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The structure of invariants of the scattering transformation in (relativistic and nonrelativistic)
classical mechanics and quantum theory is investigated and a constructive approach to finding
and classifying them by exploiting and developing certain differential topological methods is
provided. While, in the form of various by-products, results about the perhaps better known
so-called additive scattering invariants are (re)derived, the primary concern here is with the
less well-known nonadditive (i.e., several particle) conserved quantities.

I. INTRODUCTION

The computation of the so-called integrals of motion in
the classical mechanics of mass points is both a very old and
(at least in general) difficult problem. It is well known that
the number of independent integrals of motion for a closed
mechanical system with # degrees of freedom is 2n — 1 (cf.
Ref. 1) with an additive time constant being eliminated. For
a Hamiltonian system a function f2C ! depending on the posi-
tions {g, } and momenta { p, } is an invariant along every
path of motion iff

af _df
J Y Hf}=0 1.1
=t {H,1} (1.1)
with H the Hamiltonian and
oH Jdf JF aIf
{H =" 2L _— 2L (1.2)
f ; apk aqk aqk aPk

Since we are in the following primarily dealing with sys-
tems in the usual Cartesian space we alter the notation
slightly denoting positions by x,, momenta by p, ,x; ,p,€R>
with p, = m, -x,. This implies that we will not rely on the
heavy abstract machinery being developed, for example, in
the book of Abraham® and more recent ones devoted to the
study of the properties of general dynamical systems. In-
stead we would like to emphasize a certain conceptual rela-
tionship between the things we will discuss and related prob-
lems in quantum scattering theory and quantum field
theory.

In this more general context one is interested in symme-
tries of the scattering matrix S and how classical mechanics
fits in a very natural way into this general scheme. One can
then ask a slightly more general question. Instead of looking
for physical quantities conserved along the whole path of the
system (with the necessary modifications of this picture in
quantum theory) one can direct one’s attention to symme-
tries or invariants of the S matrix, that is, observables asymp-
totically invariant under time evolution and approaching the
same limits along each trajectory for time t— + oo. Investi-
gations of the long time phenomena within classical mechan-
ics by means of notions and strategies developed originally in
quantum scattering theory can be found, e.g., in Refs. 3-6.
We want, however, to remark that our approach is so general
that it can be easily extended to more abstract dynamical
systems.

We assume an interacting and a free time evolution to be
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given defining flows ¢,,4;:

d,: (x(0),p(0))—(x(1),p(1)), x,peR>. (1.3)
We define the so-called “Moller transformations™ Q _ ,

Q,:= lim ¢_,¢), (1.4)

[
assumed to exist on certain sets D . CR®", which we expect
to be the set of initial conditions of all the free orbits up to
certain sets of Lebesque measure zero.

As in quantum theory the situation can be relatively
easily controlled in the two-body case or for single particle
scattering in an external potential. For the n-particle case
one has in principle to admit for the possibility of various
channels, i.e., clusters of “bound” particles moving freely in
the limits — 4+ «. While in our approach the number of
particles (resp. clusters) moving to infinity for - + oo is
allowed to differ from the number of “ingoing” ones, we
prefer to not overburden the formalism with these details
and assume that all particles are unbound as t— + 0. (The
necessary machinery to deal with bound clusters of particles,
e.g., channel Hamiltonians, cluster decompositions and all
that, can be found in Ref. 5 and is basically the same as in
quantum scattering.) Thus we have to exclude the initial
conditions for the free comparison dynamics (note that
these are the phase space coordinates at ¢ = 0), where some
of the relative momenta are zero. With this proviso we as-
sume the admissible initial conditions to be R®” up to sets of
measure zero (as to more details and the various notions of
asymptotic completeness in the single particle case we refer
the reader, for example, to Chap. X1.2 of Ref. 4).

The S transformation defined by

S:=(Q )=, (1.5)

then maps free asymptotesat f = — oo onto the correspond-
ing ones at = + oo. The free orbits

(1.6)

are mapped by the Moller transformations onto the corre-
sponding time zero coordinates of the interacting system

xX0(8) =x°+p,/m, ¢

Q, {xdp} = {x(0).0.(0)} (1.7)
called
{=rpr}  (resp. {x™p"'H
and the S transformation
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S: {xpyeeeXppn }>{x1 P15 xip0 } (1.8)

(where for notational simplicity we supress the superscript
0).

Remark: We discuss only the case of short-range poten-
tials. For long-range potentials the asymptotes have to be
slightly modified (cf. Ref. 4 Chap. X1.9).

Definition 1: Invariants of the S transformation are
functions F such that (s.t.)

(1) F(x.P1yeesXuPn ) = F(X1P1s00eXnl0)s (1.9)
where the coordinates on the 1hs and rhs are the pairs occur-
ring in a scattering event with the additional property of
being constant along free paths; i.e.,

(i) F(x3(D)p1ysXn (0)P,) = F (x5 (2')p1,.%5 (2)P,)
(1.10)
(in principle we could admit an F', n" different from F,n on
the rhs).

Perhaps a little bit surprisingly, quantum and quantum
field theory (without spin) can be treated along the same
lines. We assume a self-adjoint operator Q to be given on the
n-particle states of the free time evolution. If Q is the gener-
ator of a symmetry it usually can be represented on the free
states by a certain sum of terms consisting of products of
functions f; (x,,...,x, ) and expressions in d, ,...,d, , i.e.,

Q"L'Zf;(xv"wxn)'Pi(ap---,an)- (1.11)
i
If Q commutes with .S we have
(@,S-Q¥) = (Qp.SY), (1.12)

which implies for the scattering amplitude S(x,,....x,;
X} ,..XL) (actually a certain distribution)

[ Zf, (X13eeesX )P (8, 5enns0 ) — Zﬁ (X} 50exl)

X P;(0y, 50105, )} “S(X150esX ;X7 5% ) =0 (1.13)

and a corresponding expression in momentum space which
is particularly useful for symmetries commuting with the
space translations. In this special case we get

{P(psyepn) — PP}l ) }S(p3p") =0. (1.14)

If there is scattering at all, i.e., a certain open set on the
scattering manifold where S(p;p’) is nontrivial, the expres-
sion in the curly brackets has to vanish identically on this set,
a situation completely analogous to the classical one.

The investigation of symmetries of the § matrix fo-
cussed mainly on so-called additive or summation invar-
iants, notions being explained later, leading to perhaps a lit-
tle bit puzzling: “no go theorems,” usually of the tenor that
there exist no more additive invariants (apart from inner
symmetries) than the a priori ones already known. In quan-
tum field theory many papers were initiated by a result of
this type by Coleman and Mandula’ (cf. also Refs. 8 and 9
and previously Ref. 10). As to classical mechanics the his-
tory is of course much longer and we want to give only a few
references. Results of this type have been of particular inter-
est in kinetic gas theory (cf., e.g., Refs. 11 and 12), and
belonged in a certain sense to the general folklore in this
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field. The situation was then more carefully studied by
Grad,'® who remarks that the situation is far from obvious,
and quite recently by Amigo and Reeh,* where further ref-
erences (e.g., for relativistic dynamics) can be found. In this
context, with particular emphasis on relativistic particle
scattering, one should also mention the original approach to
the whole subject matter given in Ref. 15.

While our investigation will, in the form of various by-
products, also yield results about additive conservation laws
its main impetus is, however, directed towards the much less
well known but probably more important regime of nonad-
ditive scattering invariants. Since, for example, all 2n — 1
initial conditions are by definition invariants of motion in
classical mechanics [when being expressed as functions of
the actualx; (¢),p; (¢) ] , while, on the other side, the number
of additive ones usually does not exceed 10, it is quite appar-
ent that the former set is not empty. It is, however, both
difficult to extract them from the concretely given model
theories and, a fortiori, to characterize them by means of
more general principles. Some steps in this direction can,
e.g., be found in the classical book of Whittaker,'® the per-
haps most notable result in this direction being the theorem
of Bruns, viz., there are no other algebraic invariants of mo-
tion in celestial mechanics of three bodies than the already
known ones. [Note that (i) in the case of two bodies there
does exist an additional one, namely the so-called Runge-
Lenz vector; and (ii) the emphasis lies on “algebraic,”
which implies that while additional invariants do exist they
are necessarily of a complicated (transcendental) type and
therefore difficult to find. ]

In quantum field theory the situation is (understand-
ably) less transparent, in particular concerning existence
and properties of objects corresponding to the nonadditive
scattering invariants of classical mechanics. A possibly anal-
ogous role might be played by multilocal conserved quanti-
ties (called charges in this field). These objects have been
found in some lower-dimensional models and in a recent
paper Buchholz, Lopuszanski, and Rabsztyn'” (see also
Refs. 18 and 19) try to develop an approach allowing us to
systematically study them in the physical relevant dimen-
sion 4. It may be promising to try to relate these ideas with
our strategy, which is different, in the future.

Our approach, in contrast to most of the papers men-
tioned above, carries a distinctive differential topological fla-
vor. Its advantages are (in our view) that it allows us to
study these and more general questions on a considerably
broader scale and in a concise and unified manner, i.e., the
same methods work in classical mechanics, quantum theory,
and quantum field theory (QFT). Even in the much better
understood situation of additive invariants it sheds some
new light upon some of the perhaps more hidden aspects of
the problems under discussion.

To mention a few: (i) it does not need the existence of a
regime where particles scatter only elastically; (ii) the some-
what hidden but (in fact) for many conclusions crucial and
nontrivial assumption of the existence of certain suitable
open sets on the scattering manifold being coverable by real
scattering events is brought to light, leading, on the other
side, to a fine structure within the class of scattering invar-
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iants; and (iii) it might perhaps be easier to extend our ap-
proach to more complicated invariants in QFT having, e.g.,
a tensor (resp. spinor) character of a higher degree. This
represents still a major obstacle in extending the classical
Coleman—Mandula result to higher charges. Also (iv) since
neither the particle number nor the shape of the function F
has to be the same for in- (resp. out-) states, the approach
can be easily extended to objects (charges) which do not
commute with the S matrix! This topic and the extension to
general charges in quantum field theory will, however, be
given elsewhere.

The paper is organized as follows: In Sec. II we trans-
form the problem into a purely mathematical one thus dis-
playing what sort of treatment is actually the appropriate
one, what belongs to the physical input, and what is the
mathematical machinery. We then discuss in Sec. III in a
first step invariants depending only on the momenta of the
scattering partners and derive various structure theorems
for them as, e.g., every nonadditive invariant depending only
on the momenta is a function of overall energy and momen-
tum (in most cases even a polynomial). In Sec. IV we care-
fully analyze the physical side of the problem, in particular,
the structure of the set of in- and out-states being connecta-
ble by the scattering transformation. Section V deals with
the structure of invariants depending on the momenta, posi-
tions, and the time. The results are, however, less complete
and cover only the field of classical mechanics (in order not
to overburden the paper). It is exactly at this point where
future work has to set in. In the last section, which has more
the character of an appendix, we discuss an explicit counter-
example against the usual physical intuition, i.e., the poten-
tial V' (r) ~r 2.

il. THE MATHEMATICAL SIDE OF THE PROBLEM

We begin with the subclass of invariants depending only
on the momenta of the asymptotic particles. Furthermore,
we restrict ourselves, for the time being, to functions from
C '(R*"). It is not clear to us whether one really loses some-
thing by not considering more nasty functions in this special
context. In any case, by smearing with appropriate test func-
tions, one can usually extend the results to more general
invariants (if there are any) (see, e.g., Ref. 14).

This question is, however, not purely academic. Take,
e.g., one of the Cauchy equations over R:

Sx +y) =fx) +£p). (2.1

Assuming f to be in C ' the construction of a solution is very
easy. We have

S x+y) =) =), S0)=,0) +£0),
(2.2)

from which
S(0) =0, f'(x)=const, (2.3)

follows. In a next step one usually tries to prove that possible
solutions lying in a more general class are automatically dif-
ferentiable. There is, for example, the result that a solution
being locally Lebesgue integrable is already € C'. On the
other hand there do exist nonmeasurable solutions(!) (cf.
the history of this equation given in Ref. 20, Chap. 14.2 or in

ie, f(x) =ax,
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Ref. 15).

Letp;, €;(p;), i = 1,...,n be the momenta and energies
of the asymptotic particles. Energy-momentum conserva-
tion then forces the ingoing and outgoing momenta to liein a
certain subset of R** X R*", i.e., we present the following de-
finition.

Definition 2: The scattering manifold M CR** X R’ in
momentum space is defined by the four constraints

‘Zpi_.zp;zo’

=1 i=1

(2.4)

h n

Z € () — z € (p)) =0,

i=1 i=1
with p,eR>, €, (p,)eC’, away from possibly a certain set of
discrete points. The corresponding Jacobi matrix is assumed
to have rank 4, i.e., the constraints are assumed to be inde-
pendent. In more modern language,

ﬁ Rﬁn_)Rli,
(P1seesPn iP5 )

~( >pi—3phy €)= (p{))

does not have OcR* as a critical value. (As to this notion cf.,
e.g., Ref. 20.)

Remarks: (i) In applications €(p) is usually € C © away
from possibly p =0, e.g., €(p) =cp?, Jp*+ m?, etc.,
€(p) = c'|p| may serve as an example foran e(p) note C 'in
p=0.

(ii) As to the assumed independence of the above four
constraints, one should say that this is the usual state of
affairs (e.g., for particles with nonzero mass). There exist,
however, even in physics, illuminating counterexamples. In
principle two situations can occur in general:

(a) rank f<4 at a point but is, nevertheless, locally

constant (the rank is locally lower continuous any-
way);

(2.5)

(2.6)
() rank f<4 but is locally nonconstant, i.e., it in-
creases (discontinuously) in every neighborhood

of that point.
In case (&) the situation is still relatively smooth. The codi-
mension of M is simply < 4. However, (£) is much more
singular. The codimension of M (which, in general, may
even no longer be a true submanifold of R”'") may increase
abruptly to values > 4 at some points s.t. the set M may turn
out to be much smaller than expected. This can also happen
in physics: Take, e.g., disintegration of a zero mass particle

into two others:

pi=pi +p3, |pil = Ipi| + lp;| implying pi|lp;.

That is, we get actually five constraints for the momenta p,,
p1,p; from the four equations (2.4). The codimension of M
is now S instead of 4 (one of the typical phase space con-
straints in photon scattering). Stated differently, the map
(2.5) has 0 as a critical value and () applies. We assume
this phenomenon to be absent in the following.

As was already remarked in Ref. 14 the whole manifold
M is not usually accessible to concrete scattering experi-
ments. On the other hand this is an important point since

(2.7)
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almost all the classical proofs relied Aeavily on this assump-
tion. Solutions of the equations of motion are usually given
uniquely by their initial conditions. But one has a certain
freedom in varying, e.g., the impact parameter while keeping
the ingoing momenta fixed, thereby varying the outgoing
momenta. These physical aspects of the problem will be dis-
cussed in detail in:Sec. IV. So let us for the moment simply
assume that, while the whole M usually cannot be covered by
scattering events for a given fixed interaction between the
particles, there exists at least an open set UC M correspond-
ing to a concrete scattering situation. Thus we have the fol-
lowing definition.

Definition 3: A function F(p,,...,p, )eC ' (R*") is called
an invariant of the scattering transformation of the first kind
iff for a certain open subset UC M we have the relation

F(p) —F(p')=0 for all (pp)eU (2.8)

[with p, p’ standing for the n-tuples (py,....p, ), P1sPn) ] -
This implies dim (U) = dim(M) = (6n — 4). The general
mathematical situation is, however, more involved. With
P':=3p!"”, EY: = 3€,(p{"”), M was defined as the inter-
section of the four hypersurfaces givén by energy-momen-
tum conservation. If one looks for further conserved quanti-
ties, say F, what has to be usually expected is the relation
F(p) = F(p') to hold on M only on a submanifold of dimen-
sion <6n — 4 — 1, the intersection of the hypersurface given
by the additional conservation law with M. That is, we have
the following.

Definition 4: The function F, given in Definition 3, is
called an invariant of the second kind iff relation
F(p)=F(p") holds only a subset U’'C UC M of dimension
d<6-n—5.

Geometric observation: If the situation is the one de-
scribed in Definition 3 M is at least locally contained in the
hypersurface defined by F. Definition 4 describes the phe-
nomenon that this hypersurface hits M transversally, thus
reducing the dimension by at least 1 (as to more details con-
cerning these notions cf. Ref. 21.

Physical observation: Let M, CM denote the (physical)
submanifold which can be covered by real scattering experi-
ments. Under the assumption of Definition 3 dim(M),

= dim(M). Since the momenta of the ingoing particles can

always be freely chosen we have dim(M),>3n in general.
We show in Sec. IV that in the pure momentum case
dim(M), = dim(M). In thecase of more general invariants
this will, however, never hold! In that case, i.e,
dim(M), < dim (M), Definition 4 becomes relevant.

Whether there are such invariants of the second kind
requires a careful analysis of the physical scattering situation
and this will be given in Sec. IV. In any case there exists a
very useful structure theorem that allows us to discriminate
between these two possibilities. For its proof we need the
following simple lemma.

Lemma 1: Let feC ! be a function of an open neighbor-
hood U of OcR" X R¥, the coordinates denoted by (x,...,x,;
Y15--2¥x )- The following is assumed to hold:

10N R*x {0}) =0.

Then £ can be written in a full open neighborhood U’ C U of
0eR" X R* in the form
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f= lglyi fis, f,€C  with respect to y. (2.9)
Proof:
flxy) =f(x,0)+ f %f(x,t-y)dr,
= é 7 '_[)lazy, fOnt-pydt. (2.10)

Let now Ube openon M s.t. F(p) = F(p') holds on U. Since
M is given by the relations

P—P'=0, E—E'=(,
with the corresponding Jacobi matrix having rank 4 on U,

we can choose local coordinates in an open neighborhood
UD U, U open in R*" X R*" We obtain

(X15esXn — 4V 15e--2a)
s.t. 2.11)
j”l: =Pl —P;,oo-’

Vi =Py —P;, J:=E(p)—E(p),
thatis, with 7, a basis of local coordinates being normal to M.
With the help of Lemma 1 we can now prove the following
proposition.

Proposition 1: Let Ube open on M s.t. F(p) = F(p') on
U holds with F given in Definition 3. We have then in a
neighborhood IO U, U open in R**XR™, the representa-
tion

3
F(p) -F(p') = Z (P,—P})G;(pp")
=1

+(E(p) —E@P))Gy(pp')  (2.12)

with G,,G,eC(R*XR*"), P, P', E(p), E(p') the overall mo-
mentum and energy of the ingoing and outgoing particles,
and P,, e.g., denoting the ith component of P.

Proof: U is diffeomorphic to a neighborhood of
0cR®" —*xXR* with j, =P, — P}, o =E—E' locally
spanning R®. Here F(p) — F(p') corresponds to a certain
function F(%7) defined around OeR*~*XR* with
F|(UCR®~*x{0})=0 (since F is supposed to be con-
served on M). By Lemma 1 we see that F has a representa-
tion

F(25) = S 5 G(&) + Ju Gy(5).
Reinserting the original coordinates { py,....0,%,---P5s}
proves the statement.

If we have the identity F(p) — F(p') only on a submani-
fold of smaller dimension than M itself the above local coor-
dinate system would be not exhaustive. The local coordinate
which is missing may just belong to a hidden independent
conservation law or to F itself. In any case, F(p) — F(p")
cannot be represented in the form (2.12) when this happens
to be the case.

Hll. A CONSTRUCTIVE DETERMINATION OF THE
FUNCTIONAL FORM OF (NON)ADDITIVE INVARIANTS
(PURE MOMENTUM CASE) '

This section contains the bulk of the technical aspects of
our approach together with a complete classification of gen-

(2.13)
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eral invariants depending only on the momenta. Invariants
depending also on the positions are treated in Sec. V. A cru-
cial role will be played by our structure theorem (2.12). We
will exploit the peculiar form of (2.12), i.e., that the lhsis the
difference of two functions depending solely on either p or p’.
To that end we will differentiate both sides with respect to
Pispjs i j = 1,...,n, assuming, in order that the G,’s be eC L
that FeC? We then get

3, F(p) =G(pp) + (P, —P)3,G,(pp)
+ 8,6 (p) Gi(p.p)

+{E(p) — E(p"))3,Gi(pp'), (3.1)

with G the vector with components G, v = 1,2,3, and an
analogous result for p;.

Choosing (p,p') to lie a fortiori on M we have
(P, —P.)y=(E(p) — E(p"))=0, that is

3,FP)|U=G(pp) + 3,6 ) Gpp'),
8p;F(p’)§U= Gpp) + 89},.5; (p))Gy(p.p').

The expressions (3.2) and the corresponding ones in the

more complicated situations dealt with in Sec. V will turn

out to be of particular use in calculating invariants. What we

have in fact achieved by using this simple trick is that the lhs

of (3.2) depends either solely on p or p’ while on the rhs there

are terms, G, G,, which are independent of the subscript 7, j !
We proceed now as follows: In a first step we get

G(p,p') = = ap,fi p:) 'G4(P,P’) -+ apiF(P):
Gpp') = — 3,6 (p)) Gulpp') +3,F(p)

which holds on UC M and for all {, j. This expression can be
exploited in various ways. The lhs is completely independent
of the index / (resp. j). So, taking the derivative in the first
(second) expression with respect to p;,p; (p;,pi ), subtract-
ing the corresponding equations from each other and bring-
ing G, to the left-hand side we arrive at

Gay(pp') =3, F(p) — 3, F(p))
X(a;;:}}fi w) - a,(,:)fj @~ '
Gi(pp) = (0 F(p') — 3 PF())
X0, e (p) =3, e (pi)) !
(no summation over ¥!), which holds on U where the super-
script v denotes the vth component of the gradient. Reinsert-
ing this into (3.3) we get a corresponding explicit expression
for G. We observe the remarkable fact that both the rhs of
(3.4) and after having inserted the lhs of (3.4) into (3.3) the
rhs of (3.3) depend either solely on p or p’ while G{p,p"),
G,{(p,p’) are, in principle, functions of both p and p’. This
will be exploited in the following way.
While away from the scattering manifold, M, G, G, are
expected to depend both on p and p’, we see that on M, i.e.,

the subset of pairs (p,p’) which can be related via a scattering
process, we have

G, (pp)=G,(p)=G,(p),

G, (pp') = Gu(p) = G, (p").
But this is exactly the condition a scattering invariant has to

(3.2)

(3.3)

(3.4)

(3.5)
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fulfilll That is, we have the following theorem.

Theorem 1: With FeC? being a scattering invariant on
an open neighborhood Uon M, i.e., F(p) = F(p"), (p,p)eU,
there exists a neighborhood UD U, open in R X R™, s.t.

F(p) —F(p')=G" (P, —P;)+ G*(E(p) — E(p"))
holds on U,G*,G *eC ' with respect to (p,p’). Here G* and

G * have the remarkable property that they are themselves
scattering invariants, i.e., we have

G4(p,p’) = Gd(p) = G4(p’)](p’p,)eM'

G pp) =G (p) =G (p)

Here G~ and G * are explicitly given on M by the expressions
(3.3) and (3.4).

Before we proceed to deal with the more complex situa-
tion we would like to discuss the special class of so-called
additive invariants.

Definition 5: An invariant, F(p), of the scattering trans-
formation is called additive iff

Fp)= 3 fi(p:).

i=1
In this particular case the relations (3.3) and (3.4) can be
readily exploited showing that G *and G *areon M functions
ofany of the couples (p;, p;) [resp. (p;,p; ) ],i#j, k #1. This
shows that, in fact G ¥ and G, cannot really depend on any of
these couples on M, that is, we have

(3.6)

G,=const, G”=const on M. (3.7)
By (3.2) we get

3y fip)=C, +3,6(p;)C, on M, (3.8)
which implies

fip) =C,p” + Cee; (p) + Cy, (3.9)

with C,, C, being independent of the index {i}. That is, we
have the following theorem.

Theorem 2: For an additive conserved quantity, F(p)
=27, fi(p;), on UCM we have therelation (3.9}, that is,

Fpy=C,- P + CyE(p) + C,, (3.10)

i.e., a superposition of momentum, energy, and a constant.
We want to come now to the main topic of this investigation,
i.e., the structure of nonadditive scattering invariants. This is
an extremely difficult subject matter and very little is known.
We mention in this context, e.g., the classical book of Whit-
taker,'® where, properly speaking, invariants of motion are
discussed and Ref. 17 in the case of QFT. The machinery
being developed in this chapter will turn out to be sophisti-
cated enough to give an exhaustive answer in the restricted
case of invariants depending only on the momenta. Many of
the calculational steps can, however, be carried over to in-
variants depending also on the positions of the particles and
the time but this will be a much more ambitious program
with partial answers being given in Sec. V.

We have the following theorem.

Theorem 3: (i) Under the same assumptions as in
Theorem 1 every scattering invariant depending only on the
momenta is a function of overall energy E and momentum P
provided that the map { p—d,e(p)} is a homeomorphism
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ae.,ie.,
F(py,...0,) =F(z &), Ep,) . (3.11)

(ii) Furthermore, if F is an m-particle observable with
fEC™andm<n,ie.,

F(pl’ !pn)_ 2 f (P,,, :P, )’

then f'is at most a polynomlal of mth order in the variables
D:,€; of the form (3.25).

Remarks: (i) Note that the result holds also in quantum
field theory for translationally covariant charges.

(ii) The crucial part is (i), i.e., (3.11). The idea that
also (ii) should hold (which is obvious for polynomials) was
inspired by an observation made in Ref. 15 in the special case
of relativistic three-particle scattering and a two-particle
scattering invariant. The assumption m < n is crucial for the
proof. This is, however, not a series drawback since in many
cases one can simply add more particles in order to make n
bigger than m for fixed given f(p,,....0,. ).

Proof: (i) As before we choose a special local coordinate
system in R ", the first four local coordinates being Pand E,
the remaining 3n — 4 being denoted by &: = {£,,....{5, 4}
and consider F as a function of E,P,{. Employing Eq. (3.2)
we get (3. F: = (9, F,....0;,  F),3,8:=(8,81,-..))

apF+ aEF'aPIG(pi ) + agF'apig

=G+ G4-¢9P‘_e(p,-) for all 4, (3.12)
eF-(3,€(p)) — 3, €(p))) + 3, F (3,6 — 3,0)

= Gy*(d,€(p;) — 3,€(p))), (3.13)
implying

G,=0d:F + 3;F-{(3p;§ - 3,;;)

X (8,6, (p1) — 9,6, (p)) "} (3.14)

or

(G4 —3gF) =3d,F-{---} for all i#j, v=1,23.

If we can show that d; F = 0 for all a, we have shown
that F does depend only on E and P. For technical reasons we
will now choose an especially well-adapted local coordinate
system, i.e., in addition to P, E, we can take, e.g.,

Si:=Prrsbsn s =pn (3.15)
The map: (p,,...,p, ) = (PPy,....,D, ) is a diffeomorphism. The
same holds for the map: (P,p,,....p, ) = (E,P,p3,....p} ) [with
E understood as the function €(P—p,—..—p,)

+ &(p,) + ... + €,(p,)] around points where Je,/dp}
#0. Since there is nothing special about the coordinate p} it
is enough to_have Je;/dp; #0 at some point and for some
index 7 in order that the followmg holds true in a neighbor-
hood of that point.

In this new coordinate system the curly bracket of
(3.14) becomes particularly simple. Making the special

choicep} = pi,p; = p; wehave (8,16 — 8,,6) =0and hence
G,=3dF on UCM! (3.16)
Inserting this into (3.12) we get
3pF +0,F-3,£=G for all i. (G.17)
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With i = 1 we get d, § =0 (since §{ depends by definition
only on p,...). That is, we have by the same token
G =JpF which implies 3,F-3,5=0 on U for all 2
(3.18)
From this we can infer that 6P‘VF= 0for 3(i — 1) +v35,
that is, F does not depend on ¢ at all, in other words,
F(p,,...p,) =F(E,P). (3.19)
The proof of the second part of the theorem is almost
entirely a consequence of the structure formula (3.19), i.e.,
given (3.19) the statement is more or less independent of the

specific context under discussion. Let F(p,,...,p, ) have the
functional form

F(pl""’Pn) =F(E’P) z f (px,’ ’Pl’ )’ m<n,

..... (3:20)
with FeC™(R *™). From (3.20) we infer that

3pﬁl. . .31’:_:"F(E,P) = 6‘, ap;,: {.'f.'.}(Pi,,---,P.-m) (3.21)

holds for an arbitrary but fixed index set {i,,a,;...;i,,,d, }.

The following calculation can be done without difficulty
for an arbitrary m < n. But as there is the risk that the degree
of notational complexity obscures the basically simple idea
underlying the proof, we prefer to give the detailed calcula-
tion only for the case m = 2 and hope to convince the reader
that at every step of the reasoning one could replace the
number 2 by an arbitrary m. For m = 2 we have

3,0 F(E.P
= 05ud sF(E,P) + 350,sF(+++) 3 €(p))
+ 058, F (") ,6(p))
+ 0205 F(-"*)9,.6(p,) 3 pe(p))
=8,3, [ o). (3.22)

With 2 (and in general ) smaller than » we can vary E,
P while keeping p,,p; fixed! Doing this we see that because
the rhs of the second equality has to remain constant

0p0,F(E,P) = const,

dgdpF(-*+) = const, (3.23)
8595 F(--+) = const,
in other words,
F(E,P) =A,zP* PP+ B,E-P*
+ C-E-E + lin. terms + const., (3.24)

where now 4.4,B;,C,... are constants. For (.f"'}(p,-,pj) we

have

I @b = 40 00 + D78 + PR + Bi)

+ By (6.0 + €00 + €pf + €pF)
+C(€ + 266, + €)

-+ lin. terms + const.

This proves the theorem.
In concluding this section we want to give special em-
phasis to the following observation which can be extracted

(3.25)
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from the above proof.

Observation: G4|M = dgF, G|M = 3, F, which shows
(cf. Theorem 1 above) that G,, G are in fact invariants being
directly related to Fitself !

V. THE PHYSICAL SIDE OF THE PROBLEM

We have now to discuss the physical soundness of the
crucial assumption being made in connection with scattering
invariants of the first kind, namely that the possible scatter-
ing events are assumed to cover a full open neighborhood U
on M. We start again with the simplest case, two particle
scattering in momentum space. Assuming e(p) = p?
(m=1), MCR'" is given by

prtp,—pi —p; =0, pi+p; —pi’—pi=0,

i.e.,, M has dimension 8. The ingoing momenta p,, p, can be
freely chosen, which yields six degrees of freedom.

The two missing local coordinates on the manifold M

can be found as follows. The asymptotical kinematics is de-
scribed by (1— — )

x2(t) =p; -t +x°.
For a rotational symmetric pair potential scattering in the
center of mass system takes place in a fixed plane [ (x; — x,)
XX F XX X,) = (x; —x,) L = (X, + X,) (%, Xx,);
with X, 4+ x, = 0 we have (x, —x,) L = 0]. The outgoing
momenta p; ,p; are then uniquely given (at least locally) for
given ingoing momenta p,, p, by fixing the relative position
at time zero, i.e.,

d:=[x,(0) —x,(0)| and 6:=(x;(0) — x,(0))p,(0),

4.1)
where d is the distance and @ is the ‘“‘angle” between the
interacting particles at = 0. These two paramenters can be
independently varied (at least for non-nasty potentials) via
the initial conditions (x%,x5). Then 4 and & can be used as
local coordinates on M spanning together with (p,,p,) a full
local coordinate system.

Thus we see that for two particle scattering and physi-
cally well-behaved potentials the preassumption of the exis-
tence of an open neighborhood U on M where concrete scat-
tering takes place seems to be sound. Similar reasoning can
be used for n > 2 particles in the case of a pure momentum
dependence. But note that in any case x},, x7, are related to
x9, x9 via the Méller transformation Q , which is in gen-
eral not simple. That means that the above reasoning, i.e.,
that by varying x, x5 we can appropriately vary x} ,.x2, and
hence p{,p;, is physically plausible but not mathematically
proved. On the one side one can prove this for a large class of
potentials, on the other there may be potentials where this
does not hold, e.g., that by varying x9,x3 we get only a one-
dimensional set of (pi,p;) for fixed ingoing momenta
(py,p2) s.t. U would have a dimension smaller than M itself.
This is an interesting question which deserves a separate in-
vestigation.

The situation is completely different for more general
invariants, depending on momenta and positions. Within
the regime of classical nonrelativistic point mechanics there
are ten a priori conservation laws, i.e., besides energy mo-
mentum, L = =, x,(¢) Xp, and center of mass .S = 25, (¢),
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S;(t) = m;x,;(t) — p,-t. For the free motion this reduces to
3, m;x?. There are a couple of subtleties concerning the
structure of the manifold M in this general case which will be
discussed in the next chapter.

It will turn out that after certain modifications, M, de-
fined by the above-mentioned conservation laws, is a
(12n — 10)-dimensional set in R®** X R®". In contrast, how-
ever, to the pure momentum case, by fixing the initial condi-
tions of the ingoing particles the initial conditions of the
outgoing particles are uniquely given. That is, the manifold
of physical interest, M, ,» has only 6n dimensions, i.e., we have
the following lemma.

Lemma 2: M,,, the manifold given by the set of pairs in
R} R*: {x%; S(x°p) }, x° = (x9,...,.x9), etc., Sviewed as a
map: R R®, is a true submanifold of the manifolds M
defined by the conservation laws. The dimensions are
6n < 12n — 10 for n>2. :

This shows that there is 70 chance to cover a full open
neighborhood UCM with real scattering processes for a
fixed given interaction potential. Before we discuss the possi-
ble consequences of this fact we would like to make an aside
about the use of cluster properties in this context.

Definition 6: We say the scattering transformation .S,
(i.e., for n particles) clusters if the following holds: with
inf, |x, — x;| - oo for each position x;, we have

i

S (X P15eresX Py seesXnPn )

=S, _ 1 (xlpl"“!xi(,pi(,"":xnpn ) XS, (x,",Pi(, )s (4.2)

where

Sy(x,p,,) = (X[ p;) = (x;,p,)

That is, one can shift one of the ingoing particles to infinity
s.t.in the limit it is not scattered at all. As is well known this
cluster property is connected with the range of the interac-
tion. Long range potentials have to be treated by a modified
approach.

If we are in a situation where (4.2) holds we can proceed
as follows. Restricting ourselves for simplicity for the mo-
ment to additive invariants we simply proceed by induction
starting from n = 2. Assuming that for » = 2 we can, e.g.,
prove a certain structure of the collision invariants we treat
the case n = 3 by shifting |x3| (resp. |x}], xJ|) to . Both
for the two particle cluster and for the remaining single par-
ticle one we can employ the already proved result. We get the
corresponding result for n = 3 by shifting particle (1) [resp.
(2), (3)] back from infinity to their original positions, thus
proceeding from an arbitrary n — 1 to n.

That is, in some cases one can reduce the analysis to the
slightly simpler case n = 2. But even in this case the dimen-
sions of M, M, differ by 2 as long as the interaction potential
is kept fixed. We will show in the next chapter that for colli-
sion invariants with F(s,p) — F(s',p") vanishing on U open
in M results similar to the previous ones can be proved
[s={s}={mx(t) —p;t} = {mx3}] . On the other
hand, it can now happen that the manifold M, defined by F,
hits M transverally s.t.

M.NM contains no U open in M but

M, CM-NM locally. 4.3)
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This implies in particular that one cannot decide by analyz-
ing the scattering results whether Fis an invariant of the first
or second kind. As was argued after Definition 4, Sec. II, this
may have important consequences. If MMM has a lower
dimensionthan M there may existadditional hiddensymme-
tries being related to the corresponding transversal local co-
ordinates defining M. NM, that is, symmetries that show
only up on M,. Whether M, can in particular support addi-
tional edditive invariants is then a subtle question which de-
pends on whether the detailed structure of M, and M, al-
lows for an embedding M, C M/ locally in this special case
(due to the assumed additivity M, is relatively “flat,” cf.
Ref. 14).

Remarks: As to the use of cluster propertles of the §
matrix in this context we would like to add the following
remark. Buchholz kindly informed us that the observation
that things become simpler if one exploits the spacelike clus-
ter properties of S was already made by the authors of Ref. 17
a couple of years ago without being published. It is an impor-
tant tool in their paper.!” Unfortunately we were not aware
of this fact. :

As a last point to mention, in the special case of additive
conservation laws, the as yet unpublished results of Ref. 15
may have a certain bearing on the discussion of this chapter.
By exploiting what we called above the relative “flatness” of
the manifold M in the case of additive invariants one can
possibly prove various results without assuming that certain
sets on M are open.

V. THE CASE OF GENERAL COLLISION INVARIANTS

Discussion of the case of general invariants of the S
transformation, depending on positions, momenta, and the
time, needs more care. In a first step we have to define a
manifold M adapted to our purpose Since Zx; (1) Xp;
= 2x{X pi, Zmx; (1) — p;t = Zm,x? for free paths we can
write the ten conservation laws in the following way:

Zpi - ZP;’ =0,

Y &) =Y € =0,

(5.1)
zxi(t) XPi

Y osi(8) =Y si(t') =0,

where ¢ #¢’ in general and x; (¢) = x? + p,/m; t.

Remark: To be concrete we discuss only the case of non-
relativistic point mechanics. In case of another type of me-
chanics the conservation of center of mass has to be ex-
pressed differently. But no step in our calculations depends
actually on the concrete form of the conservation law of cen-
ter of mass or of the functional dependence €(p).

It is a simple but important observation that the various
time dependencies of the quantities in (5.1) are only a pseu-
docomplication. In a first step we rewrite the angular mo-
mentum conservation law this way:

— 3 x{(1')Xp; =0,

Y s, ()Y Xp; — 3 si (1) Xp; =0, (5.2)
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sincep; Xp; = 0. Inasecond step we consider the problem in

a new space, i.e., the space spanned by the {s,,s/,p.p/}. We

forget about the time coordinatés ¢, ¢ ' and observe that (5.1),

(5.2) define a (12, — 10)-dimensional manifold M in

RS X R®", spanned by the coordinates {sp;;sp;}.
Definition 7: M is defined by the relations

ZPi —ZP:’—'O’
. Zei(pi) —Zfr(Pi') =0,
zsixl,i ‘ES;XP;‘_'O,

Ysi—3si=0

in R X R®", coordinates: {s,,p;;s/p;}.

In a next step we show that collision invariants
F(x(1),p,t) are automatically functions of s, p.

Lemma 3: A general collision invariant F (x(¢), p, t)isa
function of s, p, that is F(x(?), p, t) — F(s, p).

Proof: The proof is simple. We have

F(x(t);P;t) = F(xo,P,O) = F({x,‘ _pi/m,- 't},P)
(identifying the functions for simplicity ). We can then prove
the following theorem.

Theorem 4: Let F({x,(t),p;},t)€C be an invariant of
the first kind, i.e., F(s,p) — F(s',p') =0 on an open neigh-
borhood UC M, M defined by Definition 7, then it fulfills the
structural relation:

F(sp) — F(s',p")

= G”'( 2hi— Zp.f)m
+6( e -3 eawn)
H,,-( S x(OXp, — T xi(¢") Xpi')m
Kw(Zs,(t) —Zs;(t’))m,

with G*,G,H, K, in general functions of s,5',p,p". Equation
(5.4) holds on UD U,U open in R X R%".

Proof: Employing Lemma 3 the proof is analogous to the
one of Theorem 1. Note that x; (£) Xp; =s,(£) Xp; = 5, Xp;
for free paths.

If Fis only an invariant of the second kind, i.e., M NM
has no open neighborhood in M but M;NM, contains an
open set in M,, we would get the following theorem, in gen-
eral.

Theorem 5: With M. NM, containing an open neigh-
borhood U CM, we have the corresponding relation on
U2 U, U open in R X R*™:

F(s,p) — F(s',p')

(5.4)

= {rhs of (5.5)} + Za,-Ai, i=1,.,12n — 10 — 6n,

. -
(5.5)
with {a, } functions of {s, p, s',p'} and {4, } functions vanish-

Manfred Requardt 1834

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ing identically on /(>CMP.

Proof: Most of the proof goes through as above. We only
need the following additional lemma.

Lemma 4: Every submanifold of a manifold M is locally
cut out by independent functions, i.e., it is the zero set of,
e.g., {4,} in addition to the functions defining M itself.

Proof: See, e.g., Ref. 21.

Remark: The possible occurrence of the terms a4, will,
in general, destroy the simple structure given, e.g., in
Theorem 3. Note that 4, need not even have the form
F,(ps) —F(p's).

In the following we will restrict ourselves to invariants
of the first kind. We then proceed as in Sec. III. Assuming
again that Fis twice differentiable we begin with differentiat-
ing with respect tos; which turns out to be advantageous. We
then restrict again the result to UCM s.t. all the terms
(Zp; — Zp!),... vanish indentically. So we get

(c?:,F(p,s))(“)jUzevaﬁpf-H"-i—K“ (5.6)

and
(O, F — 3, F)' U = €,.sH (P! — P, (5.7)

where v, a, 3, denote the components of the various three-
vectors and with €, the totally antisymmetric three-ten-
sor. Note that H ¥ does not depend on the particular , j being
chosen. Now we differentiate with respect to p,,p;, and get

0, F)?|U =GP +dje(p)G*

+ €55 H" + K” (5.8)
and the analogous expression for the index { j}. Subtracting
the two expressions we get rid of G # and canisolate G*. Asin
the pure momentum case we get explicit expressions for all
the unknown functions {G,,Gz,H;,Kz}. As in Theorem 1,
Sec. I1I, we see that all these functions are necessarily scat-
tering invariants on UCM!

In the special case of additive invariants we get more
detailed information. With F(p,s) = 2, f; (p;,s;) we get on
the lhs of (5.7):

35, fi (Pissi) — 8 f;(py»s;). (5.9)

By the same reasoning as in Theorem 2, Sec. II1I, we see that
the H, are constants [that is, by varying (i, j)]. Inserting
this into (5.6) we see that the K, are constants. We then
subtract the expressions (5.8) for the index i (resp. j) from
one another, employing H, = const, K, = const. We get by
the same token G, = const, G, = const. That is, we wind up
with the following theorem.

Theorem 6: Let F({ p,,s;}) be a general invariant of the
Jirst kind, and U be the corresponding neighborhood on the
scattering manifold M defined in Definition 7. Furthermore,
we assume £ to be twice differentiable.

Then (i) F fulfills Eqs. (5.6)-(5.8) by which the un-
known functions {G,,G, .H,,K,} can be determined.

(ii) The {G,,G",H,,K,} are themselves scattering in-
variants on M, i.e.,

G,(ps,p's') = G, (ps) = G,(p’s’) on UCM. (5.10)

(iii) In the case of an additive invariant, all these func-
tions are constant.
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We get

(v)
F(p,s) = Zfi(Pi»si) = GV'(EP.‘) + G4'(Zei(l’i)>

(v}
+ 8 (a0 xp)

)
+Kv'<2si(t)) +C, (5.11)
that is, every additive invariant of the first kind is a superpo-
sition of the ten conserved quantities already known.

We want to conclude this chapter with the following
theorem which is the analog to Theorem 3 in Sec. III in this
general case.

Theorem 7: Let F(p,s), an invariant of the first kind, be
twice differentiable, d,e(p)#0 a.e,, then the following
holds.

(i) Fis already a function of overall energy, momentum,
angular momentum, center of mass, £,P,L,S, and we have,
in particular,

9, F=G* 9, F=G", d;F=H", 3 F=K".

(ii) If F is an m-particle observable with m <n and
FeC™, then the F (resp. the corresponding /) are at most
polynomials of mth order in the variables {P*,E,L5S"}
(resp. { p,€:i,li5; 1)

Proof: Take Egs. (5.6)—(5.8). Choose, as in the proof of
Theorem I11, a new local coordinate system with E.P,L.S
representing the first ten coordinates, &, =pi, £, =53,

etc., view F as a function of these new coordinates, and insert
it into (5.6) and (5.8). We get

LF 4+ F€,,5p° + 0. FOSE =€,,50) H + K,
ORF + 0pF-35¢€,(p;) + 07 F-€,0557 + KP
=GP 40356 (p,) G*+ €557 H + K.

(5.12)

Choosing, in particular, sf = s}, s* =s3, pP =p|, P’ =p},
we conclude with the help of expressions (5.7),...,

dyF=H", 3 F=K", 9, F=G", 3,F=G"*,
(5.13)
which shows, as in Theorem 111, that F'is already a function
of E,P,L,S! The second part of the theorem will be proved
exactly along the same lines as in the proof of Theorem III.

Summary and outlook: Since Sec. VI will supply us only
with an explicit example of an (even) additive invariant of
the second kind for a, however, very special potential, we
want to briefly sum up what we have shown above and where
future work has to set in.

(i) We have completely classified the scattering invar-
iants depending only on the momenta of the particles in
Theorem 3, viz., they are all functions of overall energy and
momentum. The same analysis applies to translation covar-
iant invariants in quantum theory and quantum field theory.

(ii) In the case of the more general invariants, depend-
ing also on the positions of the particles and the time, we
found that they can be grouped into two different classes.
For invariants of the first kind we could show again that they
are functions of, now, overall energy, momentum, angular
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momentum, and center of mass. The two classes are distin-
guished by a geometric property, viz., (1) M, contains M
locally, or (2) M, intersects M transversally. Since
dim(Mz) = 12n — 1 > dim(M) = 12n — 10, both situa-
tions can occur. [In order not to overburden the text we
discussed the case (ii) only within the regime of classical
mechanics. ]

(iii) In case F is an m-particle invariant with m <n it
could even be shown that F is a polynomial of at most mth
order in E,P,L,S in situation (i). We think that the restric-
tion m < n is not superfluous since it might well occur for
some special n, that there are invariants depending on all n,
particles that cannot be embedded in spaces with n > ngy! (A
possible example might be the Runge-Lenz vector.)

(iv) Future work has to deal with these invariants of the
second kind mentioned in (ii) (2).Inthat case the geometry
of the intersection of M and M needs a careful study. The
corresponding norlocal invariants in quantum field theory
that are not translation covariant are also studied elsewhere.
We would like to mention in this context that it may turn out
to be an advantage that our formalism is wide enough to
incorporate also charges not commuting with the .S matrix.
Objects like these may also exist in classical mechanics since
invariants of motion (i.e., commuting with H) do not(!)
necessarily commute with the S matrix. In that case more is
needed (somewhat sloppily: they should comute as well with
H, in the limit |¢ | > o ). Possibly some of the initial condi-
tions of classical mechanics are just of this kind.

VL. AN-EXAMPLE OF AN INVARIANT OF THE SECOND
KIND

It is obvious that the notion of an invariant of the second
kind is not purely academic. We will see that there exist even
additive examples of this type. On the other side; the struc-
ture of the manifolds M,,M, M. (F the invariant) and their
mutual intersections are not easy to visualize so that it is
quite helpful to get indirect evidence by means of, e.g.,
Theorem 6.

By Theorem 6 we know that every additive invariant F
s.t.

M. NOMDU (U open in M),

M,: = zero set of F(p,s) —F(p',s’) in R*XR®,

(6.1)
holds, in other words M being locally contained in M, is
necessarily of the form (5.12), that is, with constant coeffi-
cients G,H,K,C. If for a certain given pair interaction V we
can show that there is an additive invariant which is not of
the form (5.12) it is necessarily of the second kind, that is,

M, hits M transversally,
MFNM contains no open U but

M, CM, locally, where M,: ={(p,5);S(p.s)}. 6.2)
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Now take in the two-body case the potential to be
V(r) = C-r~2 One knows that the so-called time delay T is
zero in this case. (For the definition of time delay cf,, e.g.,
Refs. 4 and 6, it can also be found implicitly in Chap. 14 of
Ref. 1. See also Appendix B in Ref. 14.) We have

T=(sp—sp)/p (6.3)

with s,p,..., taken in the center of mass system. Calculating "
by using the more explicit expression for T with the potential
in it (see the above references) we observe that T'= 0 for
V=cr3ie.,
$1°p1/my + 5,'p,/m, is a scattering invariant on M,.
(6.4)

On the other side this invariant is not linearly expressible as a
superposition of P,E.S,L. So it is an explicit example for
which the preassumption of the existence of an open neigh-
borhood U on M, where F(s,p) = F(s',p') holds, is not ful-
filled.
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