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I. Quantum processor details and coherence times

The experiment is performed on a quantum processor with similar design as that in Ref. [1]. The qubits are transmons
with tunable frequencies and interqubit couplings. Figure S1a shows the single-qubit relaxation times of the 24 qubits
used in the experiment, where a median value of T1 = 16.1 µs is found. The dephasing times T ∗

2 , measured via Ramsey
interferometry, are shown in Fig. S1b and have a median value of 5.3 µs. Lastly, The T2 values after CPMG dynamical
decoupling sequences are also shown in Fig. S1b and have a median of 17.8 µs.
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FIG. S1. a, Single-qubit relaxation times T1 across the 24-qubit ring. Dashed line represents the median value of 16.1 µs. b,
Single-qubit T2 values measured via Ramsey and Carr-Purcell-Meiboom-Gill (CPMG) dynamical decoupling sequence. Dashed
lines indicate median T2 values of 5.3 µs (Ramsey) and 17.8 µs (CPMG), respectively.

II. 2-Qubit fSim gates

A. fSim calibration

The floquet unitaries used in the experiment are composed of alternating layers of fSim(θ, ϕ, β) gates which are
defined as:

fSim(θ, ϕ, β) =


1 0 0 0
0 cos θ ieiβ sin θ 0
0 ie−iβ sin θ cos θ 0
0 0 0 eiϕ

 , (S1)

where θ is the SWAP angle and ϕ is the conditional phase, and β is phase accumulated resulting from hopping. For
open chains, β is not gauge invariant and can be ignored, but for closed chains, non-zero β values lead to a total flux
threading the closed chain. fSim(θ, ϕ, β) describes the unitary form output by a DC pulse bringing the fundamental
frequencies ω1 and ω2 of two transmons into resonance and turning on their interqubit coupling g for a given time
duration tp, as illustrated in Fig. S2a. During tp, resonant interaction between the |10⟩ and |01⟩ states of the two
transmons leads to population transfer and a finite θ. Additionally, dispersive interaction between the |11⟩ and |02⟩
(as well as |20⟩) states of the two qubits gives rise to a finite conditional phase ϕ.

Due to the frequency detunings of the qubits during the DC pulse, the fSim unitary also includes additional single-
qubit Z rotations and is more generally described by:

FSIM(θ, ϕ, γ, α, β) =


1 0 0 0
0 ei(γ−α) cos θ iei(γ+β) sin θ 0
0 iei(γ−β) sin θ ei(γ+α) cos θ 0
0 0 0 e2iγeiϕ

 , (S2)

where γ, α and β are complex phases incurred by the single-qubit Z rotations. These single-qubit phases are calibrated
and reduced to nearly zero using the technique of Floquet calibration described in our previous works [2–4]. Here we
focus on the tuning and calibration of the two-qubit angles θ and ϕ.

Figure S2c and Figure S2d show experimentally obtained values of θ and ϕ as functions of pulse parameters tp and
gmax. In these measurements, the technique of unitary tomography [5] is used to estimate the angles. We have also
enforced a Gaussian filter with time constant 5 ns on the rising/falling edges of the pulse on g to ensure adiabatic
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FIG. S2. a, Schematic illustration of the DC pulse used to realize a fSim gate. b, Schematic plot showing the four sets of
fSim angles used in this work: (θ/π, ϕ/π) = ( 1

3
, 5
6
) (filled circle), ( 1
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, 2
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) (square), ( 1
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, 1
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) (triangle) and ( 1

3
, 1
6
) (diamond). c,

Experimentally measured θ as a function of pulse length tp and maximum interqubit coupling gmax. The approximate pulse
parameters for the fSim gates in panel b are indicated by their corresponding symbols. d, Similar plot as panel c but with ϕ
shown instead. e, θ and ϕ as functions of tp for a fixed gmax/2π of 36 MHz. Solid lines show linear fits. f, θ and ϕ as functions
of gmax for a fixed tp of 5 ns. Solid lines show a linear fit ∝ gmax to θ(gmax) and a quadratic fit ∝ g2max to ϕ(gmax).

evolution with respect to the |11⟩ → |20⟩ and |11⟩ → |02⟩ transitions. This is important to minimize leakage. We
observe that θ shows a series of maxima/minima corresponding to values of tp and gmax where |01⟩ is fully transformed
to |10⟩ or returned back to |01⟩. On the other hand, ϕ increases monotonically over tp and gmax until it reaches a
maximum value of π where it is wrapped by 2π and becomes −π. Given the dependence of both unitary angles on both
pulse parameters tp and gmax, independent control of θ or ϕ is not possible with a single pulse parameter. As such, past
works have added a resonant pulse between the |11⟩ and |02⟩ states to enact a pure CPHASE gate, thereby enabling
full tunablity over θ and ϕ [5]. The additional pulse, however, significantly increases the complexity of quantum control
and is also prone to leakage.
In this work, we have chosen to perform fSim gates directly using the single pulse in Fig. S2a. Our approach relies on

the different scaling of θ and ϕ with the pulse parameters, as illustrated by Fig. S2e and Fig. S2f. Here we observe that
while θ and ϕ both scale linearly with tp, the scaling with gmax is different for the two angles: whereas θ scales linearly
with gmax, ϕ ∝ g2max due to the fact that dispersive shift of the |11⟩ state by the |02⟩ and |20⟩ states is proportional
to g2/∆, where ∆ is the frequency difference between |11⟩ and the |02⟩ (|20⟩). The difference in scaling implies that
it is possible to achieve a desired combination of θ and ϕ by choosing a particular “contour” in the 2D space of (tp,
gmax) where θ has the target value, then increasing (decreasing) gmax while decreasing (increasing) tp until ϕ attains
the target value as well.
Practically, ϕ and θ are calibrated via a simple gradient descent method: we start with an initial guess (t0, g0) for

the pulse parameters (tp, gmax) based on the 2D scan shown in Fig. S2c and Fig. S2d. The corresponding values of ϕ
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and θ are then accurately determined via Floquet calibration [2–4] which we denote as ϕ0 and θ0. We then calibrate
the fSim angles at (tp, gmax) = (t0 + δt, g0) and (tp, gmax) = (t0, g0 + δg). The results allow us to approximate the
following gradient matrix:

Mg =

(
∂ϕ/∂t ∂ϕ/∂g
∂θ/∂t ∂θ/∂g

)
. (S3)

A new set of pulse parameters (t1, g1) are then computed from the gradient matrix and the deviations from target fSim
angles, (∆t,∆g) = (tc − t0, gc − g0), via: (

t1
p1

)
=M−1

g

(
∆t
∆g

)
+

(
t0
p0

)
. (S4)

The fSim angles (tp, gmax) are then measured at the new pulse parameters (t1, g1) and the process is repeated. Generally
only two gradient descents are sufficient to reach control errors on the level of ∼20 mrad for both θ and ϕ.

When repeating the fSim gate n times in Floquet calibration, the error accumulates as:

fSim(θ, ϕ) =


1 0 0 0
0 eiγnA iei(γn+β)B 0
0 iei(γn−β)B eiγnA∗ 0
0 0 0 e2iγneiϕn

 (S5)

with

A = cosnΩ− iQ sinnΩ (S6)

B =
√
1−Q2 sinnΩ (S7)

cosΩ = cos θ cosα/2 (S8)

Q = cos θ sinα/2/sinΩ (S9)

B. fSim gate control error

The angular errors, which are measured using periodic Floquet calibration as outlined in section IIA, are displayed
in Fig. II A along with the measured 2-qubit Pauli error for the four pairs of θ,ϕ studied in our work. The angular
errors of the fSim gate can be combined into an overall control error by calculating the coherent gate infidelity:

ϵc = 1− F =
1

1 +D−1

eP︷ ︸︸ ︷(
1− 1

D2
|Tr{U†

targetUactual}|2
)

(S10)

where eP is the Pauli error, D = 4 is the size of the computational subspace of the gate, and Utarget(actual) is the target
(actual) unitary. Inserting the unitary matrix in eq. S2, we find the control error in terms of the angular errors:

ϵc =
2

5
dθ2 +

3

20
dϕ2 +

1

10
dγ2 +

1

5
dγdϕ+

1

10
cos2 θ· dα2 +

1

80
sin2 θ

(
7 + cos 2θ + 2 sin2 θ

)
· dβ2 (S11)

For the four angle pairs in our study, we find median control errors of ϵc(θ = π/6, ϕ = 2π/3) = 1.5· 10−4, ϵc(θ =
π/6, ϕ = π/2) = 1.0· 10−4, ϵc(θ = π/3, ϕ = 5π/6) = 3.1· 10−4, and ϵc(θ = π/3, ϕ = π/6) = 1.8· 10−4.
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FIG. S3. a, Integrated histogram of errors in the control angle parameters of the fSim gate as measured by periodic calibration,
for target angles θ = π/6, ϕ = π/2, α = β = γ = 0. Inset: table displaying the mean errors and their standard deviation. b,
Integrated histogram of average 2-qubit Pauli errors, considering both the target unitary (blue) and the re-fitted unitary (pink).
Inset: Pauli errors plotted against qubit position, demonstrating the absence of systematic spatial dependence. Dashed vertical
lines denote the medians. c-h, Same as a,b, but for target fSim angles, θ = π/6, ϕ = 2π/3 (c,d), θ = π/3, ϕ = 5π/6 (e,f),
θ = π/3, ϕ = π/6 (g,h). The remaining target angles are zero (α = β = γ = 0) in all plots.
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III. Analytical results for the Floquet XXZ chain

A. Band structure

In this section, we present analytical expressions for the dispersion relations in the Floquet XXZ model, as derived
in Ref.[6]. The solution is separated into two cases, corresponding - in the limit of the Hamiltonian model - to the
gapped (ϕ > 2θ) and the gapless (ϕ < 2θ) phase.
We first focus on the gapped phase (ϕ > 2θ), since in this case, there exists a bound state for all nph for every

momentum (see end of section 3.5 p.19 in Ref.[6]). Importantly, the dispersion relations of the bound states have a
similar functional form to that of a single particle excitation (see Eqs. (72) and (85) in [6]):

cos(E(k)− χ) = cos2(α)− sin2(α) cos(k) with k ∈ [−π, π], (S12)

where α and χ depend on the number of photons:

• For nph = 1, the parameters are α = θ and χ = 0

• For nph ≥ 2, one finds:

χ = nphϕ− 2 arctan (tan(ϕ/2) tanh η coth(nphη)) (S13)

cos2 α =
cos2 θ sinh2 nphη

cos2 θ sinh2 nphη + sin2 θ sinh2 η
, (S14)

where η is given by:

sinh2(η) =
cos2 θ − cos2(ϕ/2)

sin2 θ
. (S15)

In the gapless regime (ϕ < 2θ), the bound state is only predicted to appear for one of the two branches in the first
Brillouin zone and for a finite range of momenta, with limits given by (see end of section 3.5 p.19 in Ref.[6]):

k0 = ±2nphη (S16)

These are the limits plotted with dashed black vertical lines in Fig. 3d in the main text, as well as in Fig. S8d. In this
case the dispersion relation is similar to the gapless case with the substitution sinh η 7→ sin η and tanh η 7→ tan η.

B. Group velocity

We can calculate the group velocity by differentiating both sides of S12:

vg(k) =
dE

dk
= − sin2 α sin k

sin(E(k)− χ)
(S17)

We notice that the maximum group velocity is achieved for k = π/2 leading to

vmax
g =

sin2 α√
1− cos4 α

(S18)

This is the velocity of the initial cone that is shown in the main text Fig.2d
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FIG. S4. a, Band structure of the different bound states for θ = π/6 and ϕ = 2π/3. b, c, Width of the nph-photon band
structure as a function of the parameters of the fSim gate. All these results are calculated using the exact solution given in eq.
S12.

C. Choice of parameters θ and ϕ

The choice of the angles θ and ϕ of the fSim gate is dictated by several considerations, with regards to both the
physics of the bound state and the experimental parameters of the fSim gate. In the main text, we present several
angles as they have differents properties:

• First and foremost, the behavior is significantly different for the gapped ϕ > 2θ regime and the gapless regime.
We have predominantly focused on the gapped regime where bound states exist for all momenta, simplifying the
analysis.

• Secondly, as shown in Fig. S4b, the amount of dispersion in the spectrum increases with increasing (decreasing)
values of θ (ϕ). Hence, the ratio ϕ/θ should not be too large in order to maximize the visibility of the dispersion.

• Higher values of ϕ cause the bound state to be more localized, as intuitively expected from the stronger interac-
tions.

• Finally the quality of the fSim gate depends on the angles, since strong interaction requires longer gates time or
larger interaction strength (see section II).
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IV. Examples of multi-photon spectroscopy

In this section we provide a pedagogical illustration of the basics of multi-photon spectroscopy by stepping through
two simple examples. We focus on Hamiltonian dynamics, which is conceptually similar to the Floquet dynamics. The
Fourier transform in space that was done in the main text is resulting from the space invariance of the circuit. For
simplicity we only focus on the time-energy transformation and do not talk about the space-momentum transformation.

Consider a Hamiltonian Ĥ with eigenenergies ωn and eigenstates |φn⟩

Ĥ |φn⟩ = ωn |φn⟩ . (S19)

We seek a dynamical approach to learn the spectrum of H. Consider an initial state |ψ0⟩ and its evolution |ψt⟩

|ψ0⟩ =
∑
n

cn |φn⟩ , |ψt⟩ = e−iĤt |ψ0⟩ =
∑
n

cn e
−iωnt |φn⟩ , (S20)

where the complex coefficient cn = ⟨φn|ψ0⟩ is the overlap of |ψ0⟩ with |φn⟩. The desired spectrum of Ĥ can be extracted
(e.g. by Fourier transform) from the overlap of |ψ0⟩ and |ψt⟩

⟨ψ0|ψt⟩ =
∑
n

|cn|2 e−iωnt . (S21)

This overlap also frequently appears in non-equilibrium dynamics questions. Next, we provide a scheme to computing
it via two simple examples.

Single-excitation example. We begin with the case of single photon dynamics in a 4-qubit system. We
are only considering excitation conserving Hamiltonians. The resulting unitary Û when written in the basis of
|0000⟩ , |1000⟩ , |0100⟩ , |0010⟩ and |0001⟩ becomes:

|0000⟩ |1000⟩ |0100⟩ |0010⟩ |0001⟩

Û =


1 0 0 0 0
0 u11 u12 u13 u14
0 u21 u22 u23 u24
0 u31 u32 u33 u34
0 u41 u42 u43 u44

 .
(S22)

The first insight is using the fact that Û is photon conserving and the |0000⟩ manifold is detached from the other
manifolds. We leverage this fact and create a phase-sensitive initial state (normalizations ignored)

|ψ0⟩ = |0000⟩+ |0100⟩ , (S23)

which leads to

|ψt⟩ = Û |ψ0⟩ = |0000⟩+ u12 |1000⟩+ u22 |0100⟩+ u32 |0010⟩+ u42 |0001⟩ . (S24)

From equations S19 to S21 it is evident that the spectrum is always given by the Fourier transform of ⟨ψ0|ψt⟩. The task
is to find an observable which is a measure of this overlap. Given the initial state we have chosen, then ⟨ψ0|ψt⟩ = 1+u22.

The second insight is to measure a non-hermitian operator M̂Q2 ≡ |0000⟩ ⟨0100|, because:

⟨ψt| M̂Q2 |ψt⟩ = ⟨ψt|u22 |0000⟩ = u22. (S25)

Note that the qubit lowering operator acting on Q2, σ−
2 , could also be written as

σ−
2 = X̂2 − iŶ2 = M̂Q2 + |....⟩ ⟨more than single excitation|. (S26)

Since |ψt⟩ has terms with only single photons, all gray colored terms can be ignored, and the Fourier transform of
⟨ψt|σ−

2 |ψt⟩ provides the desired spectrum. Notably, this would not have been achieved if the initial state was |ψ0⟩ =
|0100⟩. While the overlap ⟨ψ0|ψt⟩ = u22 still gives the spectrum, we find ⟨ψt| M̂Q2 |ψt⟩ = 0 and also ⟨ψt|σ−

2 |ψt⟩ = 0,
which clearly does not allow for measuring u22.
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FIG. S5. Pulse sequences for determining the spectra of a, a single excitation, and b, two excitations for 4 qubits.

Multi-excitation example. Next, we consider the photon conserving dynamics of two excitations in a 4 qubit
system, with the computational basis |1100⟩ , |1010⟩ , |1001⟩ , |0011⟩ , |0101⟩ , |00110⟩. We start by placing Q3 and Q4
in a |0⟩ + |1⟩ superposition, which gives rise to a superposition of the vacuum and a two-excitation state, as well as
undesired single excitation states:

|ψ0⟩ = |0000⟩+ |0011⟩+ |0001⟩+ |0010⟩ . (S27)

The appearance of single excitation terms is not desired and could have been avoided by using proper entangling gates to
arrive at |0000⟩+ |0011⟩ as a more relevant initial state. However, as our experimental results show, populating (wrong)
manifolds with fewer number of excitations, is not harmful since the two-qubit lowering operator does not couple these
manifolds to the vacuum. The existence of these undesired states does, however, reduce the signal contrast, due to
distributed probabilities. The evolution of the initial states results in:

Û |ψ0⟩ = |0000⟩+ u14 |1100⟩+ u24 |1010⟩+ u34 |1001⟩+ u44 |0011⟩+ u54 |0101⟩+ u64 |0110⟩
+ |single excitation bitstrings⟩. (S28)

The two-qubit lowering operator acting on Q3 and Q4, can also be written as

σ−
3 σ

−
4 = X̂3X̂4 − Ŷ3Ŷ4 + iX̂3Ŷ4 + iŶ3X̂4 = |0000⟩ ⟨0011|+ |....⟩ ⟨more than two excitations|. (S29)

Hence, the presence of terms in other manifolds does not leading to wrong answers and ⟨ψt|σ−
3 σ

−
4 |ψt⟩ provides the

desired 2-photon spectrum. The number of independent Pauli strings that need to be measured scales exponentially
with the number of excitations in the manifold, and hence this method is not scalable to large photon number systems.
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V. Supplementary data

A. Trajectories
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select the outcome bitstrings that preserve the number of photons. This post-selection is justified by the fact that the fSim
gate is an excitation preserving gate for any angle. The observed decay is due to the T1 decay of the qubits during the circuit.
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B. Spectroscopy
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VI. Integrability of the Floquet XXZ model

The Floquet XXZ model was solved in [6] using the coordinate Bethe ansatz. The possibility of such a solution
follows from the results of [7] where the relation of the unitary matrix of the Floquet evolution UF to the family of

transfer matrices T̂ (λ) : [T̂ (λ1), T̂ (λ2)] = 0 was established. The purpose of this section is to re-derive integrability in
a somewhat different fashion to make a connection with the explicit form of the fSim gates. Let us recall the starting
point of the derivation (Eq (12) of Ref. [6]):

Û = t̂2[V̂]2, (S30)

where t̂2 is the translation operator commuting with all the other operators, and the relation between Û , V̂ are shown
in Fig. S12a and b respectively. The single node is the fSim gate given with the notation of [6] as:

= fSim (θ, ϕ) =

1 0 0 0
0 cos θ i sin θ 0
0 i sin θ cos θ 0
0 0 0 e2iϕ

 (S31)

a

b

c=

=

=

FIG. S12. Digramatic representation. a, Graphic representation of the original model. Each node represents an fSim gate.
The half dot on the edge of the figure represents the periodicity of the system. b, Graphic representation of a simpler model. c,
V̂2 is similar to the original model up to a translation.

a b

FIG. S13. Digramatic representation. a:general transfer matrix T̂ (λ). b: representation of the Yang-Baxter relation.

The integrability of this model is not easy to see in the original matrix Û . In constrast, one can notice that
elementary steps in the matrix V̂ involves jumps only by one qubit that makes its diagonalization much easier. The



16

explicit integration of the matrix V̂ is done in [6] by coordinate Bethe ansatz. In what follows, we illustrate how the
notion of integrability appears in terms of the Algebraic Bethe Ansatz (see e.g. ch. 2 of [8]). To this end, let us

introduce the more general transfer matrix T̂ (λ) defined in Fig. S13a.

[T̂ (λ1), T̂ (λ2)] = 0 for any λ1, λ2 if the Yang-Baxter relation is satisfied (Fig S13b). We then notice that:

V̂ = exp
(
iϕN̂z

)
T̂ (0), (S32)

where N̂z is the conserved number of excitations in the system, [N̂z, T̂ (λ)] = 0, that does not affect any commutation
relation. The previous equation is valid provided that we have the two following equalities:

0
0

= =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ; (S33)

and

0

u

=


1 0 0 0
0 e−iϕ cos θ ie−iϕ sin θ 0
0 ie−iϕ sin θ e−iϕ cos θ 0
0 0 0 1

 (S34)

The Baxter-Yang equation and the previous equation were resolved in [7] with:

u2

u1

=


1 0 0 0

0 sinu12

sin(u12+iη)
sin(iη)

sin(u12+iη) 0

0 sin(iη)
sin(u12+iη)

sinu12

sin(u12+iη) 0

0 0 0 1

 (S35)

with u12 = u2 − u1. The matrix satisfies the equation of Fig. S13b as being the canonical form of the six vertex
model intertwiner, whereas Eq. S34 fixes the undetermined and so far independent parameters u, η. (They are nothing
but that given in Eq. (63c) of Ref. [6] with u = α).
To summarize, the equations given in this section guarantee the integrability of the problem. Vice versa, the fact

that the explicit Bethe Ansatz of [6] diagonalizes the Floquet evolution implies the existence of an infinite number of

commuting operators of
[
T̂ (λ1), T̂ (λ2)

]
= 0 [8].
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VII. Numerical analysis of the breaking of integrability

A. Level statistics

In this section we numerically verify the chaotic nature of the perturbed model by analysing the level statistics of the
Floquet unitary for the system parameters used in experiment. To perform the analysis, we first extract the eigenvalues
of the Floquet unitary ÛF defined in Figure 4b of the main text, E(ÛF ) = {eiχi}, χi ∈ [−π, π), χi+1 ≥ χi. We
consider states with 3 and 4 photons. Since the system is invariant under translations by two sites, we restrict our
attention to the zero momentum sector. To characterize the level statistics we calculate the ratios of consecutive phase
gaps,

ri =
min (δi, δi+1)

max (δi, δi+1)
, (S36)

where δi = χi − χi−1(mod 2π). The relevant random matrix distribution is the circular orthogonal ensemble (COE),

because even though ÛF ̸= ÛT
F , E(ÛF ) = E(ÛT

F ), since the two unitaries are related by a canonical transformation.
The resulting distribution of the parameter r is illustrated in Fig. S14. We observe that for a moderate value of the
integrability breaking parameter, the distribution is approximately consistent with the COE statistics, indicating that
the system’s integrability is indeed broken.

FIG. S14. Probability distribution of the spectral parameter r (as defined in Eq. S36) for the Floquet operator ÛF . Left and
central panels are for the experimental system parameters ϕ = ϕ′ = 2π/3, θ = π/6, and for θ′ = π/8. The green line displays
the Poisson distribution of energy levels, PP = 2/(1 + r)2, and the blue line shows the COE distribution [9]. The Hilbert
space dimensions are Dnph=4,k=0 = 855 and Dnph=3,k=0 = 190. Despite the small Hilbert space sizes, we observe that the
integrability-breaking perturbation induces a strong level repulsion. The distribution averages for the experimental parameters
are ⟨r⟩4 ∼ 0.544, ⟨r⟩3 ∼ 0.5, thus illustrating the proximity to COE statistics, which is characterized by ⟨r⟩COE ∼ 0.527. A
Poisson distribution, on the other hand, corresponds to ⟨r⟩P ∼ 0.386. Right panel: distribution of the r-parameter for a larger
swap angle, θ = π/4. Similarly, a moderate integrability breaking parameter θ′ = π/6 leads to level repulsion and level statistics
consistent with COE.

B. Stability of the nph = 3 domain wall

In this section we numerically explore the stability of the bound state of nph = 3 photons (which we here also
refer to as the domain wall state). We present simulations both for the experimental system parameters, where we
employ exact diagonalization, and for a much larger systems using matrix-product states methods. In Figure S15a
we show the stability of the bound states for the parameters identical to those in the experimental setup (coherent
system of 24 qubits) at longer times and different values of the perturbation angle θ′. In the simulation we place three

excitations at sites Q1, Q2, Q3 (see Figure 4b of main text), and the system is evolved using the same unitary ÛF .
The domain wall decay is probed by measuring the probability that the system remains in the subspace with three
adjacent excitations. Note that this subspace includes configurations with three adjacent excitations in the original
chain, as well as configurations where one excitation is located in one of the additional qubits coupled to the ring. The
resulting behavior indicates that the survival probability remains finite, and therefore the bound states remain stable
up to extremely long times for a broad range of θ′ values. Thus, the observed robustness of the bound states is not
limited to the shorter time scales that are accessible experimentally.

Further, in Figure S16 we employ the matrix-product state (MPS) ansatz and time-evolving-block-decimation algo-
rithm (TEBD) [10] to explore the decay of the domain wall states in the thermodynamic limit L → ∞. In practice
we use an open finite system of length L = 800 and simulate the quench up to time T = 400. We initialize the three
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excitations at the centre of the chain (L/2 − 1, L/2, L/2 + 1), such that the perturbation is coupled to the sites at
positions L/2 ± 1. For times t ≤ T the Lieb-Robinson bound [11] guarantees that the information propagation from
the centre of the chain will not have reached the boundaries, and therefore, the bound state propagates without any
boundary effects. The domain wall state survival is again probed by measuring the probability of the system to remain
in the subspace with three adjacent excitations.

For the experimental parameters θ = π/6, ϕ = 2π/3 (right panel in Fig. S16), we observe that up to sizeable values
of the integrability-breaking perturbation θ′ ≲ π/4, the survival probability appears to saturate at a finite value at
times t = 400, indicating the robustness of the bound states in large systems. Only at large values of the perturbation
θ′, the survival probability exhibits a slow decay at large times 150 ≲ t ≲ 400 that appears to be consistent with an
exponential fit. Further work is needed to understand the physical mechanism of the very slow decay of the bound
states. Unexpectedly, in contrast to the case θ = π/6, at larger value of θ = π/4 and ϕ = 2π/3 (left panel of Fig. S16),
the survival probability decays at any value of θ′, indicating the diminished robustness of the bound states. For
these values of θ and ϕ the observed behavior is consistent with an exponential decay at t ≳ 150. We have also studied
numerically the effect of other perturbations of the integrable dynamics: we added different Z rotations on even and odd
sites, allowed for different rotation angles θi,i+1 or ϕi,i+1 for even and odd i. We observed that all these perturbations
have remarkably little effect on the stability of the bound states. The only exception is the addition of X rotation that
violates the particle conservation. This perturbation has indeed large effect on the bound states.
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FIG. S15. Decay of the nph = 3 domain-wall state for the experimental setup for ϕ = ϕ′ = 2π/3 and θ = π/4 (left), θ = π/6
(right). In both cases we observe that the probability of finding three adjacent excitations saturates to a finite value at long
times for a broad regime of integrability-breaking perturbations θ′, indicating robustness of the bound states. Values of the
integrability-breaking perturbation are θ′/π = 0, 0.02, 0.04, 0.08, 0.12, 0.16, ...0.36, 0.4, 0.5 (top to bottom curves).
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FIG. S16. Decay of the nph = 3 domain-wall state for a system of length L = 800 and parameters ϕ = ϕ′ = 2π/3 and
θ = π/4 (left), θ = π/6 (right), plotted in linear-logarithmic scale. Values of the integrability-breaking perturbation are
θ′/π = 0, 0.02, 0.04, 0.08, 0.12, 0.16, ...0.36, 0.4, 0.5 (top to bottom curves).
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