A Caltech Library Service

Electronic control of elastomeric microfluidic circuits with shape memory actuators

Vyawahare, Saurabh and Sitaula, Suresh and Martin, Sujitha and Adalian, Dvin and Scherer, Axel (2008) Electronic control of elastomeric microfluidic circuits with shape memory actuators. Lab on a Chip, 8 (9). pp. 1530-1535. ISSN 1473-0197. doi:10.1039/b804515a.

PDF - Published Version
See Usage Policy.

[img] Video (AVI) (SMA valve in real time) - Supplemental Material
See Usage Policy.

Image (GIF) - Cover Image
See Usage Policy.


Use this Persistent URL to link to this item:


Recently, sophisticated fluidic circuits with hundreds of independent valves have been built by using multi-layer soft-lithography to mold elastomers. However, this shrinking of microfluidic circuits has not been matched by a corresponding miniaturization of the actuation and interfacing elements that control the circuits; while the fluidic circuits are small (~10–100 micron wide channels), the Medusa's head-like interface, consisting of external pneumatic solenoids and tubing or mechanical pins to control each independent valve, is larger by one to four orders of magnitude (mm to cm). Consequently, the dream of using large scale integration in microfluidics for portable, high throughput applications has been stymied. By combining multi-layer soft-lithography with shape memory alloys (SMA), we demonstrate electronically activated microfluidic components such as valves, pumps, latches and multiplexers, that are assembled on printed circuit boards (PCBs). Thus, high density, electronically controlled microfluidic chips can be integrated alongside standard opto-electronic components on a PCB. Furthermore, we introduce the idea of microfluidic states, which are combinations of valve states, and analogous to instruction sets of integrated circuit (IC) microprocessors. Microfluidic states may be represented in hardware or software, and we propose a control architecture that results in logarithmic reduction of external control lines. These developments bring us closer to building microfluidic circuits that resemble electronic ICs both physically, as well as in their abstract model.

Item Type:Article
Related URLs:
URLURL TypeDescription
Additional Information:This journal is © The Royal Society of Chemistry 2008. Received 17th March 2008, Accepted 3rd June 2008. First published on the web 9th July 2008. The authors like to thank Anna Chetverikova, Christina Morales of the Caltech Microfluidic Foundry, Ali Ghaffari of the Micro/Nano Center, Caltech for assistance in fabrication; Lyn Hein and Kate Finigan for administrative support and Glenn George for advice on electronics. All of the authors wish to thank the Boeing Company for funding this project under the SRDMA program. Contributions: SV suggested the initial ideas and was involved with all subsequent ideas, designs and experiments, and wrote the paper. SS, SM, DA undertook several experiments, contributed to valve design and software programming, while being mentored by SV and AS. AS contributed ideas and helped write the paper. Electronic supplementary information (ESI) available: Movie showing in real time a 76 micron diameter wire being actuated using a 240 mA current. It is easy to visually determine that the channel is completely squeezed shut by the wire on actuation. See DOI: 10.1039/b804515a. The HTML version of this article has been enhanced with colour images.
Funding AgencyGrant Number
Summer Undergraduate Research Fellowship (SURF), CaltechUNSPECIFIED
Issue or Number:9
Record Number:CaltechAUTHORS:VYAloac08
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:12305
Deposited By: Archive Administrator
Deposited On:06 Nov 2008 16:54
Last Modified:08 Nov 2021 22:27

Repository Staff Only: item control page