
uhtotop

Comparing equation (55) with equation (53), we see that
their definition corresponds to the choice y = 0.5. This is a
permissible choice; however, there is nothing special or
unique about it, as Wu and Chen (2003) assert. Moreover,
if one makes their choice and seeks to determine m{}> by
inversion of observed seismograms, then it is necessary to
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use an equivalent body force f;*> and associated Green strain
E?”]S corresponding to a superposition of double couples that
is 50% on one side of the fault and 50% on the other.

It could be argued that the choice y = 0.5 is appealing
on the grounds of simplicity: the expression (55) is, after all,
a symmetric definition of “the” fault rigidity, in which the
front-side and back-side values, u* and i, play equal roles.
However, other choices also lead to simple, symmetric def-
initions; for instance,

+

- 1
' + pu7) when y = —

—F . (56
ueot 0

N =

W=

The choice y = 0.5 of Wu and Chen (2003) is also
reminiscent of the partitioning of static slip in an antiplane
shear crack in an isotropic medium. In fact, it can be shown,
using the spectral fault stiffness formalism (Andrews, 1980;
Ampuero et al., 2002), that the static displacements u ™~ (§)
on either side of such a mode III crack are related to the
static slip Au(€) by u®™ = +*u* Au/(u* + ). When com-
bined with equations (54) and (55), this enables us to express
the static seismic moment in the form My = u*(u*)A —
1~ {u")A, which can be viewed as an equally weighted sum
of front-side and back-side “partial” moments, My>> =
uut — 0)A + u (0 — u")A. However, such an inter-
pretation does not carry over to static inplane (mode II) fault-
ing, for which the relation between u ™ (§) and Au(§) involves
Poisson’s ratio as well as the rigidity. Moreover, in the gen-
eral time-dependent case, the front-side and back-side dis-
placements u~(§, 7) are related to the slip Au(g, 7) by a
nonlocal space-time convolution.

Physical considerations likewise fail to provide any
guidance regarding the apportionment of the stress glut onto
one side of a fault or the other. The definition of a surficial
moment density underlies a macroscopic representation of
very complex fault zone processes, by lumping volume-
distributed anelasticity onto a nominal fault plane. However,
relatively little is known about off-fault dynamic processes
that could guide a physically based choice of the parameter
y. It is clear that the potential for dynamic secondary faulting
and damage around a mode II propagating rupture is not
symmetric: dynamic microcracking, which may contribute
to the radiated wave field, is more intensive on the dilational
side of the main crack than on the compressive side (Ya-
mashita, 2000; Poliakov et al., 2002). Anelasticity of a
gouge zone may also contribute to the seismic moment, with
the parameter y being related to the relative location of the
main slip plane, or localization band, inside the gouge layer.
It is often observed that deformation localizes at the bound-
ary of the gouge zone (Chambon et al., 2002). Likewise,
elastic deformation of an unmodeled low-velocity fault zone
may contribute to the apparent seismic moment as an equiv-
alent inclusion in the sense of Eshelby (1957) and Mura
(1982). It is also likely that some ruptures prefer to run along
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the boundary of a low-velocity layer rather than cutting
through the middle of the fault zone (Brietzke and Ben-Zion,
2003). These observations would suggest that either y = 0
ory = 1.

In summary, there is no compelling argument, either
theoretical or physical, for preferring any particular choice
of the moment density tensor m};(g, 7), 0 = y = 1, over any
other. This ambiguity does not exist when the source is rep-
resented by its potency density tensor py(&, 7).

Conclusion

The moment density tensor m,;,»(é, 7) associated with a
specified slip distribution Au(§, ) on a bimaterial interface
is fundamentally ambiguous, as Heaton and Heaton (1989)
and Ben-Zion (1989, 2001) have clearly noted. In fact, such
a bimaterial slip source has an infinite number of possible
moment densities mgf(ﬁ, 7), where 0 = y = 1 is a measure
of the extent to which the source is considered to lie on one
side of the fault or other, in a sense made precise in this
article. If, as usual, a surficial seismic moment representation
(slip on a fault plane) is adopted, the parameter y cannot be
inverted from seismological data but must be arbitrarily
fixed. This bimaterial ambiguity is a strong argument for
abandoning the moment density representation of an earth-
quake and replacing it with a potency density representation,
as advocated by Heaton and Heaton (1989) and Ben-Zion
(2001). The potency density tensor p,, = Y2 Au (nie; + njey)
depends only on the slip Au;, = Au e, and is independent of
the discontinuous elastic stiffness. The response u,(r, t) at
any point r and at any time 7 in the medium is given in terms
of the potency density tensor py(E, 7) by equation (25). The
Green stress tensor Tj, (€, t; r, 7) in equation (25) may be
evaluated on either side of the fault, and the result is valid
even if the stiffness C,;;d # Cyy and, therefore, the strain
E} # E;, are discontinuous.

ijn ijn
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Appendix: Additional Ambiguities

The bimaterial ambiguity discussed here is distinct from
two other moment tensor ambiguities, which have been
noted and discussed previously by Backus and Mulcahy
(1976b) and Woodhouse (1981). We review these two ad-
ditional sources of ambiguity briefly in this appendix.

The first additional ambiguity is one that arises even in
the case of slip on a fault £ with no contrast in stiffness,
C,-j,d = Cju- Backus and Mulcahy (1976b) have noted that
it is always possible to augment the moment density tensor
my = Ciupy on such a fault by adding a force-free density

¢;(&, 1), satisfying

[[ #seonon - oz =0 @n

The constraint (Al) guarantees that the equivalent body
force ﬁ(x, 7) and, therefore, the response u,,(r, f) associated
with the densities m;; + ¢;; are identical. An arbitrary sym-
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metric tensor field ¢;; =
form

¢;; on X can be decomposed in the

_ s
by = nind +nd>j +n¢, + d),j,

where n; (152 = 0 and n; d)Z = E = 0. The fields ¢*,

=, and q’) = are called the scalar tangent vector, and
tangent tensor parts of ¢;;, respectively. When ¢; is given,
the scalar part is found from ¢* = nn;¢y;, the tangent vector
part is found from (l)jz = iy — njq')E, and the tangent tensor
part is found by solving equation (A2) for (l)? Backus and
Mulcahy (1976b) show that a field ¢; is force-free in the
sense of equation (A1) if and only if

(A2)

¢ =0onZ, (A3)
¢ = 0on =, (A4)
¢ = O on 2, (A5)
b;¢; = 0 on 9%, (A6)

where 8° = 9; — n,(md,), and b, is the unit normal to the
boundary 9%, tangent to X, and pointing out of . Any field
¢;; satisfying the constraints (A3—-A6) can be added to the
moment tensor density m; = Cyypj, With no effect on the
motion u,(r, #). The moment density tensor in an isotropic

medium m; = ulAu(ne; + ne;) satisfies m* = 0 and
mf = 0, so no portion of it is force free. This force-free

ambiguity does not arise if one adopts a potency density
rather than a moment density, or equivalent body force, rep-
resentation of a finite fault.

The context of the second ambiguity is the determina-
tion of the response u,(r, f) to a smooth strain or stress glut
source, in the limit of long-wavelength waves. In that limit,
we can approximate the Green strain in equation (18) by

E,;(r,t; X,7) ~ E,;(r,1; 8,7), (A7)
where s is some fixed fiducial location of the source. The
long-wavelength response can be written in this point-source
approximation in the form

U, (r,1) ~ f E,;(r.1; s, )M (0)dx, (A8)

where

(A9)

w0 = [[ [ oo

is the moment tensor. In a fault source, this tensor is given
by

M) = f L my(&, D%, (A10)
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where, for simplicity, we have assumed that there is no con-
trast in stiffness C;, across the fault. The ambiguity arises
whenever the source region V or X spans a welded discon-
tinuity in the medium, such as the Moho. The integrand in
equation (A8) becomes in that case Eij+ + E M,
where E,;; are the strains at fiducial points s™ on either side
of the discontinuity, and

Mj (1) = Jjjvr T (x, D) X

(Al1)

or

i@ = [ mieoae (A12)

are the corresponding partial moment tensors.

Woodhouse (1981) showed that it is possible to rewrite
the response u,(r, 1) solely in terms of the strains E,; or
E,; on one side or the other:

EuM; + E Mg = ELMS

(A13)

In an isotropic elastic medium, the plus-side and minus-side
moment tensors Al are given by (Dahlen and Tromp, 1998,
section 5.4.6):

M = MY + My, + a™MZ, (A14)
My = M)+ My, + a*MZ, (A15)
ME = MZ + b*MZ, (A16)
ME = Mg + ™M, (A17)
M = My + ™My, (A18)
M = M+ M, (A19)

where Z is the unit normal to the discontinuity, and where

* = 2p*) — " = Fu")
a* = — — . (A20)
KT+ %,u"
+ 4
K-+ gus u*
b* = — —, " =—. (A21)
KT + %,u* H

Evidently, the true long-wavelength source is equivalent to
a moment tensor _l; placed on the plus side or to a moment
tensor J; placed on the minus side of the discontinuity.
Neither ubl,-j nor ; represents the true moment tensor,
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which is given by M; = M; + M. The two apparent
moment tensors l; and M; are the source mechanisms
that would be obtained from an inversion of observed seis-
mograms u,(r, t) under the assumption that the earthquake
is situated at a point on either the plus or the minus side of
the discontinuity.

The plus-side and minus-side mechanisms M; and
ubl,; need not have the same orientation, but if they do, then
it is possible to write

M=y, My = A = M, (A22)
where M; is “the” moment tensor under the same-orientation
assumption (A22), and 0 = y = 1 is a parameter specifying
the fraction of the moment lying on the plus side of the
discontinuity. Woodhouse (1981) shows how to find A in
terms of the observables LM,; and M ; however, there are
an infinite number of such moment tensors, depending on
the choice of the parameter y. Julian ef al. (1998) illustrated
how this ambiguity perturbs the inversion of earthquake mo-
ment tensors, introducing distorsion of the orientation and
seismic moment and apparent non-double-couple compo-
nents. This “which side of the discontinuity” ambiguity of
an earthquake in the long-wavelength approximation is rem-
iniscent of the “which side of the fault” ambiguity of an
earthquake characterized by faulting on a finite bimaterial
interface.

Unlike the bimaterial ambiguity, the ambiguity of a
point source situated on a discontinuity cannot be eliminated
by switching to a potency rather than a moment represen-
tation. To obtain such a point-source potency representation,
we approximate the Green stress in equation (19) by

Tin(X,8; 1,7) =~ Ty (8,13 1,7), (A23)
and write the long-wavelength response in the form
t
) = [ Tus.i e Py, (20
o
where either
Pk[(f) = JJJ E;I(X,T)d3x (A25)
v
or
Py(t) = J L Pu&, Dd*E (A26)

is the potency tensor. If the source region V or X spans a
welded discontinuity, then the integrand in equation (A24)
is replaced by T, Pii + TwnPr» Where
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Pi(n) = J J Jvi en(x, 7)d>x (A27)

or
P = [ [ pueoate (A28)

are partial potency tensors analogous to the partial moment
tensors M;; (7) in equations (A11 and A12).

As in the moment tensor case, it is possible to rewrite
the response u,(r, 7) in terms of potency tensors P and
Py corresponding to a source that is situated entirely on the
plus or the minus side of the discontinuity:

TinPa + TanPu = TanPa = TP - (A29)
Stress and strain continuity considerations analogous to
those used by Woodhouse (1981) can be used to show that,
in an isotropic elastic medium, the plus-side and minus-side
potency tensors are given explicitly by

Pe = Po + d*Pj + 7P, (A30)
Py = Py, + dTP, + e* Py, (A31)
Pr = PL + P + fR(PL + P, (A32)
P = PL + P, (A33)
P = P+ P, (A34)
Py = Py + TP, (A35)
where
1+ 2 ("—: + ”)
3 \k~ K"
d* = , (A36)
. ( 4 1)
N e
3K U
2 (ﬂi B /f>
3 \x* K
et = : v (A37)
* = + I—
a (316+ ,u*)
(2_W_“_1
3K_i Iui 3KI Iui
fFo= (A38)
4L

It is evident that neither P;; nor Py is equal to the true
potency tensor, which is given by P, = P, + Py . If one
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makes the assumption that the observables P} and P; have
the same orientation, so that

Pa = PPy P = A0 — PP, (A39)
then it is possible to find an infinite suite of possible potency
tensors P}, where 0 = y = 1 is now a measure of the fraction
of the potency that lies on the plus side of the fault. The
only components of M; and Py, that can be determined un-
ambiguously are M, M, — M,,, and P Py.. The ambi-

XZ2

guity of both M;; and Py, are artifacts of the point-source
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approximation (A23). The finite-fault representation (25) of
the motion u,(r, f) is valid even in the case of slip Auy(E, 7)
on a bimaterial interface that cuts obliquely across another
discontinuity, such as the Moho.
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