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This paper discusses some of the fundamental issues in the de- 
sign of highly parallel, dense, low-power motion sensors in analog 
VLSI. Since photoreceptor circuits are an integral part of all visual 
motion sensors, we discuss how the sizing of photosensitive areas 
can afSect the peformance of such systems. We review the classic 
gradient and correlation algorithms and give a survey of analog 
motion-sensing architectures inspired by them. We calculate how 
the measurable speed range scales with signal-to-noise ratio (SNR) 
,for a classic Reichardt sensor with a f i e d  time constant. We show 
how this speed range may be improved using a nonlinear filter 
with an adaptive time constant, constructed out of a diode and a 
capacitor, and present data from a velocity sensor based on such 
a filter. Finally, we describe how arrays of such velocity sensors 
can be employed to compute the heading direction of a moving 
subject and to estimate the time-to-contact between the sensor and 
a moving object. 

I. INTRODUCTION 
Various applications in automotive navigation, robotics, 

and remote sensing require sensors for processing visual 
motion that are small, consume little power, and work in 
real time. Considering the type of environments humans are 
typically exposed to, we shall use the term “real time” in its 
common anthropocentric meaning, i.e., for time delays not 
exceeding a few tens of milliseconds. Since motion-sensing 
algorithms have a large computational overhead, most real- 
time machine-vision applications require special-purpose 
parallel hardware for computing motion across the entire 
image. Parallel hardware implementations are particularly 
attractive if image acquisition and motion computation can 
be integrated on a single silicon chip. Such smart-vision 

Manuscript received September I ,  1995; revised February 15, 1996. 
This work was supported by Daimler-Benz, the Office of Naval Research, 
the Center for Neuromorphic Systems Engineering (part of the NSF 
Engineering Research Center Program), and by the Office of Strategic 
Technology of the California Trade and Commerce Agency. 

The authors are with the Computation and Neural Systems Program, 
California Institute of Technology, Pasadena, CA 91125 USA. 

C. Koch is also with the Diviaion of Biology, California Institute of 
Technology, Pasadena, CA 91125 USA. 

Publisher Item Identifier S 0018-9219(96)04996-I. 

chips could be used in stand-alone applications, such as 
tracking cars, or as front-ends in conventional machine 
vision systems [l], [2]. 

Because image irradiance is a continuous function of 
time, asynchronous circuit implementations are preferable 
to clocked implementations. The latter introduce temporal 
aliasing artifacts that can significantly compromise time- 
sensitive computations, such as those associated with op- 
tical flow. 

Analog processing is more economic in terms of silicon 
area and power than digital processing of comparable 
complexity, and thus makes higher pixel densities possible. 
Its main drawback is its lack of precision, but high-precision 
motion processing is usually not possible, because of noisy 
input data and fundamental computational problems asso- 
ciated with the estimation of the velocity field from the 
optical flow (at best, estimating optical flow is numerically 
ill-conditioned, and at worst, ill-posed [3],  [4]).’ 

In this paper, we move in bottom-up fashion from low- 
level issues having to do with photoreceptors to higher-level 
topics having to do with properties of the entire motion flow 
field. Most of the issues we discuss are general and pertain 
to all analog VLSI motion processing systems, though some 
reflect our own biases and the particular details of circuits 
that we have built. 

The first stage of all visual motion-processing systems 
is phototransduction. Consequently, in Section I1 we start 
by discussing an issue that has been largely ignored but 
which we believe to be important-how the size of the 
light-collection area of a photoreceptor affects the photore- 
ceptor’s, and consequently the motion sensor’s, signal-to- 
noise ratio (SNR). In Section 111, we review the correlation 
and gradient motion-processing algorithms, since they have 
inspired the architectures of many analog VLSI chips. 

lGiven the topic of this paper, we make no distinction here between 
the optical flow field induced by the time-varying image irradiance and 
the underlying 2-D velocity field, a purely geometrical concept [3], [ 5 ] .  
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Fig. 1. Frequency response and voltage decay time of a single CMOS photorecrptor. (a) The 
irradiance was attenuated in steps of factors of ten by interposing neutral density filters between a 
LED and the photoreceptor. The number given near each curve is the logarithm of the attenuation 
factor. The slope of each response curve asymptotes to a l / f  dependence, characteristic of a 
first-order low-pass filter. The dBV units refer to signal amplitude with respect to a 1 V signal in 
decibels. (b) Fall time or the photoreceptor's output voltage signal as a function of the velocity of 
a moving edge for photoreceptors with different sizes. The fall time is inversely proportional to 
the velocity of the edge and proportional to the size of the photoreceptor's light-collecting area. 
This confirms our notion that the fall time is ultimately limited by the time-of-travel of the edge 
image across the light-collecting area if the photoreceptor's bandwidth is large enough to follow the 
dynamics of the stimulus. The optical stimulus was a sharp high-contrast edge on a rotating drum 
with diameter d = 11.4 cm, whose surface was situated I = 29 cm away from the lens imaging it 
onto the chip. The focal length of the lens was f = 113 mm. The velocity of the edge image on 
the chip was computed as ( f / l ) ( n t l / T )  where T is the rotation period of the drum. 

In Section IV, we present a survey of various analog 
VLSI chips that have been reported in the literature. In 
Section V we analyze what determines the minimum and 
maximum speeds that a sensor can handle. We calculate 
how these limits depend on the SNR for a classic correlation 

(Reichardt) sensor. In Section VI we show how a nonlinear 
filter with an adaptive time constant as implemented with 
a simple diode-and-capacitor circuit can be used to design 
a motion sensor that operates over a large dynamic range. 
We present theory and data that illustrate the large dynamic 
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range that is achievable. In Section VI1 we describe an 
implementation of such a motion sensor and present data 
that shows the working of the sensor over a wide range 
of velocities, contrasts and light levels. In Section VIII, we 
discuss how such a motion sensor can be used in single- 
chip systems for extracting high-level information from 
the motion-flow field, such as the focus-of-expansion or 
the time-to-contact with a moving object. We conclude the 
paper with a short summary in Section IX. 

In this paper, we focus primarily on one-dimensional 
(1-D) motion-sensing problems. The issues we discuss 
are all pertinent to two-dimensional (2-D) motion-sensing 
problems as well; for 2-D problems, however, motion 
integration [6] (e.g., solving the aperture problem [7], [8]) 
would need to be implemented on chip as well. Part of this 
work has been previously reported in [9], [lo], and [381. 

11. PHOTORECEPTOR SIZlNG AND SYSTEM PERFORMANCE 
Photoreceptors are an integral part of all visual motion- 

sensing circuitry. The transduction of light to electric cur- 
rent is usually accomplished with a photodiode held at a 
fixed or nearly fixed reverse bias. The light collection area 
of the photodiode is an important parameter that affects 
the performance of the motion sensor in many ways. We 
shall start by assuming that each pixel has a square light- 
collection area of a x a. We illustrate how various system 
parameters scale with a. We shall only show the forms of 
the dependence on a without constant factors. 

Our theory and measurements are based on the adaptive 
photoreceptor characterized extensively in [ 111, but our 
discussion is of a general nature and applies to many 
common photoreceptor designs. 

A. Spatial and Temporal Filtering 
For a photodiode, the photocurrent I is proportional 

to Ea2,  where E is the irradiance and a2 is the light- 
collection area. The total capacitance on the photodiode 
sensing node is given by the sum of the junction capac- 
itance-proportional to the area a2 of the photodiode’s 
pn junction-and a contribution from parasitics due to the 
sensing and amplifying circuitry that is part of every pho- 
toreceptor. Thus the total capacitance C is proportional to 
( a 2  + p ) ,  where p is the area-independent contribution from 
the parasitics. To a good approximation, the photoreceptor 
can be characterized as a first-order temporal filter. Its 
bandwidth B (defined in the usual fashion as the frequency 
at which the response is reduced by 3 dB) is inversely 
proportional to the total capacitance and increases linearly 
with the photocurrent.2 Thus 

U 2  

a2 Sp 
B-- E .  

The linear dependence of the bandwidth on the irradiance 
E can be seen from Fig. l(a), showing the response of 

2The bandwidth is proportional to g / C ,  where g = I / r ;  is the 
conductance of the photodiode sensing node and Li is a multiple of the 
thermal voltage k T / q .  Since 1.; is almost always constant, the bandwidth 
is proportional to I / C .  

a CMOS photoreceptor to small-signal, white noise for 
different irradiance levels. The data were provided by 
Delbriick [ll]. For a given irradiance E ,  the bandwidth 
rises with increasing a but eventually asymptotes to a 
constant value independent of a. 

A sharp moving edge imaged onto a photoreceptor is 
spatially filtered due to the finite size of the photoreceptor’s 
light-collecting area. Consequently, the rise and fall times 
of the photoreceptor’s output waveform in response to the 
motion of a sharp irradiance gradient increase with a. In 
fact, if the photoreceptor does not impose any bandwidth 
limitations on the rise and fall times, they are limited by 
the time-of-travel of the edge across the width a. Thus if 
we define t,f to be the 10-90% rise or fall time, then 

a 
?I 

t T f  - - 
where v is the velocity of the moving step edge and the con- 
stant of proportionality is 0.9 - 0.1 = 0.8. Fig. l(b) shows 
this 1/w dependence for the fall times of two photoreceptors 
with a = 40 jrm and a = 20 pm, respectively. The fits to 
the measured data have constants of proportionality of 0.75, 
and the ratio of the two slopes is two. These numbers agree 
well with our rather simple theoretical considerations. 

Typical visual patterns include different spatial frequen- 
cies. Thus it is of interest to find out how the photoreceptor 
responds to a given spatial frequency input. A sinusoidal 
input with spatial frequency f3 and contrast c that is moving 
with velocity II will be spatially and temporally filtered by 
the photoreceptor. The effect of the square-box spatial filter 
is given by a sinc function (sinc(z) = - ). The low- 
pass temporal filter is first-order and characterized by the 
bandwidth B. Photoreceptors are often designed such that 
their transient output voltage is proportional to the contrast 
c = A E / E  and independent of the absolute irradiance E.  
The photoreceptor output voltage is then given by 

B. Noise 
The thermal noise at the photoreceptor output is caused 

by the amplification of shot-noise diffusion currents in the 
photodiode and transistors in the photoreceptor. The theory 
and measurements of thermal noise in subthreshold MOS 
devices, resistors, and photoreceptors may be found in [12]. 
The mean-square thermal voltage noise at the output of the 
photoreceptor is proportional to kT/C and thus given by 

(4) 

In practice however, for ac-driven light sources that are 
typical for indoor environments, optical line noise is the 
dominant source of noise in the photoreceptor. In the United 
States, the line frequency of 60 Hz results in 120 Hz 
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Fig. 2. Photoreceptor noise as a.function of image irradiance. The output noise of the photorecep- 
tors of Fig. l (b)  due to 120 Hz line noise of fluorescent ambient lighting shoa s that at high irradiance 
levels this type of noise is independent of the photosensitive area. The noise war calculated from 
measurements of the power of the first seven harmonics of 120 Hz (I-7f). Neutral-density filters 
were interposed between the light source and the photoreceptors to attenuate the irradiance level in 
a conlrolled manner. The noise at high irradiance levels is identical for the tm-o photoreceptors with 
light-collecting areas of 40 p m  x 40 p m  and 20 p m  x 20 pm, respectively. since the signal gain of 
the photoreceptor is invariant with its light-collection area. However. because of its lower bandwidth 
(due to the parasitic capacitance on the photodiode sensing node). the smaller photoreceptor starts 
to filter out the noise at higher light levels. The inset shows a typical scope trace of a photreceptor's 
output voltage in response to a high contrast edge. 

line noise.? Fig. 2 shows 120 Hz noise measurements for 
the two photoreceptors with a = 40 ,um and a = 20 
pm as a function of irradiance for fluorescent lighting. 
The inset shows a scope trace of the output voltage of a 
photoreceptor in response to an edge signal in the presence 
of 120 Hz incandescent optical line noise. The relative 
modulation of the photodiode current All1 is equal to the 
irradiance modulation if the photoreceptor is not bandwidth- 
limited. Since the voltage gain of the photoreceptor is only 
dependent on A I / I  and not on the absolute current level 
I ,  both photoreceptors have the same amount of gain with 
respect to optical line noise at high light levels, where there 
are no filtering effects. However, at low light levels the slow 
response of the photoreceptor filters out the 120 Hz signal. 
The data shown in Fig. 2 confirms the prediction of (1) that 
the 20 pm photoreceptor has a smaller bandwidth than the 
40 pm photoreceptor, and therefore starts filtering out the 
120 Hz signal at higher light levels. 

'In other countries, the line noise is at 100 Hz due to a line frequency 
of 50 Ha. 

C. Signal-to-Noise (SLV} Considerations 

We first discuss S/N considerations for the case in which 
thermal noise is dominant in the photoreceptor (dc-lighting 
or sunlight conditions). Subsequently, we treat the case in 
which optical line noise dominates (ac-lighting conditions). 

I )  Thermal Noise: If thermal noise is the dominant form 
of noise in the photoreceptor, we see from (4) that we 
can reduce it by increasing a. From (1) we observe that 
increasing a improves the bandwidth B and reduces the 
effect of temporal filtering on the signal. From noise and 
temporal-filtering considerations, therefore, it is advanta- 
geous to have a very large photoreceptor width a.  However, 
( 3 )  implies that increasing a increases spatial blurring, 
thereby reducing spatial resolution and the output signal 
of the photoreceptor. From spatial filtering considerations, 
therefore, it is disadvantageous to increase a. In order to 
understand which of these effects dominates, we need to 
examine how they scale with a. 

According to (4), the thermal noise power is reduced as 
l / ( a 2  + p )  by increasing a.  Equation (3) shows that the 
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rising bandwidth with increasing a [see (l)] improves the 
SNR by increasing the signal. The sinc function has its 
first zero at fn;  = l / a -and  we may approximate it by 
a low-pass spatial filter with a pole at l/a. Hence, the 
lowest spatial frequencies are unattenuated, while spatial 
frequencies significantly above 1 /a are attenuated in power 
like l /a2.  Thus, the ratio of signal power to noise power 
scales like (az + p )  for low spatial frequency inputs, and like 
(U' + p )  /a' for high spatial frequency inputs, if we assume 
constant bandwidth. Given that the bandwidth improves 
with increasing a, the SNR rises even more strongly with 
increasing a. Therefore, we conclude that if thermal noise 
is the dominant form of noise in the photoreceptor, the SNR 
at its output is improved by having a large a. Intuitively, 
this makes sense, since the way to eliminate intrinsic noise 
is to average the input over as large a photon-collecting 
area as possible. 

However, it is not sufficient to view the output of the 
photoreceptor in isolation: with increasing a, the thermal 
noise from the photoreceptor becomes reduced until the 
thermal noise behavior starts to be dominated by sub- 
sequent motion-processing stages and the input-referred 
thermal noise becomes independent of a. Assuming that 
this happens for large values of a, we note that the temporal 
bandwidth is also independent of a. The overall S/N ratio of 
the system then starts to degrade with increasing a, because 
of the l/a2 signal attenuation due to spatial filtering. 

2) Optical Line Noise: If optical line noise is the domi- 
nant form of noise in the photoreceptor, increasing the size 
of the photoreceptor does not reduce the noise. In fact, 
it may be shown that the bandwidth improvement with 
increasing a increases the 120 Hz noise more than the input 
signals with lower temporal frequencies. Furthermore, the 
input signals suffer from spatial filtering and the global 
optical line noise does not. Therefore, we conclude that 
if optical line noise is the dominant form of noise in 
the photoreceptor, the SNR at its output is degraded by 
having a large a. Note that this conclusion is exactly the 
opposite of the one we reached for thermal noise. In indoor 
environments the optical line noise typically dominates the 
thermal noise, as can be seen from the inset of Fig. 2. It 
is therefore advantageous to work with a small a in these 
cases. 

D. General Rectangular Designs 
Our discussion centered on the common case of pho- 

toreceptors with light-collection areas of a x a. Typically, 
such square photoreceptors are chosen for 2-D grids. For 
1-D arrays of motion sensors with associated photoreceptor 
circuitry, the SNR of the photoreceptors is optimized by 
light-collection areas with dimensions b x a, where b >> 
a and a is along the motion-computing direction. This 
strategy allows us to reduce thermal noise (by making 
b as large as possible) without causing increased spatial 
filtering of the signal (by keeping a as small as possible). 
For large enough areas (ab >> p ) ,  the bandwidth is almost 
independent of area because the junction capacitance is 
much greater than any parasitic capacitance [see (l)]. In 

the presence of optical line noise, the SNR is independent 
of b for given a and ab >> p ,  due to the fact that neither 
the signal nor the noise is affected by b. 

Before we conclude our discussion of photoreceptor 
sizing, it is worth mentioning that for 2-D images, the 
details of the analysis differ because of concerns like edge 
orientation, but the general tradeoffs with respect to a 
remain valid. 

111. MOTION ALGORITHMS 
Algorithms for estimating optical flow can be divided 

into two main groups [6], [13]. In intensity-based methods, 
the image irradiance, or some linearly filtered version of 
it, is directly used to estimate the optical flow throughout 
the image. The two most popular types of intensity-based 
motion algorithms are gradient methods and correlation 
or spatio-temporal energy methods. Motion algorithms of 
the second group are known in computer vision as token- 
based methods and are associated in the psychophysical 
literature with long-range motion. They first extract par- 
ticular features in the image, such as edges, corners, or 
higher-level features by using nonlinear operators, and 
then estimate velocity in a subsequent stage at sparse 
locations throughout the image by tracking these features 
across time. All motion-sensing algorithms suffer from 
the fact that estimating optical flow is at the very least 
a numerically ill-conditioned and frequently an ill-posed 
problem [ 3 ] ,  [4]. One key difficulty with methods working 
on discrete space or time intervals (or both) is known as 
the correspondence problem: which feature at a given time 
or location corresponds to what feature at a different time 
or location [14], [15]. 

As will be shown in Section IV, various analog VLSI 
velocity sensors have been designed using intensity-based 
motion algorithms. Accordingly, we will briefly summarize 
the main features of correlation and gradient algorithms and 
present their most popular versions. A more detailed review 
may be found in [13], and a comparison of the pros and 
cons of these algorithms may be found in [7]. 

A. Correlation or Reichardt Algorithm 
The Reichardt algorithm was first proposed to explain the 

optomotor response to moving patterns in beetles and flies 
[ 161. In more recent years, similar algorithms-termed 
second-order or spatio-temporal energy methods-have 
been proposed to explain motion perception in humans and 
other primates [17]-[19]. Common to all these methods is 
that the image irradiance E($,  t )  is passed through a linear 
spatio-temporal filter and multiplied with a delayed version 
of the filtered irradiance from a neighboring receptor. These 
algorithms calculate a quadratic functional that depends on 
the velocity and the contrast of the optical input. 

The output of the original Reichardt model [16] is ob- 
tained by first multiplying the spatially filtered brightness 
signal from one photoreceptor with a delayed or low-pass- 
filtered version of the signal from an adjacent photorecep- 
tor, as shown in Fig. 3. This quadratic signal is large when 
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Reference 1 Year 

1991 
1991 
1992 
1993 
1993 
1993 
1995 

Input Algorithm I Dimension I Array Size 

center surrounded 
temporal ON edges 
temporal ON edges 
temporal edges 
spatial edges 
spatial edges 
temporal ON edges 

1986 I log (irradiance) ] gradient 
correlation 
binary correlation 
time-of-travel 
correlation 
binary correlation 
time-of-travel 
time-of-travel 

2 I 8 x 8 rectangular 
1 
1 
1 

3 x 1  
1 

2 x 1  
1 

1995 I temporal ON edges I time-of-travel 

27 
47 x 47 rectangular 
26 x 26 hexagonal 

1 8 

5 x 5 rectangular 

~ 

Interaction 
global 
global 
global 
local 

global 
local 
local 
local 
local 

average of a 2-D 
velocity field. All other circuits estimated 1-D motion along one or more noninteracting directions. Earlier implementations~ averaged the motion 
signals globally across the sensor array to compute uniform motion, while some of the newer ones provided local motion information at each pixel 
site to estimate the entire optical flow field. 

E(x,t) E(x+Ax,t) 

Fig. 3. Architecture of a classic Reichardt motion sensor. The 
inputs E ( a ,  t )  and E(?: + A x ,  t )  represent the image irradiances 
at the locations x and a + Ax, respectively. The blocks labeled 
L represent the first-order low-pass filters with time constant 7.  

The irradiance at one input is multiplied with the low-pass-filtered 
irradiance of the neighboring input. The difference of the results 
for both directions (opponency stage) is integrated over time to 
yield the direction-dependent output signal O x .  

the low-pass filter delay compensates for the time-of-travel 
due to motion; consequently, for a given stimulus, it is 
maximum for a particular speed in one direction of motion. 
In an opponency stage, the outputs of two multiplication 
stages, corresponding to opposite directions of motion, are 
subtracted and the result is then integrated in time to yield 
the output of the sensor. Since this operation is akin to an 
autocorrelation, this sensor is also known as a correlation 
sensor. 

Note that this sensor is sensitive to the direction of 
motion, as coded in the sign of the output, but not to 
velocity as such. Rather, it may be viewed as a linearly- 
separable spatial-frequency and temporal-frequency filter. 
A sinusoidal stimulus pattem, E ( x ,  t ) ,  may be represented 
as E ( z , t )  = Eo(1 + c s i n ( k z  - wt)), with c denoting the 
image contrast, k the angular spatial frequency, w = kv 
the angular temporal frequency, and ‘U the velocity of the 
pattern. If the spacing between neighboring photoreceptors 
is Az and the time constant of the low-pass filter is 7 ,  it 
is straightforward to show that the output of a Reichardt 
sensor is given by 

Thus the sensor has its maximum output at the temporal 
frequency I/‘ and at the angular spatial frequency n/2Ax, 
which corresponds to half the Nyquist spatial-sampling rate. 
The temporal frequency w = kv is signed to be positive for 
velocities in one direction and negative for velocities in the 
other. 

B. Gradient Algorithm 
Gradient methods or, more generally, differential meth- 

ods, exploit the relationship between the velocity and 
ratios of first-order or higher-order temporal and spatial 
derivatives of the image irradiance distribution and are 
commonly used in machine vision [8], [20]-[23]. These 
methods yield a direct estimate of the optical flow field, but 
the implementation of spatial derivatives with offset-prone 
analog circuits is problematic. 

Gradient algorithms are based on a priori  assumptions 
about the image brightness (see Section VIII). The simplest 
gradient algorithm estimates velocity from the constraint 
dE(z , t ) /d t  = 0, i.e., that the image brightness does not 
change over time. In the 1-D case, the velocity then amounts 
to 

More sophisticated versions [23], [24] require the computa- 
tion of higher-order spatial and temporal derivatives; such 
computations, however, are not suited to implementation 
with analog VLSI. 

I v .  REVIEW OF ANALOG VLSI MOTION SENSORS 

In the following, we review VLSI implementations of 
continuous-time, analog motion sensors that implement 
intensity-based and token-based algorithms. We restrict 
ourselves to sensors that incorporate the photoconversion 
stage and the motion-processing circuitry on a single chip. 
The reviewed sensors are summarized in Table 1. 

Among the first circuits operating on a gradient algorithm 
was an “optical mouse” chip for estimating uniform image 
velocity in two dimensions [25].5 The circuit consisted of 
an 8 x 8 array of velocity-sensing elements. Their outputs 
were averaged to correct for offset effects and the aperture 

5The first optical mouse chip built implemented a digital algorithm [26] 
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problem. The circuit effectively measured a single velocity 
value within a limited range for high contrasts, whereas 
with decreasing contrast the reported motion tended to 
zero for a given image velocity. The precision of the local 
velocity measurements was low due to large circuit offsets 
and even with the implemented signal aggregation across 
the entire array the performance was poor. 

Due to the intrinsic difficulty of accurately computing 
local spatial and temporal derivatives using low-precision 
hardware [27], subsequent work concentrated on imple- 
menting correlation algorithms, since they show superior 
numerical stability. A 1-D spatial-correlation sensor was 
built [28] where a spatially filtered version of the input 
signal was fed into a circuit that multiplied the delayed 
signal of one pixel with the undelayed signal of the adjacent 
pixel on either side. The two signals were averaged along 
the array and used to interpolate the correlation peak in 
the subpixel range. For a high-contrast bar stimulus the 
output signal was approximately linearly dependent on 
speed. Temporal aliasing was observed when the image 
was displaced by more than one pixel within a single 
time delay interval. The spatial response of the input 
filter was illumination-dependent. Because the shape of the 
correlation peak for the implemented algorithm depended 
on the stimulus, the circuit could only measure the velocity 
of a stimulus to which it had been calibrated. 

Since all purely correlation-based methods yield output 
signals that strongly depend on contrast and illumination, as 
well as on velocity, general interest shifted toward hybrid 
methods that perform correlation-type motion computations 
on image tokens extracted by low-level feature detectors. 
The circuits described in the remainder of this section 
used edges as image tokens. They either identified rapid 
temporal-irradiance transients as temporal edges, or sharp 
spatial-irradiance gradients as spatial edges. 

One such sensor was inspired by the auditory system of 
the barn owl and integrated in a 27 element 1-D array [29]. 
At each pixel site, a binary voltage pulse of fixed width was 
triggered in response to a temporal dark-bright or ON edge. 
Pulses from adjacent pixels were propagated through two 
parallel delay lines from opposite directions. The velocity 
of the edge stimulus was extracted from the position of 
their meeting point (coincidence detection). For given bias 
settings, the circuit measured velocity over a range of one 
order of magnitude across a decade of dc illuminance 
down to low contrasts. It was not operable under ac 
incandescent lighting, however, because the optical line 
noise caused spurious edge signals to be triggered. This 
problem could only be solved by using additional filtering 
circuitry. Other drawbacks of the system were the limited 
detectable velocity range for a given delay setting and the 
large area consumption of the delay lines. 

A 2-D scheme, implemented as a hexagonal array of 
26 x 26 pixels [30], compared the velocity of temporal 
edges traveling across the image plane with the preset 
velocity of pulses propagating through delay lines along 
three directions. If the apparent velocity of an edge along 
a delay line matched the propagation speed of a pulse in 

the delay line, this pulse was periodically reinforced and 
its amplitude increased. If the velocities did not match, 
the pulses in the delay line gradually decayed. The pulse 
amplitude at each pixel was measured with a nonlinear 
circuit. The output signal in response to a traveling edge 
increased along the delay lines, while the velocity-tuning 
curve sharpened up. The circuit responded down to low 
contrasts. The output signal of a given element depended 
on its position and the apparent velocity, contrast, and 
sharpness of the moving edge. A population of such arrays, 
tuned to different velocities, or a single array with adaptive 
tuning, would be necessary io measure velocity over an 
extended range. This scheme is therefore not suitable for 
the monolithic implementation of dense velocity-sensing 
arrays. 

A binary correlation scheme was implemented in a 1-D 
array [31]. It used a spatial-edge detector, that convolved 
the image with a difference-of-exponentials kernel, imple- 
mented with two resistive grids with different resistances 
[32]. An edge of sufficiently high contrast triggered a 
voltage pulse of fixed amplitude and width. This pulse was 
then timed against the pulse from an adjacent pixel that was 
delayed by a fixed time interval. The output signal was a 
current pulse with a width equal to the overlap time of the 
two pulses. The system worked robustly for high-contrast 
edges under ac or dc lighting. However, it was not sensitive 
enough to respond to low-contrast edges and its response 
to nonoptimum velocities was ambiguous. 

While such correlation-based algorithms are interesting 
models of how motion computations may be carried out 
in neurobiological circuits, most of them are unsuitable for 
implementation in integrated circuits that compute extended 
optical flow fields, because they are tuned to a narrow 
velocity range and tend to be expensive in silicon area. 
Algorithms that measure the time-of-travel of an image 
token between two fixed locations (inversely related to the 
velocity) are more attractive for implementation in compact 
arrays. 

A circuit inspired by a model for 1-D direction selectivity 
in the rabbit retina [33] was implemented as a 2-D array 
of 47 x 41 pixels [34]. Inhibitory connections between 
neighboring pixels in one direction suppressed the response 
for motion in that direction, called the null direction. In 
the other direction, the preferred direction, voltage pulses 
were triggered by temporal ON edges and terminated by 
inhibition from the neighboring pixel. For low speeds and 
contrasts, however, the pulse amplitudes and widths were 
strongly dependent on speed and contrast and the pulses 
decayed before inhibition set in. For a given stimulus, the 
output pulse width therefore increased with speed at low 
speeds and decreased again with higher speeds, where it 
was limited by inhibition. In the null direction, the output 
was efficiently inhibited, unless the travel time of the edge 
was shorter than the onset delay of the inhibition, in which 
case spurious outputs were observed. The circuit responded 
down to low contrasts, but contrast-independent velocity 
measurements were only possible for high contrasts in a 
very limited velocity range. 
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Another time-of-travel chip was implemented in a 5 x 5 
array [35]. It used a spatial-edge detector as an input stage 
and measured the time it took an edge to cross a pixel by 
tracking the maximum of the edge-detector output signal 
[35]. For sharp black-white edge stimuli, the chip showed 
an approximately inverse relationship of pulse width and 
speed over three orders of magnitude of speed and six 
orders of magnitude of ambient lighting. The contrast 
threshold for edge detection was given as 5%, but the 
performance of the motion sensor at intermediate and low 
contrasts was not reported. Velocity was computed along 
two perpendicular axes in the focal plane with two pairs 
of motion cells per pixel. No interaction between the two 
directions was implemented, i.e., no attempt was made to 
estimate 2-D motion. Due to the large amount of circuitry 
needed by this algorithm, it does not appear to be unsuitable 
for implementation in dense arrays. 

Two time-of-travel algorithms were implemented with 
more compact circuits, that unambiguously encoded 1 - 
D velocity over considerable velocity, contrast, and illu- 
mination ranges. Both used a temporal-edge detector as 
input stage, that responded to ON edges [9], [lo]. In 
one circuit [lo], [31], an edge signal generated a voltage 
pulse of fixed amplitude and width at each pixel location. 
The pulses from two adjacent locations were fed into 
two motion circuits, one for each direction. For motion 
in the preferred direction, such a motion circuit output 
a pulse whose width corresponded to the time interval 
during which the input pulses overlapped. For motion in 
the null direction no output pulse was generated. The 
other circuit [36] was based on a scheme where three 
adjacent edge detectors contributed to the measurement of a 
velocity value. In the preferred direction of motion, an edge 
signal from the first detector facilitated the response of the 
second detector, whose signal then triggered a binary output 
voltage pulse. An inhibition signal from the third detector 
terminated the pulse. In the null direction, inhibition set 
in first, thereby suppressing the triggering of an output 
pulse, before being released by the facilitation signal. The 
outputs of both circuits were contrast-invariant down to 
approximately 15 % contrast and illumination-invariant over 
more than two orders of magnitude under ac incandescent 
room illumination. 

v. LIMITS OF OPERATION OF MOTION SENSORS 

When comparing the merits of different motion sensors, 
it is crucial to understand the ultimate limits on their 
performance. These limits are important in determining the 
sensor’s dynamic range of operation. 

For a given pixel spacing Ax, the maximum and mini- 
mum speeds that a motion sensor can transduce correctly 
are determined by the smallest and largest time intervals, 
At,;, and At,,,, that it can handle respectively, according 
to 

and 

The values of Atmin and At,,, may be set by two 
types of limits, here referred to as parametric and noise 
limits. We shall discuss the parametric limits briefly and 
the noise limits in more detail. This choice is made not 
because parametric limits are less important in practice, 
but because they are more straightforward to understand 
and less fundamental than noise limits. 

A. Parametric Limits 
The maximum or minimum value of any one circuit 

parameter in a motion sensor sets limits on At,;, or 
At,,,. For example, in digital systems At,;, is the clock 
period and At,,, may be the number of periods that 
can be counted by the largest counter in the system.6 In 
many pulse-based analog systems, At,;, is set by the 
smallest width, rise or fall times of particular pulses in the 
computation. Similarly, At,,, is set by the largest width of 
particular pulses or by the total number of stages in a pulse- 
delay line. Parametric limits may be altered by changing 
the values of the parameters that determine them. In some 
cases, the technology imposes limits that the user cannot 
go beyond; for instance, it is hard to achieve rise and fall 
times shorter than a few nanoseconds in current CMOS 
technology. 

B. Noise Limits 
Several motion sensors, such as the Reichardt sensor 

described earlier, do not have any inherent parametric 
limits aside from the ones imposed by the implementation 
technology. If there was no noise in the system, At,,, 
would be zero and At,,, would be cc and the sensors 
could operate over an infinite velocity range. So how does 
noise limit their operation? We will carry out an intuitive 
analysis to answer this question for the Reichardt sensor. 

Imagine that an infinitely narrow bar of contrast c moves 
a distance Ax from one location to another and we want 
to determine its velocity U. We choose an impulsive event, 
because we want the input to have as fine a resolution as 
possible so as to be limited by the resolution of the sensor 
rather than by any limit in the input. Analog motion sensors, 
like the Reichardt sensor, do not have clocks to measure 
time; rather, they have filters with state variables. Changes 
in the values of these state variables between input events 
encode the passage of time. 

In the classic Reichardt sensor (Fig. 3), the arrival of the 
bar triggers a first-order, low-pass impulse response of the 
type in a filter with time constant r. After a time 
equal to the time-of-travel &/U, the same event arrives 
at a neighboring location and triggers a short pulse that is 

976 

61n practice, in most digital systems, the time interval is fixed by the 
clock period and Az is measured to estimate velocity. In this case, Ax,,, 
and Az,i, limits should be used instead of Atmi, and At,,, limits. 
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Fig. 4. Dynamic. range ($a Reichardt motion sensor. The dynamic range of any motion sensor 
is limited by the minimum and maximum time delays At,;,, and At,,, it can process. We can 
define thesc timc delays to correspond to output signal values one noise floor below the maximum 
and one noise floor above the minimum signal, respectively. The graph shows these limits for the 
impulse response S x eqi(-Ax/(.T) of a classical Reichardt sensor as a function of thc normalized 
time of travel of a bar between the two input receptors. They are a function of the sensor’s SNR 
(aasnmed to bc I O  in this example). 

multiplied with the filter output to produce the output value 

AX 
VR = S x exp ((). (9) 

The value S is a measure of the signal amplitude at the 
output and is proportional to the square of the contrast. 
The output of the sensor encodes velocity for a given 
stimulus because it is a function of the time-of-travel. For 
the following, we will assume that the output of the system 
is noisy, characterized by its root-mean-square (rms) noise 
N .  In other words, output values that are within N of 
each other are not resolvable. In effect, the noise imposes 
a resolution grid with spacing N on the output signal, as 
illustrated in Fig. 4. 

We define the minimum resolvable time interval At,;, 
and the maximum resolvable time interval At,,, to corre- 
spond to the outputs being within N of the value S for 1) = 
00, and within N of the value zero for li = 0, respectively. 
Though the system will respond to smaller times-of-travel, 
it is not possible to resolve the range of velocities between 
Az/Atmin and 00, since they all map near S .  Likewise, all 
velocities between zero and AzlAt,,, cannot be resolved 
for the same reason. In order to compute these minimum 
and maximum times-of-travel, we need to invert 

and 

If we define S / N  to be the SNR,7 it follows from (10) and 
(1 1) that the dynamic range of the Reichardt motion sensor 
is 

Using the Taylor series expansion of the natural log- 
arithm, we observe that for large S / N  values D R  M 

The maximum level of noise tolerated by this sensor is 
given by SIN = 2, since in this case Atrr,irl = At,,,, = 
T In 2 and D R  = 1. Expressions (10)-(12) are valid only if 
SIN 2 2. We will now show how D n  can be improved 
by introducing nonlinear adaptation. 

(SIN) 1n (SIN). 

VI. NONLINEAR ADAPTIVE FILTERING 
The previous analysis suggests the characteristic prop- 

erties of a motion sensor with wide dynamic range: in 
order to reduce At,;,, we need a sharply decaying slope, 
i.e., a small time constant, at the beginning of the filter’s 

71n most of the literature, the SNR is defined as S2/iY2 instead of S/N. 
We depart from convention because our choice avoids having too many 
square roots in mathematical expressions. 
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impulse response. In order to increase At,,,, the decay 
must slow down with time, i.e., the time constant must 
increase. Both of these requirements are met by an adaptive 
nonlinear filter whose time constant is small when its output 
voltage is large and whose time constant is large when 
its output voltage is small. In fact, there is a very simple 
way to build such a filter in electronics. All it takes is a 
parallel diode-and-capacitor circuit fed by an input current. 
This circuit is the nonlinear adaptive analog of a first-order 
filter built with a parallel RC circuit. Fig. 5(a) illustrates 
the difference between a simple exponential decay from 
a parallel RC circuit and the decay from an exponential- 
element-and-capacitor circuit. In general, any element with 
an exponential I-V characteristic in parallel with a capacitor 
exhibits similar behavior. 

The dynamics of the latter circuit may be computed 
in closed form by solving a simple nonlinear differential 
equation. Here we state only the results. If the exponential 
element has an I-V characteristic given by 

where VK and IK are the voltage and current parameters 
that characterize the exponential element, respectively, then 
after the input current Io is switched off, the current in the 
exponential element IOut(t) is given by 

where C is the capacitance. For 

Io,lt(t) = CVK/t and is independent of the initial input 
current Io. For large IO, this happens very quickly. The 
independence of the dynamics on the initial condition is a 
very useful property for a motion sensor, since we would 
like measured velocities to be the same irrespective of the 
contrast of the input signal, especially for strong input 
signals. 

The voltage on the exponential element is often more 
convenient to use and report than the current. It is given by 

As discussed above, for large times the current has a l / t  
dependence and consequently the voltage has a logarithmic 
dependence on time. 

Fig. 5(b) shows measured voltage traces of a diode-and- 
capacitor element and theoretical plots according to (14) 
and (16) for various initial currents Io. The convergence 
of the waveforms irrespective of initial conditions and the 
logarithmic behavior at large times may be easily seen. 

If the rms noise voltage on the capacitor due to all noise 
sources is N ,  then by an analysis very similar to the one 
in Section 5.2, we can show that 

and 

Here S is the initial voltage computed from the initial 
current IO by 

S is thus a measure of the signal output amplitude. The 
dynamic range D R  = &,,/At,;, is then given by 

Note that for this filter, the dynamic range is determined by 
the SNR and by the value of N with respect to VK. If N is 
small and S is large compared with V, (i.e., S/N is large), 
then D R  M ( V K / N )  x exp((S1N - 1)NlVK). If N is 
large compared with VK and SIN is large, then DE E 

exp((S/X ~ ~ ) N / V K ) .  In both cases, the exponential 
scaling with SIN is superior to the scaling of the Reichardt 
sensor of ( S / N )  In ( S I N ) .  As before, when the noise level 
reaches half of the signal strength, DE = 1 and the sensor 
becomes inoperable. 

VII. THE FS VELOCITY SENSOR 
The facilitate-and-sample (FS) velocity sensor [ 101 uses 

the diode-capacitor dynamics of the nonlinear filter de- 
scribed in the previous section to obtain a wide dynamic 
range. Unlike the Reichardt algorithm, the FS algorithm 
is token-based. In a first stage, the circuit extracts edges 
from the image brightness distribution. These can be either 
temporal or spatial edges, depending on the implementation. 
The sensor then estimates the time it takes for an edge to 
travel between two adjacent photoreceptor locations. This 
time is not computed by correlating edge responses obtained 
from the two locations; rather, the nonlinear-filter response 
caused by an edge at one location is sampled by a narrow 
pulse caused by the arrival of the edge at the adjacent 
location. This sampling scheme results in the sensor output 
being independent of contrast for large times-of-travel [see 
Fig. S(b)], whereas a correlation scheme would result in 
a dependence on contrast for all times-of-travel, as in the 
Reichardt sensor. 

The FS sensor is schematically shown in Fig. 6(aj. It con- 
sists of two temporal-edge detectors (E), two pulse-shaping 
circuits (P), two motion circuits (M), and a direction- 
selection circuit (Dj. Since the FS sensor has been previ- 
ously described in detail [9], [lo], we give here only a brief 
description of the different elements and some performance 
data. 

Each temporal-edge detector (E) comprises an adaptive 
photoreceptor circuit converting irradiance transients into 
voltage transients [ l l]  and a circuit that converts the 
positive voltage transients, corresponding to ON edges, 
into current impulses. Each current impulse generates two 
voltage pulses, which we call the fast pulse and the slow 
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Fig. 5. Properties of U nonlinear diode-capacitor filter. (a) Comparison of the calculated impulse responses of a parallel RC circuit as implemented by 
the low-pass filter of the Reichardt sensor (see Fig. 4) and a nonlinear adaptive filter built with an exponential element and a capacitor in parallel. The 
response of the nonlinear filter has a much steeper slope initially and thus a higher sensitivity than that of the RC filter; subsequently, its time constant 
increases so that its decay becomes eventually much slower than that of the RC filter. The use of such a nonlinear filter in a motion sensor results in a 
much larger dynamic range than the use of a RC filter, since the sharp slope near the origin reduces At,,;,, while the slow decay after long delays increases 
At,,,, for a given noise level. For the RC filter a time constant T = 2 s and a maximum signal S = 1.2 V was assumed. The nonlinear filter curve 
is derived from (14) and (16) with I J ~  = 3.5 x F. (b) Measured dynamics of such a 
nonlinear filter for different initial current conditions. The circuit was activated by current pulses from a temporal-edge detector, such as the one used in the 
FS motion sensor in response to moving edges of different contrasts c. The measured data (solid lines) is compared with theoretical curves (dashed lines) 
derived from (14) and (16). Irrespective of the initial condition, the responses eventually converge to the same logarithmic time response. The larger the 
intial current 10 the more rapid is the convergence. If Io encodes the contrast in the image, as for the measured data, the behavior implies that at sufficiently 
high contrasts and for sufficiently low velocities, the motion sensor's output is invariant with contrast. 

A, VI< = 95 mV, Io = 9-11 A, and C = 1.4 x 
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Fig. 6. The FS velocily sensor. (a) Block diagram. Temporal-edge 
detectors (E) generate current impulses in response to fast im- 
age irradiance (i.e., brightness) transients. Pulse-shaping circuits 
(P) convert the current impulses into voltage pulses. Voltage 
pulses from adjacent pixels are fed into two motion circuits (M) 
computing velocity for opposite directions (x and I;) along 
one dimension. A direction-selection circuit (D) suppresses the 
response in the null direction to prevent temporal aliasing. (b) 
lhltage signuls. The analog output voltage of the motion circuit for 
rightward motion ( Vr) equals the voltage of the slowly decaying 
facilitation pulse (\(sl) at the time of arrival of the narrow and 
fast sampling pulse (Viz). For leftward motion, the fast sampling 
pulse precedes the slow facilitation pulse and the output voltage is 
low. The analog output voltage thus encodes velocity for rightward 
motion only. 

pulse respectively, in the pulse-shaping circuit (P) that is 
coupled to E. The fast pulse is a narrow spike that is a 
sharpened version of the input current impulse. The slow 
pulse is the output of a parallel diode-capacitor circuit in 
response to the current impulse, as described by (14) and 
(16). Each motion circuit (M) uses the fast pulse generated 
by an edge at one location to sample and report the voltage 
of the slow pulse output at the other location. If for a given 
edge the onset of the slow pulse precedes the fast pulse, 
the edge is said to move in the motion circuit’s preferred 
direction, otherwise it is said to move in its null direction. 
Note that the sampled voltage in the null direction contains 
no information on the speed of the edge triggering the 
sampling signal, since it is related to the time of arrival of 
the previous edge. The motion circuit on the right receives 
the slow pulse Vsl from the left edge detector and the fast 
pulse Vf, from the right edge detector. Thus its preferred 
direction is from left to right [Fig. 6(b)]. Conversely, the 
motion circuit on the left receives the slow pulse Vs2 from 
the right edge detector and the fast pulse Vf, from the 
left edge detector. Thus its preferred direction is from right 
to left. if the optical stimulus is not spatially aliased, the 
motion circuit for which the edge moves in the preferred 
direction reports the higher voltage than the one for which 
it moves in the null direction. The direction-selection circuit 

(D) makes use of this fact to set the output voltage for the 
null direction to zero in order to prevent temporal aliasing. 

As we have seen in Section Vi, the sampled value of 
the slow pulse in the preferred direction is a monotonic 
function of the time-of-travel and, if condition (15) is met, 
independent of the height of the input current impulse, i.e., 
of edge contrast. Also, since the photoreceptor’s transient 
output voltage is quite invariant with illuminance, so is 
the motion sensor’s output. This means that the output 
voltage of the motion circuit for which the edge moves 
in the preferred direction then also encodes speed. Fig. 7 
illustrates the performance of the FS sensor for different 
illuminances and contrasts. 

In Fig. 8 velocity measurements over a more extended 
range are plotted. The response to a 56% contrast edge 
is compared with the response to electronically generated 
current pulses fed into the pulse-shaping circuits to simulate 
an ideal moving edge. The limits of operation of the FS 
sensor are determined by a combination of parametric and 
noise considerations that have to do with the details of 
the photoreceptor, edge-detection, and motion circuits. For 
stimulus-independent speed-encoding, At,,, is limited by 
condition (13, whereas direction-selectivity is lost when 
the width of the sampling pulse (here 5.3 ps) exceeds the 
time-of-travel of an edge between two adjacent photore- 
ceptors and a high signal is sampled in the null direction. 
We were unable to measure the At,,, limit for the optical 
input stimulus, because it is so large that it exceeds the 
capabilities of our experimental apparatus. The data for 
the electronic input shows that the motion-computing stage 
has low intrinsic noise and a dynamic range of at least 
seven orders of magnitude, and that At,,, is ultimately 
limited by leakage currents, rather than by noise. The 
optical input stage, however, reduces the dynamic range 
of the sensor, because of the significantly higher noise 
from the photoreceptor and edge-detection circuitry and 
because of the larger width of the sampling pulse, causing 
spurious responses in the null direction at high speeds. Yet 
we still obtain at least three orders of magnitude of dynamic 
range for high-contrast optical edges. As we have seen 
(Fig. 7), more severe dynamic range limitations, especially 
at high velocities, arise from the nonuniformity of the input 
signals, as derived from edges with different sharpnesses 
and contrasts, under a variety of lighting conditions. if 
progress were made on a good adaptive algorithm for 
finding edges or other features, the dynamic range of analog 
VLSI motion sensors could be greatly improved, because 
the effective “noise” at the input would then be reduced. 

A. Scaling Considerations 
An elementary cell of a 1-D array of FS sensors consists 

of an edge detector, a pulse-shaping circuit, two motion 
circuits, and a direction-selection circuit. i t  comprises 41 
transistors and eight capacitors, totaling 7.5 pF capacitance. 
FS sensors have been fabricated using a 2 pm n-well 
CMOS process provided by the MOSIS prototyping service, 
where the total area consumption of an elementary cell is 
about 0.05 mm2. The smallest chips (“tiny” chips) available 
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Fig. 7. ReSponse of the FS velocity .sensor for  d(fferent illuminations and contrasts. The output 
voltage for motion in the preferred direction is shown as a function of image velocity. The stimuli 
were printed on paper wrapped around a rotating drum. The pixel spacing of 300 pm corresponds 
to an optical angle of 1.28'. The image velocity was computed in the same way as described 
in Fig. I(b). Each data point represents the average of five successive measurements under ac 
incandescent illumination. (a) Response to a 56% contrast sharp edge for different illumination 
levels. (b) Response to sharp and gradual edges of different contrasts. Contrast is defined here as 
the ratio of the difference to the sum of the image irradiances on either side of the edge. 

through the MOSIS service with a usable area of about 2.5 
mm2 (leaving room for read-out circuitry and pads) can 
accommodate 50 pixels. The largest MOSIS chip would be 
able to contain 1250 pixeIs on 62.5 mm2. 

For an arrangement of elementary motion cells operating 
in two dimensions, the edge detectors and the pulse-shaping 
circuits may be shared among all directions, but each 
cell would need four motion circuits and two direction- 
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Fig. 8. Response of the FS velocity sensor for optical and electronic stimuli. The output voltage 
for motion in the preferred direction, shown as a function of image velocity for a 56% sharp edge. 
is compared to that measured for stimulation of the motion-computing circuitrj with 50 p s  long 
current impulses to simulate the outputs of adjacent edge detectors to idealized edges. A theoretical 
fit to the latter data, based on (14) and (16), is also shown. The rms enor of the data points for optical 
input, as indicated by error bars, averages to about 3 mV, whereas for electronic stimulation each 
data point has an rms error of less than 1 mV. The FS motion sensor shows excellent performance 
over more than seven orders of magnitude of velocity for such standardized electronic input signals 
due to its adaptive time constant and low intrinsic noise. For optical stimulation, our measured data 
is limited to three orders of magnitude for the following reasons: 1) at high speeds, the finite width 
of the sampling pulse causes spurious responses in the null direction. 2) at high speeds, our rotating 
test drum runs unevenly and wobbles, and 3) we are unahie to run the test drum at very low speeds. 

selection circuits. This would increase the cell size by about 
35%. 

If the circuits were fabricated in a state-of-the-art 0.7 
pm process, the cells could probably be reduced to about 
a quarter of their current size, so that a 128 x 128 array 
would fit onto 16 mm x 16 mm chip area. 

VIII. SYSTEM APPLICATIONS 
As discussed in the previous sections, we designed analog 

VLSI motion sensors whose outputs are nearly independent 
of absolute light level and stimulus contrast, if these are 
sufficiently high, and that are able to achieve satisfactory 
performance over a large dynamic range in velocity. Be- 
cause they integrate both the photosensing as well as the 
motion-computation stage on a single chip, they represent a 
small, power-lean, and low-cost alternative to conventional 
computer-vision systems. 

Two significant problems need to be tackled next. First, 
so far we have made no attempt to integrate the optical 
flow over space. In particular, we have not designed any 
circuitry to solve the aperture problem at the level of our 
motion sensors. Second, such sensors lack a high degree 
of precision in their output values because of temporal 
noise (see Section 11), spatial fixed-pattem noise in motion 

sensing arrays due to offsets and because the performance 
of the FS sensor degrades at low contrasts and irradiance 
levels. The rms voltage noise of an FS velocity-sensing 
element averages to about 3 mV over the velocity range 
shown in Fig. 8, that spans three orders of magnitude and 
maps onto a voltage range of 0.6 V. This corresponds to 7 
or 8 b of resolution for such a stimulus. 

To fully exploit our motion sensors at a system level, 
we need to develop parallel image-processing architectures 
for applications that rely mainly on qualitative properties 
of the optical flow, rather than on the precise value of 
each flow vector. Given the noise inherent in cortical 
neurons, it might be argued that optical flow computa- 
tions carried out in the central nervous system can also 
only exploit such properties. Furthermore, analog VLSI 
devices are most efficient at solving well-defined custom 
problems, unlike their digital counterparts that are pro- 
grammable and therefore more versatile. Thus we need to 
choose application domains where analog VLSI solutions 
are attractive compared to standard, digital machine vision 
systems. As an example, we will focus on an application 
domain that is becoming important in both research and 
industrial communities-vehicle navigation. Specifically, 
we will show how parallel architectures based on analog 
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VLSI motion sensors can be used to estimate integrative 
features of optical flow fields extracted from typical vehicle 
navigation scenes [3].  The two features that we shall discuss 
are heading direction and time-to-contact. Among other 
features that can be estimated are motion discontinuities, 
to help segregate objects (e.g., cars) from the background 
[37]-[ 391. 

In order to analyze the computational properties of the 
optical flow and to determine the most suitable archi- 
tectures for analog VLSI implementations, we performed 
software simulations on sequences of images obtained from 
a commercially available camera a 64 x 64 pixel silicon 
retina placed on a moving van. The camera uses adaptive 
CMOS photoreceptors similar in overall design to the ones 
incorporated into our motion sensors. Fig. 9 shows an 
example of such an image and the associated optical flow 
field. 

In our simulations, the optical flow fields were generated 
by implementing a gradient algorithm based on the image- 
brightness-constancy equation (see Section 111-B for the 1- 
D formulation). If E ( J ,  y. t )  represents the image irradiance 
at time t and position ( r , y ) ,  the brightness-constancy 
equation expresses the constraint that 

d 
&E(X,Y, t )  = 0 

in subregions of the image. By explicitly computing the 
temporal and spatial derivatives, (21) can be rewritten as 

a 
at U E . V +  -E 0 

and the velocity vector v can be computed as 

3 
at = -(wt. V E ) - ~ ' J E ~ - - E  (23) 

wherever the determinant of the square matrix ( V E t  . F E )  
exceeds a certain threshold [7], [SI, [24]. At locations where 
it remains below the threshold, the optical flow is not 
estimated. Thus the data is sparse and only reliable for areas 
in the image with high contrast. Having defined the types 
of images to be analyzed and the types of processing to be 
performed, we can use a priori information to selectively 
integrate such sparse data to estimate the targeted features 
of the optical flow field. 

A. Heading Direction 
We are primarily interested in measuring the heading 

direction of a vehicle along the horizontal axis, since this is 
the axis along which the vehicle may be controlled. Hence, 
we will consider arrays of 1-D velocity sensors to reduce 
the computational complexity of the problem. A further 
simplification can be made if we restrict the task to purely 
translational ego motion. Because cars and other vehicles 
will soon contain integrated sensors for determining the rate 
of rotation around the three body axes, we assume here 
that we can use this extra-retinal information to remove the 
components of the optical flow due to rotation. 

In the case of pure translational motion, the heading 
direction coincides with the focus-ofexpansion (FOE) and 
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(b) 
Fig. 9. Optic'aljlow ussociafed with a highwuy .scene. (a) Image of 
a straight stretch of highway obtained with a 64 x 64 silicon retina 
mounted on a moving van (Courtesy of B. Mathur of Rockwell 
International). The photoreceptors used in this camera are similar 
to the ones used in our velocity sensors. (b) Optical flow field 
calculated from the image in (a) and the succeeding image in the 
sequence using a standard machine-vision algorithm discussed in 
(23) .  

is defined as the spatial location on the image plane 
from which all the velocity vectors diverge. If we only 
examine the horizontal component of the optical flow, 
the FOE corresponds to the point at which the vectors 
change direction. If we assign positive values to those 
pointing in one direction and negative values to vectors 
pointing in the opposite direction, the FOE location will 
correspond to the point closest to the zero crossing in 
the array. Unfortunately, even when there is no rotational 
motion involved, real image sequences may give rise to 
optical flow fields that contain more than one zero-crossing. 
Nevertheless, by using a priori information on the spatial 
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SCANNERS 

WINNER TAKE ALL NETWORK WITH LATERAL EXCITATION 

, 
. . . e .  

ARRAY OF MOTION SENSING ELEMENTS 

9 9 9 * . ‘  f ’ f ’ y  
Fig. 10. Block diagram of the 1-D analog VLSI FOE architecture. 
The outputs of an array of FS sensors corresponding to opposite 
directions of motion are fed into differencing transconductance 
amplifiers. The positive and negative half currents of the amplifiers 
are spatially smoothed with separate diffusor networks. The outputs 
of the diffusor networks provide the input to a correlation network 
that detects the adjacency of large currents corresponding to 
opposite directions of a motion. The correlation network signals the 
presence and strength of zero-crossing in the optical flow field. A 
winner-takes-all network with positive feedback and lateral spread- 
ing selects the FOE that corresponds to the steepest zero-crossing, 
and that is near the previously selected FOE. 

and temporal characteristics of the optical flow image (e.g., 
by making the assumption that the direction of heading of 
a vehicle changes smoothly), it is possible to detect the 
correct position of the FOE. 

An analog VLSI architecture designed to extract the FOE 
from a 1-D image is shown in Fig. 10 [38], [401. The 
two directional outputs of an array of FS motion sensors 
are differenced with transconductance amplifiers [41]. The 
positive and negative half currents from the amplifiers are 
separately smoothed with diffusor networks [42] to reduce 
noise and offsets from the sensor data. An abrupt change 
in the direction of the optical flow vectors is reported by 
bump-like correlator circuits [43]. These circuits detect the 
adjacency of large opponent currents (positive half current 
versus negative half current) belonging to neighboring 
pixels, i.e., they perform zero-crossing detection, and yield 
information on the slope of the zero-crossing as well. A 
winner-take-all network with distributed excitation [44] 
chooses the position of the steepest zero-crossing as the 
location of the FOE. The winner-take-all network has built- 
in lateral spreading and positive feedback such that the 
position of the FOE that is chosen is always near that of 
the previous choice; consequently, the position of the FOE 
shifts smoothly in time as one would expect from a real- 
world situation. The scanners report the spatial response of 
the winner-take-all network outputs off chip, so that the 
position of the FOE may be shown on a display. 

Fig. 11 shows an example of the FOE computation for 
the data of Fig. 9 obtained from software simulations that 
model the aschitecture shown in Fig. 10. 

B. Time-to-Contact 
The time-to-contact r represents the duration before a 

car collides with an obstacle or another moving object, 
assuming that the relative velocity remains constant. It 

Fig. 11. FOE ufthe highway scene. Determination of the FOE of 
the hiehway sequence from the optical flow data of Fig. 9 using 
a simulation of the VLSI architecture of Fig. 10. The horizontal 
components of the extracted optical flow vectors, summed along 
the image colums over each frame, are displayed at the bottom 
of the figure. The horizontal coordinate of the FOE is computed 
as the abscissa of the zero-crossing with maximum steepness and 
closest to the abcissa of the previously selected FOE. The vertical 
line indicates the computed position of the FOE. 

therefore represents a very useful parameter for correcting 
speed and direction of a vehicle, or for initiating airbag 
deployment. It has been shown [45] that the time-to-contact 
can be directly computed from the optical flow without 
knowledge of the FOE for a g e m a l  motion of the car with 
respect to the object. 

Imagine that a car with a mounted camera is moving 
with a speed U toward a wall at a distance 20. Under these 
conditions 

2 0  
7 = -. 

‘U 

The velocity field V in the camera’s image then expands 
uniformly away from the FOE and the velocity vectors 
increase in magnitude proportionally with the distance from 
the FOE. Using the 2-D version of Gauss’s divergence 
theorem, it has been shown [46] that r can be estimated 
in a very robust manner for an arbitrary translatory motion 
toward a plane at distance 20 by measuring the normal 
velocity component around some closed contour. If we 
consider as closed contour a circle C of radius TO and 
assume a linear velocity field V so that V . V is constant 
everywhere, independently of the exact location of the 
circle, then 

where n denotes the unit normal vector along the contour. 
This means that a simple integration of the output of a 
number of 1-D motion sensors arranged along a circular 
contour that measure the radial velocity component di- 
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Fig. 12. The time-to-contuct chip. Layout of an analog VLSI chip for the determination of 
timc-to-contact. The 12 pairs of photoreceptors arranged on a circle are coupled to 12 FS motion 
scnsors that estimate the radial components of the optical flow field. The pulse-shaping circuits 
and motion circuits are located in the central part of the chip and the direction-selection circuits are 
located on the lcrt and right sides. Their output currents are summed for each direction (outward and 
inward) and subtracted (using a current minor) to yield the final output that is inversely proportional 
to the timc-to-conract. The size of the layout is 1.6 mm x 1.6 mm as implemented with a 2 
pm CMOS process. 

rectly yields the time-to-contact, without computing any 
spatial or temporal derivatives. Furthermore, because we 
are integrating over the output of a number of elementary 
motion sensors, each individual measurement can be af- 
fected by a certain amount of noise without substantially 
deteriorating the overall result. In the more general case 
of an observer approaching a slanted surface (leading to 
a quadratic velocity field), as long as the observer is 

heading directly for this slanted surface, one can exploit the 
symmetry of the velocity field, arriving at the same result 
as above. Similar integration schemes can be exploited for 
designing circuits sensitive to rotations [46]. This type of 
computation therefore lends itself remarkably well to VLSI 
implementation. 

We designed a parallel architecture in which 12 FS 
velocity sensors, arranged on a circle, estimate the radial 
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component of the velocity field (Fig. 12). For such an 
arrangement, the time-to-contact can be approximated by 

where N denotes the number of velocity-measuring ele- 
ments on the circle, T the radius of the circle, and v k  

the radial velocity components at the locations of the ele- 
ments. The output voltages of the FS sensors are converted 
into currents that linearly encode velocity. The currents 
are summed together, so that the total output current is 
inversely proportional to the time-to-contact. The algorithm 
is robust in that errors due to device mismatch, noise, 
and erroneous velocity measurements are decreased through 
averaging. Using a stimulus of high-contrast concentric 
rings centered on the focus-of-expansion or just simulating 
an approaching motion with a rotating spiral we obtained 
reasonably accurate estimates of the time-to-contact [40]. 
As yet, we have not accounted for the aperture problem, 
i.e., we are not able to extract the radial velocity component 
of a randomly oriented edge, but due to the integrative 
properties of the sensor we expect to be able to find 
reasonable estimates for the time-to-contact in more general 
scenes and to reliably determine the direction of motion 
(i.e., expansion or contraction) in them. 

IX. CONCLUSION 
We have shown in this article how analog VLSI velocity 

sensors with on-chip photoreceptors can be built and how 
they can be used in massively parallel architectures to 
evaluate integrative features of the optical flow. Given 
the robust, very compact, and low-power nature of such 
smart vision sensors, they represent a true alternative-for 
certain applications-to more conventional digital image 
architectures 111. 

More specifically, we have emphasized the following 
points: photoreceptor sizing is important because of the 
tradeoffs between spatial filtering and the reduction of 
noise. The limits of operation of motion sensors are deter- 
mined by the maximum and minimum values of parameters 
in the system andor by noise. One can carry out quantita- 
tive calculations of the dynamic range of motion sensors as 
a function of the SNR of the system. These calculations 
show why it is advantageous to use nonlinear adaptive 
filters such as those built with a diode and a capacitor to 
obtain a wide dynamic range, as evidenced by the data from 
our FS sensor. The determination of features like focus-of- 
expansion and time-to-contact that can be estimated from 
integrative properties of the optical flow are promising 
targets for parallel analog VLSI implementations. This 
is because such features are particularly important for 
mobile systems, where processing time, size, and power 
consumption are often important issues that favor analog 
VLSI implementations over traditional digital ones. 
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