A Caltech Library Service

Design of an ultra-low mode volume piezo-optomechanical quantum transducer

Chiappina, Piero and Banker, Jash and Meesala, Srujan and Lake, David and Wood, Steven and Painter, Oskar (2023) Design of an ultra-low mode volume piezo-optomechanical quantum transducer. . (Unpublished)

[img] PDF - Submitted Version
Creative Commons Attribution.


Use this Persistent URL to link to this item:


Coherent transduction of quantum states from the microwave to the optical domain can play a key role in quantum networking and distributed quantum computing. We present the design of a piezo-optomechanical device formed in a hybrid lithium niobate on silicon platform, that is suitable for microwave-to-optical quantum transduction. Our design is based on acoustic hybridization of an ultra-low mode volume piezoacoustic cavity with an optomechanical crystal cavity. The strong piezoelectric nature of lithium niobate allows us to mediate transduction via an acoustic mode which only minimally interacts with the lithium niobate, and is predominantly silicon-like, with very low electrical and acoustic loss. We estimate that this transducer can realize an intrinsic conversion efficiency of up to 35% with <0.5 added noise quanta when resonantly coupled to a superconducting transmon qubit and operated in pulsed mode at 10 kHz repetition rate. The performance improvement gained in such hybrid lithium niobate-silicon transducers make them suitable for heralded entanglement of qubits between superconducting quantum processors connected by optical fiber links.

Item Type:Report or Paper (Discussion Paper)
Related URLs:
URLURL TypeDescription Paper
Banker, Jash0000-0002-2130-0825
Lake, David0000-0002-0218-3555
Painter, Oskar0000-0002-1581-9209
Additional Information:Attribution 4.0 International (CC BY 4.0)
Group:Institute for Quantum Information and Matter, AWS Center for Quantum Computing, Kavli Nanoscience Institute
Record Number:CaltechAUTHORS:20230316-224542308
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:120114
Deposited By: George Porter
Deposited On:16 Mar 2023 23:24
Last Modified:16 Mar 2023 23:24

Repository Staff Only: item control page