Generating Coherent Phonon Waves in Narrow-Band Materials: A Twisted Bilayer Graphene Phaser

Iliya Esin1,*, Ilya Esterlis2, Eugene Demler3, and Gil Refael1

1Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA
3Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

(Received 7 November 2022; accepted 17 March 2023; published 7 April 2023)

Twisted bilayer graphene (TBG) exhibits extremely low Fermi velocities for electrons, with the speed of sound surpassing the Fermi velocity. This regime enables the use of TBG for amplifying vibrational waves of the lattice through stimulated emission, following the same principles of operation of free-electron lasers. Our Letter proposes a lasing mechanism relying on the slow-electron bands to produce a coherent beam of acoustic phonons. We propose a device based on undulated electrons in TBG, which we dub the phaser. The device generates phonon beams in a terahertz (THz) frequency range, which can then be used to produce THz electromagnetic radiation. The ability to generate coherent phonons in solids breaks new ground in controlling quantum memories, probing quantum states, realizing nonequilibrium phases of matter, and designing new types of THz optical devices.

Introduction.—Controlling and manipulating phonons is a long-sought goal offering a multitude of applications in electronics, information processing, and material science [1–8], known as phononics. Recently, high-amplitude beams of phonons were employed to induce superconductivity [9–16] and to control ferroelectricity [17–21] and magnetism [22–37]. Developing reliable sources of phonons is therefore of key importance for future advances in the field of phononics. Generation of coherent phonons in solids can be achieved through pumping by intense laser and magnetic fields [38–42], or by the acoustic Cherenkov effect [43–46].

A laser of phonons (i.e., a device for amplification of sound waves by stimulated emission) can serve as an efficient source of strong coherent acoustic waves with a narrow linewidth. Such devices were realized in the low-frequency range, radio to gigahertz, in trapped ions [47–49], optical tweezers [50], nanomechanical resonators [51–56], and magnetic systems [57,58]. A coherent amplification of terahertz (THz) phonons, yet below the threshold, was recently demonstrated in semiconductor superlattices [59], and in pump-probe experiments in SiC [60].

Here, we present a model of a device for a controlled amplification of acoustic THz phonons, based on the newly discovered narrow-band materials, whose unique band structures allow coherent phonon amplification in a narrow linewidth with low losses to incoherent modes. Furthermore, acoustic phonons have a long lifetime, giving rise to a high-gain and low-loss device [61]. Although generators of coherent sound waves are often referred to as “sasers” [62], we dub our narrow-band-based device a “phaser,” to highlight the phonon nature of the underlying mechanism.

Narrow-band materials such as twisted bilayer graphene (TBG) [63–65] and other moiré heterostructures [66,67] have an electronic bandwidth controlled by the twist angle. The spectrum of the acoustic phonons of the TBG near the magic angle (where the band is flattened) is insensitive to the twist angle [68–70], resulting in a “slow-electron” regime where the speed of sound surpasses electronic group velocities [71], and spontaneous emission of acoustic waves is kinematically suppressed.

Our proposed device is based on a TBG tuned close to the magic angle and weakly spatially modulated by a periodic uniaxial strain or an array of gates [Fig. 1(a)]. The modulation period defines the resonant phaser phonon mode. Remarkably, for lasing in the THz range, the modulation wavelength should be in the mesoscopic scale. External leads produce the needed electronic population inversion, as in semiconductor laser diodes [72].

Toy model.—Postponing a numerical analysis of the full TBG band structure, we first consider a Dirac Hamiltonian model, which applies to the low-energy physics of generic 2D lattices in the slow-electron regime:

$$\mathcal{H}_D(k) = \hbar v_c \mathbf{k} \cdot \mathbf{\sigma}.$$ \hspace{1cm} (1)

$k = (k_x, k_y)$ is the in-plane crystal momentum, $\mathbf{\sigma} = (\sigma^x, \sigma^y)$ a vector of pseudospin Pauli matrices, and $v_c > 0$ the electronic velocity. Equation (1) is diagonalized by the Bloch states $\langle e^{i\mathbf{k} \cdot \mathbf{r}}/\sqrt{A} | \psi_{k\alpha}(r) \rangle$, corresponding to the
FIG. 1. Proposed phaser device, and the key phonon-emission process. (a) Device schematics. A layer of TBG is encapsulated between two tunneling contacts of doped semiconductors. A nano-undulator is realized by a modulated in-space uniaxial strain. Electrons produce a coherent phonon beam whose resonant frequency is controlled by the wavelength of the periodic structure, \(\lambda_g \). (b) Band structure and Phonon-emission processes. Blue (orange) areas indicate occupied (depleted) regions in the range \(\varepsilon \in [0, V] \). Population inversion is imposed by the leads depicted by the two parabolas. Phonon emission resonances occur between two replicas of the bands shifted by the wave vector \(k_u \) induced by the nano-undulator. (c) Phonon emission Feynman diagrams. Solid lines indicate incoming and outgoing electrons, a wiggly line indicates an emitted phonon, and the dashed line indicates extra crystal momentum provided by the periodicity of the nano-undulator. In the slow-electron regime, the energy and crystal momentum can be only conserved in the presence of the momentum shift \(k_u \).

eigenvalues \(\varepsilon_\alpha(k) = \alpha \hbar v_s |k| \), where \(\alpha = \pm, |\psi_{ka}(r)| \) is periodic in the unit cell, and \(\mathcal{A} \) is the area of the system. The eigenstates are created by the operators \(\hat{c}_k^{\dagger} \). In the toy model, we assume no spin or pseudospin degrees other than \(\sigma \) (additional degrees of freedom such as valley, spin, and layer indices of the TBG would not qualitatively change the effect).

Concentrating on the \(v_e < c_{ph} \) regime, with \(c_{ph} \) the speed of sound, assumed uniform and isotropic. Sound waves are described by the lattice displacement operator \(\hat{u}(r, t) = (\hat{u}_x, \hat{u}_y) \) [73], which can be expanded in the eigenmodes \(\hat{u}(r, t) = (\sqrt{A}) \sum_q e^{i(q \cdot r - q \cdot \epsilon_i(q) t)} \hat{u}_i(q) \). Here, \(r = (x, y) \), and \(c_i(q) \) is the unit vector denoting the direction of the displacement in the mode \(i \) and crystal momentum \(q \). Focusing on the lowest energy acoustic mode with \(l = 0 \), we assume a dispersion \(\omega_0(q) = c_{ph} |q| \), and coupling to electrons

\[
\hat{H}_{ep} = \int d^2r g(r) \hat{O}_{ij}(r) \partial_i \hat{u}_j(r).
\]

Here, \(\hat{O}_{ij}(r) \) is a local electronic operator with \(i, j = (x, y) \), and \(g(r) \) is the coupling strength with a position dependence explicitly specified below.

Two external leads produce an electronic population inversion. An electron-doped semiconductor contact has a chemical potential set at \(\varepsilon = \varepsilon_{top} \), corresponding to the top of the upper band of the TBG [denoted by \(\alpha = +, \) see below Eq. (1)], and a hole-doped semiconductor contact is set to the charge neutrality point of the TBG, \(\varepsilon = 0 \). We assume that tunneling between the system and the leads is faster than the electronic decay rates due to relaxation and phonon emission [74]. Assuming this and zero-temperature leads, the electronic occupation probability \(f_{\alpha k} = \langle \hat{c}_k^{\dagger} \hat{c}_k \rangle \) is approximated by \(f_{\alpha k} = 0 \) for \(0 < \varepsilon_\alpha(k) < V \), and \(f_{\alpha k} = 1 \) otherwise, imposing population inversion in the upper band [Fig. 1(b)].

When the electron-phonon (e-ph) coupling is spatially uniform, the electronic population inversion is virtually decoupled from the phonons. Indeed, the slow-electron regime renders conserving energy and crystal momentum simultaneously impossible within a single-phonon emission. As a result, the incoherent phonon background field created by the inverted electronic state is suppressed. This e-ph decoupling is crucial for lasing. Yet the electrons should be coupled to at least one phonon mode, to generate a coherent beam.

Inspired by free-electron lasers (FEL) [75–78], emission into a selected mode can be induced by spatially modulated e-ph coupling, \(g(r) \). Below, we let \(g(r) \) depend on the \(x = r \cdot \hat{x} \) coordinate, with a wavelength \(\lambda_g = 2\pi/k_u \), \(g(r) = g_0 + 2g_1 \cos(k_u x) \) [see Fig. 1(a)]. We denote the region of the system where \(g_1 \neq 0 \), a nano-undulator, by analogy with the FEL magnetic undulator, and discuss its physical realization below.

In the nano-undulator, phonon emission processes obey \(k' - k = q + nk_u \hat{x} \), where \(k, k' \) are, respectively, the electronic crystal momenta before and after emitting a phonon with momentum \(q \), and \(n = \{-1, 0, 1\} \) [Fig. 1(c)]. The momentum shift arises from the Fourier expansion of \(g(r) \) in Eq. (2):

\[
g(r) = \sum_q g_n e^{i\mathbf{k}_n \cdot \mathbf{r}}, \quad \text{where} \quad g_1 = g_{-1}. \]

Energy conservation, however, remains \(\epsilon_\alpha(k') - \epsilon_\alpha(k) = \hbar \omega \) [72]. Energy and crystal momentum conservation is satisfied by two resonant \(\hat{x} \) direction phonon modes with frequencies

\[
\omega_{R \pm} = \frac{c_{ph} k_u \pm i}{(c_{ph}/v_e) \pm 1}. \tag{3}
\]

Thus, the resonant frequency of the phaser is controlled by tuning the nano-undulator wave vector, \(k_u \).

Gain estimation starts with considering a coherent sound wave incident at \(x = 0 \) with amplitude \(u_0 \) and frequency \(\omega \), propagating along \(+\hat{x} \) (generated, i.e., by a seed or by spontaneous emission processes), Fig. 1(a). Sound amplification in the nano-undulator is captured by an exponential factor with the gain coefficient \(\gamma_\omega \) [72]

\[
u_{\omega}(r, t) = u_0 e^{i\omega t} e^{i(q x - \omega t)}, \tag{4}
\]

where \(q = \omega/c_{ph} \). Such a sound wave, after passing the nano-undulator, carries a period-averaged power density
\[\mathcal{P}_s(\omega) = \frac{1}{2a^2 L_u} c_{ph} M \omega^2 |u_0|^2 (e^{2\gamma L_u} - 1), \]

(5)

where \(L_u \) is the nano-undulator length, \(M \) is the atomic mass of the underlying material, and \(a \) is the lattice constant.

In the low-gain limit, the period-averaged power density emitted by the electrons stimulated by the field \(u_\omega \), can be found using Fermi’s golden rule [79],

\[\mathcal{P}_e(\omega) = \frac{2\pi a_o}{A} \sum_{\alpha \alpha'} \int d^2 k \left\{ M^{\alpha \alpha'}_{kk} \epsilon_\alpha(k) - \epsilon_{\alpha'}(k') - \hbar \omega \right\} \]

\[- M^{\alpha \alpha'}_{kk} \delta[\epsilon_\alpha(k) - \epsilon_{\alpha'}(k') + \hbar \omega] \} \].

(6)

Here, \((\alpha, k)\) and \((\alpha', k')\), respectively, denote the electronic band and crystal momentum before and after the interaction with the acoustic wave and \(M^{\alpha \alpha'}_{kk} = |A^{-1} \int d^2 k e^{i\epsilon_\alpha(k)} |\langle \hat{F}_{\alpha\alpha'} | \psi_{\alpha\alpha'}(k) \rangle |^2 \), where the integration is over the nano-undulator area. For coherent phonon generation in a more generic case one can use e-ph instabilities as outlined in the Supplemental Material [79].

Since the sound wave is coherent, the acoustic field operator in \(\hat{F}_{\alpha\alpha'} \) can be replaced [Eq. (2)] by its expectation value \((\langle u \rangle \approx u_\omega \) given in Eq. (4). Then we obtain \(M^{\alpha \alpha'}_{kk} = q^2 |u_0|^2 \sum |g_{\alpha \alpha'}| |d_k|^2 \frac{d^2 k e^{i\epsilon_\alpha(k)}}{\langle \hat{F}_{\alpha\alpha'} | \psi_{\alpha\alpha'}(k) \rangle} \), where \(\langle \hat{F}_{\alpha\alpha'} | \psi_{\alpha\alpha'}(k) \rangle = \int d^2 k |\psi_{\alpha\alpha'}(k)| d_k \), and \(d_k \) is the \(k \)-component of the unit vector along \(u_\omega \).

Assuming \(\langle \hat{O} \rangle \) depends weakly on momentum, and taking a small gain limit \(\gamma_\omega \rightarrow 0 \), \(M^{\alpha \alpha'}_{kk} \) is nonzero only when \(|k - k'| < (q + nk_\omega) \hat{x} \cdot \hat{x} |^2 < (2\pi)^2 / A \). In the thermodynamic limit \((A \rightarrow \infty)\), the values of \(k \) contributing to the sum in the expression for \(\mathcal{P}_e(\omega) \) in Eq. (6), lie near the intersection line of two cones described by \(e^{i\epsilon_\alpha(k)}/\epsilon_\alpha(k) + \hbar \omega \) where \(k' = k + (q + nk_\omega) \hat{x} \) and \(a_{\alpha\alpha'} \neq a_{\alpha'\alpha} \). The largest value of \(\mathcal{P}_e(\omega) \) is obtained for \(\omega \approx \omega_{R,n} \), where \(n = \pm \) [see Eq. (3)], where the two cones are tangential. The area in the momentum space where the two cones are nearly tangential diverges as \(\delta \omega_o^{-1} \), with \(\delta \omega_o = \omega_{R,n} - \omega \), as \(\omega \) approaches \(\omega_{R,n} \) from below, giving rise to a resonance peak in \(\gamma_\omega \). For \(\omega > \omega_{R,n} \), the intersection line of the cone with \(\alpha = + \) and the cone with \(\alpha' = - \), contributes to a negative peak corresponding to the absorption of phonons.

The gain \(\gamma_\omega \) is found by setting \(\mathcal{P}_s(\omega) = \mathcal{P}_e(\omega) \) and using [Eqs. (5) and (6)] for \(\mathcal{P}_s(\omega) \) and \(\mathcal{P}_e(\omega) \) as a function of \(\gamma_\omega \). In the small gain limit \((\gamma_\omega \rightarrow 0)\),

\[\gamma_\omega = \mathcal{P}_s^0(\omega) \alpha^2 / (c_{ph} M \omega^2 |u_0|^2), \]

(7)

where \(\mathcal{P}_s^0(\omega) = \mathcal{P}_s(\omega)|_{\gamma_\omega=0} \). Estimating Eq. (6) in the limit \(0 < \delta \omega_o < \omega_{R,n} \) and \(V > \hbar \omega_{R,n} \) [79], we find

\[\gamma_\omega = \gamma_0 \sum_{n=\pm} \hbar \omega_{R,n} \sqrt{2 \omega_{R,n} \Delta \omega_o N_D(V) a^2}, \]

(8)

where \(\gamma_0 = \frac{g^2 (\langle O \rangle)^2}{(\hbar c^3 M)} \) and \(N_D(\epsilon) = \epsilon / (2\pi \hbar^2 v_F^2) \) is the DOS of the Dirac dispersion. Figure 2(b) shows \(\gamma_\omega \) vs \(\omega \) for several \(k_u \) values shown in the inset.

Analysis of phaser realizations in TBG.—The TBG consists of two graphene monolayers twisted by a relative angle \(\theta \), giving rise to a moiré super lattice with period \(a_m = a / [2 \sin (\theta / 2)] \). Small twist angles yield a dispersion near charge neutrality with narrow bands, approximated by Eq. (1) for two spin and two valley quantum numbers \([63,83]\). Let us focus on \(\theta = 1.4^\circ \), where we find \(v_F \approx 2 \times 10^6 \text{ cm/sec} \), which is below the speed of sound, approximated by \(c_{ph} = 3 \times 10^4 \text{ cm/sec} \).

We consider two alternatives for the spatial modulation of the e-ph coupling needed for the nano-undulator [see Eq. (2)] [84]. The first realization uses a spatially modulated uniaxial strain [see Fig. 1(a)], induced by placing the TBG on a periodic nanostructure or by applying temperature gradients \([85–89]\). Weak periodic strain modulates the graphene lattice, and thus also the e-ph coupling \([69,90]\).

For a strain, \(\epsilon_0 \cos(k_x \lambda) \), the spatially modulated part of the e-ph coupling in each monolayer can be expressed by Eq. (2) with \(g_1 = (\sqrt{5}/4a) \hbar v_F \beta \epsilon_0 \), and \(\tilde{O}_{ij}(r) = \tilde{c}_{ij}^A(r_A) \tilde{c}_{ij}^B(r_B) \delta(x_A - x_B - \delta i, \delta j, \delta k) \), where \(\tilde{c}_{ij}^A(r_A) \) creates an electron in the sublattice \(A \) or \(B \) of the graphene monolayer at the \(r \) unit cell [79]. For \(\epsilon_0 \approx 5\% \) strain, we estimate \(g_1 \approx 0.15 \text{ eV} \), corresponding to \(\gamma_0 \approx 0.02 \text{ mm}^{-1} \).

The second realization uses a periodic array of metallic gates at distance \(d \) from the TBG. The gates change the e-ph coupling by affecting the Coulomb screening between the electronic charge density and the lattice ions \([91–97]\).
We approximate the renormalized coupling of a phonon with moment q by $g(r) = D_0q/[q + q_{TF}(1 - e^{-2qd(r)}])$, where $d(r)$ is the distance from the gates, which toggles between $d(r) \approx d$ above a gate and $d(r) \to \infty$ not above a gate, q_{TF} is the Thomas Fermi wave vector and D_0 the bare e-ph coupling. To approximate the e-ph coupling by Eq. (2), in the limit $q_{TF} \gg q, 1/d$, we estimate $g_1 \approx \frac{1}{4}D_0/(1 + 2q_{TF}d)\hat{O}_{ij}(r) \sim \hat{\rho}(r)\delta_{ij}$, where $\hat{\rho}(r) = \hat{\epsilon}_{rA}^\dagger\hat{\epsilon}_{rA} + \hat{\epsilon}_{rB}^\dagger\hat{\epsilon}_{rB}$ measures the density. For $q_{TF}d \approx 3 [98]$ and $D_0 = 50$ eV, we estimate $g_1 \approx 1.8$ eV, corresponding to $\gamma_0 \approx 3 \mu m^{-1}$.

Numerical analysis of the gain.—We simulated the continuum TBG model [63,83] in order to verify that the full band structure of the TBG exhibits resonance phonon-emission peaks, as predicted by the toy model, and compare their frequencies to Eq. (3). Figure 3(a) shows the spectrum of the upper band of the TBG in a single valley in the mini-Brillouin zone centered around the Dirac points (cf., Supplemental Material [79]). The contours near the K and K' points are the equipotentials $e = V$.

We evaluated the gain in the full TBG model using Eq. (7), estimating $\mathcal{P}_s(\omega)$ by Eq. (6) in the two aforementioned nano-undulator realizations. Figure 3(b) shows the resulting gain vs the frequency for $k_u \approx 0.11G_m$, where $G_m = 2\pi/a_m$, for the two nano-undulator options. Both curves exhibit a peak near $\omega \approx 0.8$ THz, corresponding to the analytical estimate of ω_{R+} [defined in Eq. (3)]. The screening gates option exhibits an additional peak near $\omega \approx 1.5$ THz, not present for the uniaxial strain option. This is due to the selection rules, which suppress transitions for large phonon frequencies.

Figure 3(c) shows the frequencies of the two peaks of the screening-gates nano-undulator gain vs k_u. Dashed lines are the prediction from $\omega_{R\pm}$ [Eq. (3)]. The curve of the low-frequency peak roughly coincides with the analytical curve corresponding to ω_{R+} vs k_u with $v_e = 2 \times 10^6$ cm/sec [see Eq. (3)]. The position of the second peak does not show a linear dependence on k_u, as predicted by Eq. (3), due to deviations of the TBG band structure from the linear dispersion [Eq. (1)] for high phonon energies. We can fit its resonance frequency at $k_u/G_m = 0.05$, by ω_{R-} with $v_e = 1.5 \times 10^6$ cm/sec.

Lasing threshold is achieved when the gain exceeds the loss. The loss of phonons is mostly due to e-ph, ph-ph, and impurity scattering. The lifetime of acoustic phonons in clean graphene can reach $\tau_{ph} \approx 0.3 \mu s$, for long-wavelength phonons [99], which results in $\gamma_{loss} = (\tau_{ph}\xi)^{-1} \approx 2 \times 10^{-4} \mu m^{-1}$. This value is below the gain of the system, estimated at a frequency slightly above the resonance peak. To have a sufficient gain, the system can be placed in an acoustic cavity, e.g., as in Ref. [100]. The phonon-loss in a cavity is given by $\gamma_{cavity} = -\log(R_1R_2)/(2L_u)$, where R_1 and R_2 are the reflectivities of the two mirrors. For $R_1R_2 = 0.97$ and $L_u \approx 5 \mu m$, we obtain $\gamma_{cavity} \approx 0.001 \mu m^{-1}$. This results in a phonon Q factor of the cavity being $Q \approx 10^5$.

Discussion.—In this Letter, we presented a model of a phonon laser device based on the “narrow-band” regime, dubbed a phaser. The phaser generates coherent phonon beams in the THz range. We proposed and analyzed two realizations of the phaser in near-magic-angle TBG, with a spatially modulated uniaxial strain or an array of screening gates [see Fig. 1(a)]. The periodicity of the structure determines the device’s resonant frequency.

What could a THz phaser be used for? The phaser uniquely allows driving the TBG into a nonequilibrium regime through moiré Floquet engineering [101,102], extending the driving sources to THz frequencies and finite momenta [103]. THz phonon sources can be used to probe low-energy excitations in solids [104,105] in a new regime of surface acoustic waves. An electronic generator of coherent phononic beams on-demand has multiple technological applications such as superfast manipulation of magnetic memories [32,106] and controlling ferroelectricity [17–21].

Furthermore, a phaser could generate THz EM radiation. The implied large amplitude lattice oscillations are coupled to plasmon modes both electrically and through the e-ph coupling. The resulting charged modes generate a THz EM field evanescent in the direction perpendicular to the TBG plane. The electric field amplitude near the surface is roughly [79] $|\hat{E}| = 2\sqrt{2}\varepsilon_0\rho_0\lambda q^2|\langle\hat{u}\rangle|$. Here, λq is the relative charge fluctuation that we estimate as $\lambda q \approx 2 \times 10^{-2}$, and ρ_0 is the electronic density taken as $\rho_0 \approx 1/a_m^2$. Assuming that the phaser in the saturation regime creates lattice waves of the order of $|\langle\hat{u}\rangle| \approx 0.1a$, we

FIG. 3. Numerical analysis of the phaser based on the TBG. (a) The band structure of the upper band of the TBG near the charge neutrality point for a single valley, shown on a mini Brillouin zone centered around the Dirac points, K and K'. Curves around K and K' points indicate the equipotentials $e = 6$ meV. (b) The gain calculated by Eqs. (6) and (7) for the wave functions of the TBG for the uniaxial-strain nano-undulator as well as for the array of screening gates nano-undulator, for the wave vector $k_u \approx 0.11G_m$ indicated by a circle on the x axis in panel c. (c) The frequency of the resonant peaks of the gain as a function of k_u. Dashed lines are the resonances predicted by the toy model [Eq. (3)].
estimate, $|\vec{E}| \approx 30\, \text{kV/m}$. Such an electric field can be detected by placing a dipole antenna near the surface of the TBG. An oscillating evanescent electric field can be transformed into THz EM radiation, through a metamaterial structure.

Our analysis focused on the single-particle electronic bands of the TBG. In the presence of the $e-e$ interactions, the Fermi velocity may be renormalized, yet the slow-electron regime can be still achieved [107]. Furthermore, the Fermi velocity may be renormalized, yet the slow-bands of the TBG. In the presence of the material structure.

*Corresponding author.
iesin@caltech.edu

Guanzhong Wang, Min Xiao, Mingming Zhao, Xiaoshun Jiang, Yingchun Qin, and Zhanqii Yin, Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum, Photonics Res. 5, 73 (2017).

Jing Zhang, Bo Peng, Şahin Kaya Özdemir, Kevin Pichler, Dmitry O. Krimer, Guangming Zhao, Franco Nori, Yu xi Liu, Stefan Rotter, and Lan Yang, A phonon laser operating at an exceptional point, Nat. Photonics 12, 479 (2018).

Leon Balents, Cory R. Dean, Dmitri K. Efetov, and Andrea F. Young, Superconductivity and strong correlations in moiré flat bands, Nat. Phys. 16, 725 (2020).

We do not consider the flexural modes of suspended graphene.

Otherwise, one needs to compute the full electronic steady state in the presence of the tunneling from the leads and relaxation, which we leave for future investigation.

See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.130.147001 for derivation, which includes Refs. [80,81].

A spatially modulated perturbation also modifies the electron and phonon dispersions, by opening minigaps at $\pm k_u/2$, which do not affect the phase space region relevant for lasing.

147001-7

