Inequalities of Schwarz and Hoélder type for random operators
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Let A and B be random operators on a Hilbert space, and let { ) denote averages (expectations).
We prove the inequality |[(4 *B }||<[[{4 *4 }||'/?||{B *B )||"/%. A generalized Holder inequality

involving traces is also proved.

. SCHWARZ INEQUALITY

In this paper we prove two inequalities, one of which
was announced and extensively used before.! Despite the
simple proof, the inequalities seem not to have been pub-
lished elsewhere; only a special case of the Schwarz-type ine-
quality for commuting operators has appeared.”

A random operator A4 is an operator-valued function
A (-} on some space {2, with a given probability measure ¢ on
{£2. Averages or expectations are denoted interchangeably by
() or E. Thus

(A )=FA: = LA (w)dul(w).

We have to be a little bit more precise. Let # be a
separable Hilbert space and B (5°) the set of all bounded op-
erators on 57°. Let X be the o algebra of sets in £2 on which u
is defined. We assume that the complex-valued function (g,
A (-)¢) is 2 measurable for all ¢, ¥ € #°. Thus, a random
operator is a weakly measurable B (5%)-valued function. A
typical example is a random matrix.

It may happen that the expectation or average E (g,
A (-)¢) exists for all @, 3 € 7; if in addition there is a bounded
operator, denoted by E4 or (4 ), such that

(p.EAY)=E (@, A()Y),
we say that the expectation of 4 exists (in the Pettis sense)
andisgivenby EA, or (4 ). Clearly, (4 ) existsif (||4 ||} does,
and then ||[{4 ) [|<(|l4 ).

Theorem 1: Let 4 and B be random operators on a Hil-
bert space #°. Then

[[<4 *B)||<[[(4*4)||'*|<B*B )|''>, (1.1)

where the existence of the right-hand side (rhs) implies the
existence of the left-hand side (lhs) and where ||-|| is the usual
operator norm on B (7).
The consequences are analogous to those of Schwarz’s
inequality and are proved in a similar way.
Corollary 1: For a random operator 4 we define

[l ll.: = <4 *4)]"72,

if the rhs exists. Then
M + Bl <l 1], + B,
4 e — 118 1l I<ll4 — B |,
<44 —B*B)|<{l4 |, +||B|l.}4 - B,

If |4 ||, =0, then 4 = 0 with probability 1. Thus ||.||,, is a

(triangle inequality),
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norm on (equivalence classes of) random variables.

Proof of Theorem 1: We use the ordinary Schwarz ine-
quality, first for the du intergral (i.e., for expectations) and
then for the scalar product in 7. Let the rhs of Eq. (1.1)
exist. Then

(l4@ |} = E(pA *dp) = |(4*4) @ > (1.2)
and similarly for B. The two Schwarz inequalities now give

(Il 1 72CIBI% 2> ll4e 1|1 ByII)
>|E (g4 *44)], (1.3)

with existence implied. We now take the sup over @ and ¢
with [|@{| = ||#|| = 1. This shows that the rhs of Eq. (1.3)
defines a  bounded operator (4*B). Since
|4 *4)"?||* = ||{4 *4 )|}, its norm is bounded by the rhs of
Eq. (1.1). Q.ED.

Using the existence statement of Theorem 1, the follow-
ing analog of an inequality of Lieb and Ruskai® is an easy
consequence.

Corollary 2: Let (A *4 ) and (B *B ) exist. Then for any
€e>0

(A*B){(B*B) + €} ' (B*4)<(4*4). (1.4)
As a consequence
(A*B)(B*A)<||[(B*B)|[{4*4). (1.5)

Proof:LetQ: = {(B*B) + €] ~'(B *4 ), whichisanon-
random operator. Then one has

0<{4 —BQ)*4 — BQ) + €@ *Q.
Expanding and taking expectation gives Eq. (1.4). From
[<B*B) +€l|~',<{{B*B) + €},

one then obtains Eq. (1.5). Both also follow directly from Eq.
(1.3). Q.ED.

An alternative proof of Theorem 1 was proposed to me,
which is based on the observation that

(:; *4 A *B) 0

*4 B*B >0
e Ag

Sandwiching this with ¢ E( WA

taking expectations and the sup over @, ¥ yields Eq. (1.1). In

a similar way Corollary 2 can be derived directly, with B *B

replaced by B*B + e.

We remark in passing that for dim 5 < « the normed
space {4;]|{4*4)||'’=||4 ||, < o} is complete, and the
norms ||4 ||, and ||4 *||, are equivalent. For dim 7% = «
this is in general not true, and ||{4 *4 )|| < « does not imply
(144 *}|| < oo.

) from both sides and then
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Il. HOLDER INEQUALITY
Defining |4 |”: = (4 *4 Y%, Eq. (1.1) can be written as
<4 *B Y I<II<14 P I2ICB 12|12
The corresponding Holder-type inequality for p#2 does not
hold in general if dim #°>2. This can be shown by counter-
examples. For trace norms, however, one has the following.
Theorem 2: Let A and B be random operators on a Hil-
bert space #°. Then, forr>1and 1/p + 1/qg = 1/r,p, ¢>0,
{Tr|(4*B )|} <Te{(|4 *B )}

<{Tr (4 )} {Te(|B |9}, (2.1)
where existence of the rhs implies existence of the rest. Here
A * may be replaced by 4 in the middle and the lhs.

Similarly as before, we use Holder’s inequality for inte-
grals and then for trace norms. But first we note a simple
fact.

Lemma 1: On positive random operators, trace and ex-
pectations commute,

ETr|A|=TrE|4|, (2.2)
and existence of either side implies that of the other. In this

case A is trace class almost surely, EA exists and is trace
class, and

TrEA=ETrA. (2.3)
Proof: Let {@, ] be an orthonormal basis in 5#°, Then

E|A[<ETrld | = 3 E (@4 |@,),

by positivity. Hence, if the rhs is finite then E |4 | and E4
existasbounded operatorsand therhsequals Tr E |4 |. Equa-
tion (2.3) then follows from Lebesgue’s bounded convergen-
ce. Q.E.D.

Proof of Theorem: By Halder’s inequality,* first for inte-
grals and then for trace norms, we have

{E Tr|4 |P}*{E Tr|B |7}
>{E [(Tr|A |P)//(Tr|B |9)/7] "}
>{ETr|la*B |}V (2.4)

By Lemma 1, this proves the second part of Eq. (2.1), togeth-
er with existence. The remainder follows from Lemma 2.

Lemma 2: Let A be a random operator and let p>1.
Then

Tr|EAP<Tr E |4 |7, (2.5)
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where existence of the rhs implies that of the lhs.
Proof: Let the rhs exist. By Lemma 1, |4 | is trace class
almost surely. Since ||4 |[’<Tr|4 |? one has

E|4)<{E|4 P} < o.

Hence EA exists as a bounded operator.

Now let X be any nonrandom operator with |X |? trace
class,® 1/p + 1/q = 1. Then, by the second half of Eq. (2.1),
E|XA| exists and is trace class. Thus, by Lemma 1,
EXA = XEA is also trace class. By duality one now has®

{Tr|E4 |P}'» = sup

Trix|7=1

|Tr XEA |

<E sup |TrX4|

Tr|X|7=1
= E{Tr|4 [P}

<{E Tr|4 |F}'». (2.6)
Q.E.D.

It was pointed out to me that the argument in Eq. (2.4)
can be replaced by an equivalent linear version of Holder’s
inequality, i.e.,

r ' Tr|A*B|'<p ™ 'APTr|A [P +q A ~9Tr|B |,
for all A > 0. Taking expectation and using Lemma 1 also
gives the second part of Eq. (2.1).

Remark: Finiteness of the measure u has only entered
in the proof of Lemma 2. For nonfinite x, Theorem 1,
Theorem 2 with r = 1, and Lemma 2 with p = 1 still hold, as
does the second inequality of Theorem 2 for any r>1.
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