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c. Radiation Pattern

In the first section of this chapter, the fields in the

region z < 0 were represented as a superposition of plane waves

incident on and reflected from the plane z = 0, in such a way that,

on that plane the prescribed electric field was obtained. In a similar

way, the fields transmitted through a dielectric slab located at

o < z < d into a semi-infinite region of permittivity £2 at z > d,

can be written as,

00

, ~ ikw2 (z-d) ik(.-vy) 2If (EJ-T.L~~
A w2

E (r) + EIIT
II
-- e EIITI~ ~z e e k dudv-t -

_00

vs;.-p £2

(3.51)

00 ikw (z-d) ik(ux+vy) 2

H (r) n v;:; ff (Ell Til ~~
A W2

E"\ft~~~e
2 e k dudv

= E.lT.l-- e +-t - \f£;-P
_00

where the relations between E.l and E II and the transform of the pre-

scribed electric field on the plane z = 0 are given by (3.14). T.l

and Til are the slab transmission coefficients with respect to the

electric field for perpendicular and parallel polarizations, respectively,

and all these quantities as well as e and e are functions of u
-~ -p

and v. Using relations (3.14) in equation (3.51) the transmitted

fields can be written directly in terms of the transform of the pre-

scribed aperture field:
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E (r)
-t -

ikw
2

(z-d) ik(ux+vy) 2
e e k dudv

(3.52)

00

"J"zff lEop -w-'-(l-:-~II-:-I) ~ -
_00

ikw2 (z-d) ik(ux+by) 2
e e k dudv

We can identHy T /[1 + r ]
.1 .1

and T \I / [w(1 + r \I) ] as the ratio of the

total electric field amplitude transmitted at z = d to the transverse

electric field at z = 0, for perpendicular and parallel polarized

plane waves, respectively.

If the region 0 < z < d consists of a homogeneous dielectric

slab of permittivity £1' and we have a semi-infinite region of per-

mittivity £2 for z > d,

are given by (22)

then T /[1 + r ]
.1 .1

(3.53a)

(3.53b)

In case the whole region z > 0 consists of a homogeneous
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dielectric medium of relative permittivity E
2

, then letting E l = E 2

in (3.53) we obtain,

T iow2.L
= e

1 + r
.1.

and
Til VE2 iOw2

w(l + r II)
=-- ewz

In the event the permittivity of the medium z > 0 varies as a

(3.54a)

(3.54b)

function of the coordinate z, then T /[1 + r ]
.L .L

will be obtained by a method described in the next chapter.

Since the semi-infinite region where the antenna radiates is

usually free space, we will henceforth take E 2 = 1, w2 = w in

equations (3.53) and (3.54). Likewise the transmitted fields in the

free space region can be written from (3.52) as

E (r)
-t -

Til Jikw(z-d) ik(ux+vy) 2
+ E e e e k dudv

op w(l+r
ll

) -X

H (r)
-t -

(3.55)

00

~ ~E
AOp _-,--T'_I-:-- T Jikw(z-d) ik(ux+vy) Z

~" - EO'
"

l;-.Lr ~X e e k dudvw(l+r ll ) 'I' 'I' .L
-00

To find the radiation fields we need to calculate (3.55) for

large kr. A typical field component is of the form



00

g (.E.) = ff g(u , v)

_00
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ikrf(u,v) 2
e k dudv (3.56)

where, using spherical coordinates for the space variables, f(u,v)

becomes

f(u,v) ,.. cos eJl -u
2

- v
2 + sin e (cos ep u + sin ep v) (3.57)

The double integral (3.56) can be readily evaluated for large kr by

applying twice the method of stationary phase. The point where

f (u,v) = f (u,v) = 0, so that the phase is "stationary", is given by,
u v

u = sin e cos ep
o

v sin e sin ep
o

(3.58)

and the result of the integration of (3.55) to first order in l/kr

turns out to be (25,26)

(3.59)

The stationary phase integration of (3.56) is easy to inter-

pret. We see that out of all the plane waves propagating in directions

determined by u and v, and making up the fields at the observation

point in the region z > d, only the wave that travels in a radial

direction toward that point contributes significantly to the radiation

field.

In the case of the waveguide aperture radiating through a
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loss less dielectric slab, singularities may appear on the path of

integration, in the integrand of (3.56). Then, an evaluation of the

integral by the method of steepest descent (15,27) reveals that these

singularities, which correspond to surface waves, contribute to the

radiation field only for 8 = n/2, and that for 8 # n/2 the result

of the stationary phase analysis is still valid.

The far-zone fields follow from (3.55) and (3.59). Hence-

forth ~(8,~) will be written for g(u = sin 8 cos ¢, v = sin 8 sin ¢)
o 0

to clearly denote the angular dependence of the far-zone fields. Thus

we have

E¢ (!)

(3.60)

T I\(8) -iocos8 eikr
- 2in E (8,¢) e k cos 8

op w(8)(1+r 11 (8» r

(3.61)

For easy reference, the expressions for T/[1 + r J.] and TII/[w(l + r ll )]

can be written down as a function of 8. From (3.53) we have, letting

=
l+r J.(e) -YE-sin

2
8

IfE - . 2
8S1n

(3.62a)
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and

£

w(8) (l+f 11(8»
(3.62b)

The radiation pattern~ which is proportional to the angular

dependent part of the far-zone Poynting's vector~ can be written as

E (8 ~¢)
op

2 T 11(8) }
w(8) (l+f 11(8» (3.63)

The far-zone fields and the radiation pattern of waveguide-

fed apertures radiating through a dielectric slab into free space are

given by (3.60)~ (3.61) and (3.63) in connection with (3.62). If the

apertures were radiating directly into free space~ i.e. if no dielectric

slab were present~ then the far-zone fields and the radiation pattern

would still be given by (3.60)~ (3.61) and (3.63)~ but with T/(1+f)=ei6w

as is readily evident from (3.54). Thus we see that the dielectric slab

has the effect of multiplying the components of the far-zone fields with

no dielectric slab present by the factors T~/(l + f~)

(given by (3.62) in case of a homogeneous slab) and

or Til / (1 + f ll )

-iOwe which depend

on e and the parameters of the dielectric medium~ provided that the

same aperture field distribution is assumed with or without the dielectric

slab.

To find the far-zone fields and the radiation pattern asso-

ciated with particular configurations the appropriate aperture field

transfonns must be evaluated and substituted in (3.60) and (3.63).

By way of example~ we will find the radiation pattern of a circular

aperture fed by a circular waveguide. The transform of the aperture
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field is given by (3.41), and hence, apart from ignorable constants,

we have

X' (x'/a) J' (asin8)
11 11 1

cos </>

(3.64)

E (8,</»op

J
l

(asin8)

k sin 8 sin </>

The radiation patterns for each of the two principal planes, the

xz-plane (</> = 0, 8 variable) and the yz-plane (</> = n/2, 8 variable)

are given respectively by

k2 A 2 TJ.(8) /2 2F(8,0) IEO1/! (8 ,0) I 1 + fJ.(8)
cos 8

and (3.65)

k
2

1E (8,n/2) 1
2 I Til (8) 2

F(8,n/2) =
1 + f ll (8)op

where

where

E
O

1/! (8,0)

T/(l + r)

and E (8,n/2) can be obtained from (3.64), and
op

i6w
equals e if the aperture radiates directly into

free space, and is given by equations (3.62) if it radiates through a

homogeneous dielectric slab into free space. It can further be noted

that F(8,O) and F(8,n/2) are proportional to the angular dependent

parts of IE</>(r,8,O)1
2

and !E8 (r,8,n/2) 1
2

respectively.
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4. REFLECTION AND TRANSMISSION PROPERTIES OF

INHOMOGENEOUS DIELECTRIC SLABS

When a waveguide-fed aperture antenna is covered by an in­

homogeneous dielectric slab whose permittivity varies in a direction

perpendicular to the slab faces (the z-direction), then the expressions

developed in the previous chapter are adequate to calculate the aperture

admittance of the antenna as well as the radiation pattern, provided the

reflection and transmission coefficients of the inhomogeneous dielectric

slab are known. Accordingly, the present chapter will be devoted to the

calculation of these coefficients, and related quantities, for inhomo­

geneous dielectric slabs.

If the properties of the dielectric slab vary only in the

direction normal to its plane faces, then the reflection and transmission

coefficients will again depend only on the angle of incidence X and

will be independent of the azimuthal variation of the incidence direction.

Thus with no loss of generality the plane of incidence can be chosen

as the xz plane and the fields taken to be independent of the coordin-

ate y (Fig. 4.1). We then consider a dielectric slab for 0 < z < d,

whose relative permittivity is given by E(Z). We assume the region

z < 0 to be free space, and the region z > d to consist of a homoge­

neous dielectric with relative permittivity E
Z

' The permeability is

taken to be equal to that of free space everywhere. We further suppose that

a plane wave traveling in the region z < 0 is incident on the inhomo-
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x

Reflected wave

E.L

Incident wave

Fig. 4.1 Geometry of the inhomogeneous dielectric

slab.

z
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geneous dielectric slab with an angle of incidence given by X, and is

reflected by it. There will be a right traveling (transmitted) and a

left traveling (reflected) wave in the inhomogeneous dielectric slab,

as well as a transmitted plane wave in the region z > d. Our aim is

to find two quantities related to the reflection and transmission

coefficients, which are of interest in this report, without solving

for the fields themselves.

The differential equations satisfied by the reflection and

transmission coefficients in an inhomogeneous medium can be derived by

the method of invariant imbedding (28,29,30). We will choose instead

a purely mathematical way (31) which gets at the desired equations in a

clear and straightforward manner, and has the added advantage of

obtaining directly equations for the two quantities of primary interest,

the input admittance and the ratio of the total electric field amplitude

at the right face of the slab to the transverse field at the left face.

The two cases of polarization must be treated separately. Accordingly,

first the case of the electric field polarized perpendicular to the

plane of incidence will be treated, and then the case of the electric

field polarized in the plane of incidence will be discussed.

A. Perpendicular Polarization

are respect-In this case, keeping in mind that rand T
~ i

ively the reflection and transmission coefficients of the slab,

w = cos X, p = sin X,
2- p , and letting A(x) = ikpx

e , the

fields in the homogeneous regions can be written down in the following

fashion:
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For z < 0,

E (x, z) (e ikwz + r.1. e-ikwz) A(x) ,
y

H (x,z) wee
ikwz r.1. e-ikwz) A(x),= -n -x

H (x, z) ( ikwz + r.1. e-ikwz) A(x).= n p ez

For z > d,

E (x, z) T.1.
ikwZ(z-d)

A(x),e
y ikwZ(z-d)

H (x,z) -T .1.n wZe A(x) ,
x

ikwZ(z-d)
H (x, z) = T.1.n p e A(x).

z

(4.1)

(4. Z)

The fields in the inhomogeneous dielectric slab can now be

defined in a form similar to (4.1). Interpreting P.1.(z) and R.1.(z) as

the amplitudes of the transmitted and reflected waves in this region,

and letting w(z) ~(Z) - pZ, we can write for 0 < z < d,

E (x, z) = (P.1.(z) +R.1.(z» A(x),
y

H (x, z) = -n w(z)(P.1. (z) - R.1.(z» A(x), (4.3)
x

H (x,z) n p (P.1.(z) + R.1.(z» A(x).
z

Note that E and H are related through Maxwell's equation
y z

ikH = n aE lax. Substituting equations (4.3) into Maxwell's equations
z y

and

aH aH
x z 'k-- - -- =-1 n

Clz ax

aE
n -.L = -ikH

Clz x

E:( z) E
Y

(4.4)

(4.5)
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d [w(z) (P - R )] - ikw2(z) (P + R )
dz ~ ~ ~ ~

o (4.6)

and d
dz (P~ + R~) - ikw(z) (P~ - R) o (4.7)

Eliminating first dR /dz
~

and then dP~/dz between equations (4.6) and

(4.7) it is found that

coupled equations:

P (z)
~

and R (z)
~

satisfy the following pair of

dP 1
--:!: - i kw ( z) P + -,:,-...,.--:-
dz ~ 2w(z)

dw(z) (p _ R )
dz ~ ~

o (4.8)

1
2w(z)

dw(z) (p _ R )
dz ~ ~

o (4.9)

Furthermore, it follows from the continuity of the tangential

fields at z = 0 and z = d, that

1 + r~ = P~(O) + R~(O)

w(l - r~) = w(O) (P~(O) - R~ (0»

and

(4.l0a)

(4.l0b)

(4.11a)

(4.11b)

Since the amplitude of the incident wave was taken as unity,

P~(z) is also the transmission coefficient at a point z, while
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R (z)/p (z) = f (z) is the reflection coefficient at the point z.
1. 1. 1.

The equation that the reflection coefficient f (z)
1.

satisfies can be

obtained from (4.8) and (4.9), and turns out to be a Riccati equation

df1. 1 dw(z) 2
~ = 2w(z) dz (1 - f L) - i2kw(z)f1.

As a boundary condition we have

(4.12)

f1.(d)
w(d) - w2
w(d) + w2

(4.13)

which directly follows from (4.11). Also the relation between f 1.(0),

and the reflection coefficient of the inhomogeneous dielectric slab f
L

,

is from (4.10),

[w - w(o)] + [w + w(O)] f1.(O)

f L = [w + w(O)] + [w - w(O)] rL(O)

An equation for the input admittance normalized to the

admittance of free space,

is also easily found from (4.6) and (4.7) to be

(4.14)

(4.15)

i
k

dy.
l.nL

dz
2- w (z) (4.16)
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y. (d) =w
2

,l.n 1.
and the input admittance of

the slab is given by Yin1.(O) = w(l-f1./ l +f 1.),

As already mentioned the transmission coefficient satisfies

equation (4.8):

where h1. (z)

dP1.
d;- = h1. (z) P1. (z)

1 dw(z)
= ikw(z) - 2w(z) dz (1 - r (z»

1.

(4.17)

(4.18)

The solution of (4.17) is trivial once f1. (z) is known from equation

(4.12),

Z

~h1. (z) dz
P1. (0) e

The boundary condition at z = 0 becomes from (4.l0a) or (4.l0b).

2w

[w + w(O)] + [w - w(O)]r (0)
1.

(4.19)

(4.20)

Finally, the transmission coefficient of the entire slab is given from

(4.1la) or (4.llb) by

T
1.

2w(d)
w(d) + w2

P (d)
1.

(4.21)

or combining (4.19) and (4.21) by



T
J..

2w(d)
wed) + w2
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P (0)
J..

d

~ hJ..(z)dz
e (4.22)

p(z) is the amplitude of the right-traveling wave at the

point z when a wave of unit amplitude is incident on the left face

of the dielectric slab. It will be convenient to define yet another

function related to the transmission coefficient. Let T(z) be

the amplitude of the wave transmitted through the right face of the

dielectric slab when a wave of unit amplitude is incident at the point

z. Then, by definition,

P(z) T(z) = T (4.23)

The equation satisfied by T (z)
J..

is from (4.17) and (4.23),

(4.24)

and the boundary condition at z = d becomes from (4.11) and (4.23)

Hence,

2w(d)
wed) + w2

d

~ hJ.. (z) dz
e

(4.25)

(4.26)

The transmission coefficient of the entire slab is given from (4.10) and

(4.23) by
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2w

which checks, as expected with (4.22).

(4.27)

The ratio of the total electric field amplitude at the right

face of the slab to that at the point z inside the slab is given

by T (z)/[1 + r (z)]. For radiation pattern calculations it is of.L .L

interest to find the equation that this quantity satisfies in the in-

homogeneous slab. First noting that

T.L

1 + 1.L (z)

we have from (4.28) and (4.7)

(4.28)

d
dz (4.29)

and the appropriate boundary condition is from (4.11a) and (4.23)

1 (4.30)

The the solution for (4.29) becomes

d
T.L(z) ik f y . .L(z)dzz l.n----- = e

1+1.L(z) (4.31)
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Since, from (4.l0a) and (4.Z3)

T (0)
1.

1 + r (0)
1.

we finally obtain

T1.
---= e
1 + r 1.

T1.

1 + r
1.

d
ikJ y. (z)dz

o ~n1.

(4.3Z)

(4.33)

As a partial check, we may apply equations (4.16) and (4.33),

with which we are most interested, to the case of a homogeneous slab

with relative permittivity E
l

for 0 < z < d, and a homogeneous serni-

infinite region of relative permittivity for z > d. In this

case w(z) = VEl - pZ = wI for 0 < z< d, and equation (4.16) can

be directly integrated, with the boundary condition y(d) = w
Z

.

Writing y for y inl.' we have

y(z)

if
y(d)

which, upon integration, becomes

-1 v(d) -1 v(z) ktan ~ - tan ~ = (d-z)w
liW

l
iW

l

and solving this latter equation for y(z) we have
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y(d) - iW
I

tan k(d-z)w
I

= w
I wI - iy(d) tan k(d-z)wI

which, setting y(d) = wz, checks for y(O) with (3.Z7a).

To calculate (4.33) we rewrite y(z) as

Letting

y(Z)
y(d) cos k(d-z)w

I
~ lW

I
sin k(d-z)w

I= wI wI cos k(d-z)wI - iy(d) sin k(d-z)wI

we have

then

u = wI cos k(d-z)wI - iy(d) sin k(d-z)w
I

du
dz - ikwl [y(d) cos k(d-z)wI - iWI sin k(d-z)wl ]

d

i1 y(z) dz

o

du
-=

u
In

wI cos kdw
i

- iy(d) sin kdw
i

Hence
T.L

I + r .L

which checks with (3.53a).

B. Parallel Polarization

In the case of the electric field polarized in the plane of

incidence, the fields in the homogeneous regions can be written down

as follows:
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For z < 0,

E (x, z) (eikwz + r -ikwz) A(x)= w lie ,x

E (x, z) -p(eikwz r -ikwz) A(x)- liez

H (x,z) n(e
ikwz r -ikwz) A(x)- liey

For z > d t

E (x, z)
w2 ikw2(z-d)

A(x)=--Til e ,x -F;

E (x, z) - -.E...... Til
ikw2(z-d)

A(x)= e ,z F;

H (x,z) n~TII
ikw2(z-d)

A(x) .e
y

(4.34)

(4.35)

The meaning of the symbols used above and in the following

paragraph should be clear from our treatment of the previous case.

We then define the fields in the inhomogeneous dielectric

slab, 0 < z < d, as

E (x,z) =
w(z)

(P lj (z) + RI1 (z)) A(x) ,x V;W
E (x,z) P (P II (z) - R11 (z)) A(x) , (4.36)

z
~

H (x, z) = n~ (P11 (z) - ~I (z)) A(x) .y
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Note that Hand E are related through Maxwell's equation
y z

-ikndz)Ez

equations

and

we find,

aH lax. Substituting equations (4.36) into Maxwell's
y

n (aEx _ aEz) _ ik H
az ax y

aH
-..:L = ikn dz) Eaz x

(4.37)

(4.38)

and

(4.39)

(4.40)

from which it follows that PII (z) and 11/ (z) satisfy the following

pair of coupled equations

dPli 1 dw(z) 1 dE:(z)
d;- + ikw(z)PII + 2w(z) dz (P II + RII ) - 2E:(z) dz RII = 0 (4.41)

dRII 1 dw(z) 1 ddz)
d;- + ikw(z)RIJ + 2w(z) dz (PIJ + RII ) - 2E (z) dz PI/ o (4.42)

From the continuity of the tangential fields at z = 0 and

z = d we have the boundary conditions

w(l + r l\)
w(O)v;<o) (P II (0) + R11 (0» (4.43a)
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and

1 - r II (4.43b)

)0. (d) CPII Cd) - ~I (d» = JS;. Til

The reflection coefficient r II (z) = RII (z) /P II (z)

(4.44a)

(4.44b)

satisfies a

Riccati equation, which can easily be obtained from (4.41) and (4.42):

-=
dz

(4.45)

subject to the boundary condition,

(4.46)

which directly follows from (4.44). The reflection coefficient of the

inhomogeneous dielectric slab r 11' follows from the relation between

r II (0) and r II in equation (4.43), and is

r.w(O) .1
+LdO) + wJ r ll (0)

[w(O) J
+[dO) - ":J r ll (0)

(4.47)
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The equation for the normalized input admittance,

can easily be obtained from (4.39) and (4.40). It is

(4.48)

(4.49)

The boundary condition is YI\ (d) = E/W2, and the input admittance of

the slab is given by Yin (0) = l/w (l-fll /l+fll).

Since the incident electric field has unit amplitude the

transmission coefficient is given by the same equation as (4.41),

where

(4.50)

1
= ikw(z) - 2w(z)

dw(z) 1 dE(z)
dz (1 + f ll (z)) + 2dz) dz f II (z) (4.51)

With the knowledge of f ll (z) from equation (4.45) P
II

(z) can

readily be found. The boundary condition at z = 0 is from (4.43a) or

(4.43b) ,

1 2w

v;M [:~~~ + wJ + [:~~~ - wJ f ll (0)

(4.52)
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P lI(z) P 11(0)

z
~h lI(z) dz

e (4.53)

The transmission coefficient of the entire slab is given from

(4.44a) or (4.44b) by

zw(d)
E (d) (d)

w PII
~ + w(d)
E2 E(d)

(4.54)

As in the previous case, it is convenient to introduce the

function T(z) defined by equation (4.23). The equation satisfied by

TII(z) is from (4.50) and (4.23)

and the boundary condition at z = d is from (4.44b) and (4.23)

(4.55)

WeD
Zw(d)

Til (d)
E:(d)

(4.56)w
\ft2 ~ + w(d)

E
2

E:(d)

Hence
d
~hll(z) dz

Til (z) = Til (d) e (4.57)

The transmission coefficient of the entire slab is then given from
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(4.43) and (4.23) by

2w1
r~ (0) J Til (0)

+ L:(O) - w f ll (0)

(4.58)

The ratio of the total electric field amplitude at the right

face of the slab to the transverse field at the point z inside the

slab is given by -y;(;5/w(z) [Til (z)/l + f
ll

(z)]. The equation satisfied

by this quantity can be written directly from (4.39) if we first note

that

Til (z)

1 + f lI(z)

Then we have

(4.59)

d (y;w TII(z) J
dz w(z) 1 + f ll (z) ) +

2
ik w (z)

dz) (
EZi Til (z)\

yin/l (z) w(z) 1 + f
ll

(z); = 0

(4.60)

The appropriate boundary condition is from (4.44a)

-v;;w
wed)

TII(d) fi
-::-----,,....-,- = --
l+fll(d) (4.61)

The solution of (4.60) then becomes

d 2
... ,.....-;-: T lI(z) ""\ IE ik J w (z) ( ) d
vdz) -::--_-..,_ = _v_~2? e z dz) Yinll z z
w(z) 1 + f lI(z) w

2
(4.62)
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From (4.43a) and (4.23) we have

"'i€® _T_1_1(_0)..,......,-

w(O) 1 + r 11(0)

hence we finally obtain

w(l + r II) , (4.63)

(4.64)

Again, as in the previous case, we will apply equations (4.49)

and (4.64) to the case of a homogeneous dielectric slab of relative

permittivity and thickness d, adjacent to a semi-infinite region

of relative permittivity €2. We can directly integrate equation (4.49)

with w(z) = wI for 0 < z < d. and boundary condition y(d) = €2/w2.

Writing now y for y inll' we have

y(z)
. €l J]. --

2
w

1 y(d)

dy

which, upon integration, becomes

-1
tan

and, upon solving this latter equation for y(z), we obtain,
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which, setting y(d) = €Z/w Z, checks for yeO) with (3.Z7b).

To calculate (4.64) we rewrite y(z) as

€l y(d) cos k(d-z)wl - i(€l!wl ) sin k(d-z)wl
y(z) = WI (€l/w

l
) cos k(d-z)w

l
- i y(d) sin k(d-z)w

l

Letting

we have

then

d Z

f
W

lik - y(z)dz
€l

o

u(d)

= f
u(O)

du-=
u

1
u(d)

n u(O)

Hence

which checks with (3.53b).

Direct integration of equations (4.16) and (4.49) is possible

only for a few special €(z). In general, numerical methods must be used,

which, in the present case, are fortunately quite simple.
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A few remarks should now be made concerning some of the results

obtained in this chapter. First, if the permittivity E(Z) is dis-

continuous at one or more points in the inhomogeneous medium care must

be exercised in the calculation of the reflection and transmission

coefficients. Separate expressions must be written for the fields in

each section of the medium where the permittivity is continuous, and the

expressions for the tangential fields must be matched at the points of

discontinuity of E(Z), in exactly the same way as was done at the

boundaries of the inhomogeneous medium.

However, Yin.L(Z), Yinll(Z), [Tl.(z)/l + r.L(z)] and also

CV~(;)/w(z)] [TII(z)/l + rll(z)] are all continuous functions of Z

even if E(Z) is not, since the former two are the ratio of the tangential

magnetic to the tangential electric field at the point z in the medium,

and the latter two are proportional to the reciprocal of the tangential

electric field at the point z. Thus the calculation of these quantities

presents an additional advantage over the calculation of the reflection

and transmission coefficients.

If the inhomogeneous dielectric medium is a plasma there may

be one or more points where E(Z) = O. (Then the plasma frequency equals

the frequency of the electromagnetic waves). In such a case the solution

of equation (4.49) may require some ingenuity. Suppose that dz ) == 0,o

and, assuming that the first derivative of E(Z) does not vanish at

can be written near Z as
o

dz) =
dE
dz I (z - Z )

z=z 0
o

a(z - z )
o

(4.65)
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z - ~z < z < z + ~z, the
o 0

differential equation (4.49) can be written as (writing y for y inn) ,

d ok 2 2E.Y.= 1p
dz a(z-z) y

o
or

~ _ ikp2 ...".......:d::,::z:.....,­
2 - a (z-z)

y 0

(4.66)

which can be directly integrated on this interval to give

{~
if Z < z < Z + ~z

0 0

1 I ok 2 Iz-z I
.!.!SL ln 0 (4.67)

y(z)
=

y(z + ~z) a ~z
0

if z - ~z < z < z
0 0

Thus, the solution around the point z can be found from (4.67),
o

provided that the solution at

In particular,

z + ~z
o

is previously calculated.

~_...;l~--:- = ~_...;l~--:- +~
y(z - ~z) y(z + ~z) lal

o 0

(4.68)

The effect of the point z on the admittance is seen to be the addition,
o

"in series", of a real admittance. Furthermore, it can easily be checked

that at the point z y vanishes, while dy/dz becomes infinite.
o

Finally, it should be mentioned that if only the differential

equations for the input admittances were of interest, they could be

obtained in an even more direct and simple manner by making use of the

fact that
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and dYinl1 _ ~ (~)
dz dz nE

x

and making direct use of Maxwell's equations. The formulation presented

in this chapter is preferred simply because it enables us to derive the

equations for the other related quantities of interest as well.
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5. RESULTS AND CONCLUSIONS

The main concern of the present report has been the presentation of

a method of analyzing waveguide-fed aperture antennas of arbitrary cross-

section and radiating into inhomogeneous media. However, it has been

deemed useful that the method should be illustrated with eXfuilples which

in themselves have some practical interest. Accordingly, the admittance

and the radiation pattern of a circular aperture antenna fed by a circular

waveguide and radiating into an inhomogeneous plasma slab has been cal-

culated for a few interesting inhomogeneity profiles. Besides being of

practical value, the circular aperture antenna presents a computational

advantage over the rectangular, since the admittance expression contains

a single rather than a double integral.

An inhomogeneous plasma slab of thickness d has been con-

sidered with the relative permittivity given by

dz) 1 -
(w /w)2 fez) (v/w)(w /w)2 fez)

P + i ---"P _

1 + (v/w)2 1 + (v/w)2
(5.1)

where
2

w ,
p

the square of the peak plasma frequency, is proportional

to the peak electron density in the plasma slab, and the electron density

normalized to its peak value is given by the function fez), while the

lo~ses in the plasma are taken care of by an empirical collision

frequency v.

In the present report the plasma slab is chosen to have an
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inhomogeneous boundary layer for 0 < z < dl and is homogeneous for

dl < z < d. Three different electron density profiles have been chosen

for the boundary layer region 0 < z < d
l

. These are,

a) a convex parabolic profile,

fez)

b) a linear profile,

fez) z/d l ,

c) a concave parabolic profile,

fez)
2 2

z /dl '

while fez) = 1 for dl < z < d for all three cases (Fig. 5.1). The

homogeneous plasma slab for which fez) = 1 for 0 < z < d, has also

been considered.

First, the calculations on the admittance of the circular

aperture antenna are presented. For the inhomogeneous slabs, the

input admittances YJ.'n (p) and Y. (p) have been calculated by
L J.nU

numerically solving the differential equations (4.16) and (4.49) as a

function of p, while for the homogeneous case they are given by

expressions (3.27). These results have been used in the numerical

integration of expression (3.42). It is easy to see that, at least

and hence it is possible to soon terminatefor large p,

for the homogeneous plasma slab, the integrand of (3.42) is of the

-3
porder of

the integration without appreciable error. The integrand has been
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f(z)

1~--L.--~_r-----------~

o

A homogeneous profi Ie

B convex parabolic profile

C linear profile

o concave parabolic profile

Fig. 5.1 Electron density profiles

---~~z

d
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checked for possible surface wave poles and such poles have been account-

ed for although their effect is negligible in the range of parameters

under consideration.

The dominant mode of the circular waveguide is the TEll

mode. The aperture radius a has been chosen such that ka = a = 3n/4,

which is just below the cutoff of the next propagating mode (TMOl)'

The slab thickness has always been chosen to be kd = °= 2n.

The aperture admittance, Y, is normalized to the characteristic

admittance of the waveguide dominant mode,Yo = n'\!l - (x ll '/a)2.

We have computed the real as well as the negative of the imaginary part

of (Y/Y) = g - ib, called the normalized conductance, g, and theo

normalized susceptance, b, respectively. g and b are plotted

2 2
< I (underdenseagainst (w /w) in steps of 0.1 for 0.1 < (til /w)

p p

plasma), 1.0 2 (overdense plasma).and in steps of for 1 < (w /w) < 10
p

(Figs. 5-2 to 5-5). There is a discontinuity in the scale of the

horizontal axis at 2
(w /w) = 1.

p
The point 2(w /w)

p
o corresponds

always to the aperture radiating into free space. The value of (Y/Y )
o

at that point (not shown on the figures) is found to be 1.156 + i 0.043,

which checks with previous calculations of this quantity (13).

Figures 5-2 and 5-3 compare the aperture admittance obtained

from each of the three inhomogeneity profiles and from the homogeneous

slab, when the plasma is lossy with v/w = 0.4. The thickness of the

boundary layer is given by 01 = kd
l

= (1/20)0 in Fig. 5-2 and by

01 = (1/10)0 in Fig. 5-3. It is seen that the susceptance of a plasma

with an inhomogeneous boundary layer is substantially decreased over

the homogeneous slab. The least change occurs in the concave parabolic
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(v/w = 0.4, 01 = 1/20 0)
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case where the llair gap" is the least and the greatest in the convex

parabolic case where the "air gap" is the largest. The change in the

2(w /w) > 0.7 and it seems to
p

be quite insensitive tofue inhomogeneity profile. Comparing Fig. 5-2

with Fig. 5-3 it is seen that increasing the boundary layer thickness

to 01 = (1/10)0 makes the decrease of the susceptance in the presence

of "air gap" even more pronounced.

Figures 5-4 and 5-5 apply for an almost lossless plasma with

v/w 0.025. In Fig. 5-4 01 = (1/20)0, while in Fig. 5-5 01 = (1/10)0.

The general behaviour of the curves is similar to those for v/w = 0.4.

In particular, the susceptance is seen to be relatively independent of

the collision frequency. The conductance decreases with decrease in

collision frequency. However, it does not approach zero as the losses

become vanishingly small in an inhomogeneous overdense plasma. This

is due to the fact that at the point where the permittivity vanishes

a real susceptance is added "in series" to Y, as was pointed out

at the end of chapter 4.

Finally, the normalized aperture admittance Y/Yo ' and the

reflection coefficient, r, of the dominant mode electric field are

related by

(Y/Y )
1 - r

=
0 1 + r

1 - (Y/Y )
and r 0

1 + (Y/Y )
0

(5.2a)

(5.2b)

Hence our knowledge of (Y/Y) yields readily information about r.
o

In Figure 5-6 Irl, which is a measure of the power reflected back
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into the waveguide, is plotted against 2(w /w) for each case of
p

is insensitive to changes in

(v/w) and 01' Only the results for the homogeneous slab and the

inhomogeneous plasma with a concave parabolic profile have been shown.

For the two other profiles, the results fall between the ones shown.

It can be concluded that the existance of an "air gap" as well as an

increase in the collision frequency results in a decrease in Irl.
It can also be noted that for an overdense plasma with low losses Irl

(w /w)2.
p

Next, the radiation pattern of the circular aperture antenna

is discussed. Only the principal planes (the xz-plane, and the yz-plane)

have been considered, and the ratio of the power radiated at e = °
to that radiated in any direction in these planes is calculated in

decibels. Thus for the xz-plane (¢ = 0, e variable) we have plotted

F(O,O)

10 loglO F(8,0) I
Eep (r,o,o)1

= 20 loglO E¢ (r,8,0) ,

while for the yz-plane (¢ 1T /2, e variable)

F(0,1T/2)

10 loglO F(8,1T/2)

is plotted against 8. F(8,0) and F(8,1T/2) are given by (3.65).

Again, we have always taken a = 3n/4 and 0 = 2n.

Fig. 5.7 shows the radiation patterns of a circular aperture

antenna radiating into free space. The yz-plane radiation pattern shows

that as 8 approaches 1T/2 the electric field in that plane does
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Fig. 5.7 Radiation pattern of a circular aperture

antenna radiating into free space

(a) in yz-plane (b) in xz-plane.
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not vanish, as it does in the xz-plane. This is to be expected since it

represents the normal field on the conducting ground plane. However, it

is found that even a thin dielectric layer over the aperture drastically

reduces the yz-plane radiation near e = n/2 making it approach zero.

In Fig. 5-8 the antenna radiates into a lossless plasma, while

in Fig. 5.9 the plasma is lossy with v/w = 0.4. In both cases we have
o

chosen (w /W)L = 1/2. The yz-plane radiation changes slightly according
p

to the inhomogeneity, while the xz-plane radiation is insensitive of the

shape of the electron density profile. When the antenna radiates into

a lossless plasma the radiation patterns have a wedge-like shape with a

maximum near 45° and a sharp decrease of radiation at greater angles.

This fact can be explained simply by remembering Snell's law. Since the

plasma has a real positive permittivity smaller than that of free space,

there exists a maximum permissible angle for plane waves refracted in

this angle is 45°. Whenthe free space region. For (w /w)2 = 1/2,
P

the plasma becomes lossy this fact isno longer true, the peaks disappear

and the curves become smoother with the maximum at e = o.

For (w /w)2 > 1 the radiation in all directions is very
p

weak, since the waves in the plasma are exponentially damped. In this

case the shape of the radiation patterns would be smooth with no peaks,

quite similar to Fig. 5.9.

The various advantages of the present method of analyzing

aperture antennas have been discussed at length in the course of the

report. One main advantage, as regards the numerical computation of

the results, should be mentioned here. The time for obtaining numerical

solutions of linear second order differential equations has been
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eliminated in the present formulation. In this report we deal with non­

linear first order equations which require a far less time for solution

by a computer, than linear second order equations.

We will conclude with a discussion of the possible extensions

of the method presented. First, the method could be extended to other

than planar geometries. A treatment of cylindrical geometry, for example,

would be particularly useful for the disoussion of plasma covered

cylindrical antennas, and would be quite straightforward to carry out.

Second, the method could be used to apply to media other than the ones

discussed in this report, such as turbulent, moving and anisotropic media.

A medium whose contitutive parameters are functions of all three space

coordinates would be harder to treat, and an extension of this method

to such media mayor may not be possible.
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