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1. Introduction

Theories on non-commutative spaces, in which the coordinates satisfy [xµ, xν ] = iθµν ,

have been a very active topic of research in the last few years. They appear in de-

coupling limits of D-branes in string theory in backgrounds with non-zero NS-NS

B-fields [1, 2, 3]. The initial research focused on theories with only space-like non-

commutativity, that is with θ0i = 0. Gauge theories with space-like noncommutativ-

ity arise from a decoupling limit of string theory involving D-branes with non-zero

space-like B-fields [3], in which all string modes decouple and one is left with a

field theory (coming from the massless open strings ending on the D-branes). Field

theories on such spaces are unitary.

Recently, it was realized that theories with time-like noncommutativity, that

is θ0i 6= 0, may also exist. However, field theories on such spaces exhibit acausal
behaviour [4, 5] and the quantum theories are not unitary [6]. In [7, 8, 9] it was found

that a decoupled field theory limit for D-branes with a time-like B-field does not exist.

However, references [7, 8] found a limit in which the closed strings decouple but the

massive open strings do not, so this limit describes a non-commutative open string

theory (NCOS) rather than a field theory. These open string theories were further

analyzed in [10, 11]. Several related aspects were recently considered in [12]–[17].
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In this paper we wish to analyze a third type of noncommutativity, in which

the noncommutativity parameter θµν is light-like, for example with θ0i = −θ1i (in
light-cone coordinates this corresponds to θi− 6= 0). We will argue that despite the
nonlocality in the time coordinate due to θ0i 6= 0, field theories with light-like non-
commutativity are quantum mechanically unitary and exhibit interesting properties.

In section 2 we determine which string backgrounds with a constant B-field ad-

mit a decoupled non-commutative field theory limit, and verify for a light-like B

(say, for B0i = B1i 6= 0) that such a field theory limit exists. In section 3 we analyze
perturbative unitarity of non-commutative field theories with arbitrary noncommu-

tativity matrix θµν . We show that non-commutative field theories which can be

obtained as decoupled field theory limits of string theory are perturbatively unitary

quantum theories. On the other hand, those non-commutative field theories that

are not unitary cannot be obtained from string theory because massive open string

modes do not decouple. Such theories can be made unitary by adding massive open

string degrees of freedom, decoupled from the closed strings, and lead to NCOS the-

ories. The relation between unitarity in field theory and decoupling in string theory

is physically very appealing.

In section 4 we analyze the decoupling limits of D-branes in type-II string the-

ory which lead to theories with light-like noncommutativity, decoupled from closed

strings and from massive open strings. In the case of light-like noncommutativity,

the open string coupling constant is identical to the closed string coupling constant.

Therefore, the analysis of the decoupling limits is completely analogous to the anal-

ysis of decoupling limits of D-branes without a B-field. For D2-branes and D3-

branes, we find decoupling limits giving (2+ 1)-dimensional and (3+ 1)-dimensional

super-Yang Mills (SYM) theories (with light-like noncommutativity). The light-like

non-commutative (3 + 1)-dimensional SYM theory exhibits a conventional field the-

oretic S-duality, such that the strong coupling limit of the non-commutative field

theory on the D3-brane is also a non-commutative field theory with light-like non-

commutativity.1 For D4-branes we find that the decoupling limit seems to lead

to a (5 + 1)-dimensional field theory (compactified on a circle), which is a non-

commutative version of the (2, 0) six-dimensional SCFT.2 For D5-branes we find in

the decoupling limit a non-commutative version of “little string theories”, which re-

duces to (5+1)-dimensional non-commutative SYM at low energies. Similar theories

arise also from NS5-branes with non-zero light-like RR backgrounds. For the var-

ious six-dimensional theories we also describe the discrete light-cone quantization

(DLCQ) of the light-like non-commutative theories, which is a simple variation of

the DLCQ for the same theories on a commutative space.

1For a similar two-dimensional phenomenon see [18].
2Note that no such decoupled field theory exists for space-like fields, since the self-duality

of the 3-form on the 5-brane forces a time-like noncommutativity to accompany any space-like

noncommutativity.
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2. Open strings and noncommutativity

Consider open strings on a single D-brane (the generalization to several overlap-

ping D-branes is straightforward) in a constant background electromagnetic field

(or, equivalently, in a constant background NS-NS two-form field) Bµν . The confor-

mal field theory of this background was solved in [19, 20]. The dynamics of the open

string is determined in terms of the sigma model metric (closed string metric) gµν ,

the background two-form field Bµν and the closed string coupling constant gs. The

signature of space-time will be taken to be (−,+, . . . ,+). The propagator of open
string worldsheet coordinates between boundary points τ and τ ′ on the real axis of
the upper half-plane is3

〈Xµ(τ)Xν(τ ′)〉 = −α′Gµν log(τ − τ ′)2 + i

2
θµν sign(τ − τ ′) , (2.1)

where

Gµν =

(
1

g + 2πα′B

)µν
S

=

(
1

g + 2πα′B
g

1

g − 2πα′B
)µν

,

θµν = 2πα′
(

1

g + 2πα′B

)µν
A

= −(2πα′)2
(

1

g + 2πα′B
B

1

g − 2πα′B
)µν

, (2.2)

and the effective open string coupling is given by

Go = gs

√
det(g + 2πα′B)
det(g)

. (2.3)

The classical effective action on the D-brane is obtained from the S-matrix of

open string states on the disc worldsheet. The presence of the term proportional

to θµν in the propagator replaces the conventional product of fields in the effective

action with the ?-product of fields.

We are interested in finding which electromagnetic backgrounds B admit a de-

coupled field theory limit such that the low energy effective description is given by

a non-commutative field theory of the massless open string modes.4 Moreover, we

want to determine which non-commutative field theories are unitary quantum theo-

ries (see section 3). We will see that those four-dimensional non-commutative field

theories that are perturbatively unitary are precisely those that can be obtained

as a decoupled field theory limit of string theory. Moreover, the non-commutative

field theories that are not unitary correspond to string backgrounds in which the

non-commutative massless open strings do not decouple from the massive ones.

3Analogous expressions can be written for the worldsheet superpartners ψµ.
4Clearly, there is always a low energy limit whose description is given by conventional (commu-

tative) field theory. Here we are interested in a non-commutative field theory description.
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Our analysis will be based on looking at the Dirac-Born-Infeld action describing

constant electromagnetic background fields and seeing when it describes a sensible

theory on its own. We start by discussing the case of a D3-brane, for which we give

a Lorentz-invariant description of the admissible backgrounds. Given a background

Bµν field, with particular values for the electromagnetic Lorentz invariants
5

I1 =
1

2
BµνB

µν = B2 − E2 , I2 =
1

8
εµνρσBµνBρσ = E ·B , (2.4)

one can perform a Lorentz transformation to go to a standard frame where it is simple

to study the existence of a decoupled field theory limit. In the standard frame, E

can be chosen to be parallel, anti-parallel or orthogonal to B. There are 9 separate

possibilities depending on I1 and I2. The standard frames are:

1. I1 > 0 I2 > 0 : E‖B, B2 > E2 ;

2. I1 > 0 I2 < 0 : −E‖B, B2 > E2 ;

3. I1 < 0 I2 > 0 : E‖B, B2 < E2 ;

4. I1 < 0 I2 < 0 : −E‖B, B2 < E2 ;

5. I1 = 0 I2 > 0 : E‖B, B2 = E2 ;

6. I1 = 0 I2 < 0 : −E‖B, B2 = E2 ;

7. I1 > 0 I2 = 0 : E⊥B, B2 > E2 ;

8. I1 < 0 I2 = 0 : E⊥B, B2 < E2 ;

9. I1 = 0 I2 = 0 : E⊥B, B2 = E2 .

It is known [3] that a space-like non-commutative field theory can be obtained

as a decoupled limit of background (7), since one can always go to a frame in which

only the B field is non zero. Moreover, background (8) can be boosted to a frame in

which only the E field is non zero, and [7, 8, 9] showed that no decoupled field theory

limit exists for this background. It is easy to see that whenever E is either parallel

or antiparallel to B (backgrounds (1)–(6)) there is no decoupled non-commmutative

field theory limit. The physical origin for the nonexistence of a decoupled field theory

limit is that in order to decouple the theory one must take both B and E large [3],

but whenever I2 6= 0 there is an upper critical value of the electric field Ec beyond
which the theory becomes unstable and, therefore, no sensible decoupled field theory

exists. In such a background the E field reduces the tension of a string when the

string is stretched in the direction of E, and it becomes tensionless precisely at Ec.

5We take B0i = Ei and Bij = εijkBk.
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Having a parallel (anti-parallel) B field does not change this phenomenon. More

explicitly, consider the Dirac-Born-Infeld lagrangian density for a single D-brane in

a background metric gµν = diag(−g, g, g, g) and with arbitrary background B and
E fields,

LDBI = −T3
√
− det(gµν + 2πα′Bµν)

= −T3
√
g4 + (2πα′)2g2(B2 − E2)− (2πα′)4(E ·B)2 . (2.5)

Clearly, whenever I2 6= 0 the theory becomes unstable for |E| > Ec ≡ g/(2πα′) and,
therefore, there is no decoupled non-commutative field theory limit.

The only case left to consider is when I1 = I2 = 0 (note that one cannot always

transform this case to E = B = 0, except by an infinite Lorentz boost). This is the

light-like non-commutative case, where E2 = B2 and E · B = 0. Clearly, there is
no obstruction to taking the decoupled field theory limit since there is no instability

for any value of the E field. In this case, the presence of the B field perpendicular

to E forbids the E field from reducing the energy of the string so that it becomes

tensionless. Summarizing, the Lorentz invariant criterion for backgrounds from which

one can find a four-dimensional decoupled field theory limit is I1 ≥ 0 and I2 = 0.
The remaining backgrounds can be made unitary by adding massive open string

degrees of freedom, decoupled from closed strings, and can lead to NCOS theories in

an appropriate limit. This criterion will be recovered in the following section from a

field theoretic analysis of unitarity.

Similarly, it is easy to show for any Dp-brane with p ≥ 2 that a light-like non-
commutative field theory can also be obtained from string theory in a background

NS-NS B-field B0i = B1i. For D2-branes the only Lorentz-invariant that can be

constructed from the background field is I1 =
1
2
BµνB

µν . The possible cases are

I1 > 0 leading to the usual non-commutative Yang-Mills theory, I1 < 0 leading to

the non-commutative open string theory, and I1 = 0 which is the light-like case that

we will discuss here.

3. Unitarity constraints

In [6] unitarity of space-like non-commutative field theories and time-like non-commu-

tative theories was studied at the one loop level, and it was found that space-like

non-commutative theories are unitary while time-like non-commutative theories are

not unitary. One can easily perform a general analysis of which types of noncommu-

tativity lead to unitary theories and which do not.

Unitarity requires [6] that the inner product p ◦ p is never negative, where p is
some external momentum and

p ◦ p ≡ −pµθµρGρσθσνpν ≡ pµg
µν
θ pν ≥ 0 , (3.1)
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where θµν is the noncommutativity matrix and Gρσ is the background metric of the

field theory. The reason behind this requirement is that in order to define loop

integrals in these theories, one must analytically continue the momentum and θµν

to euclidean space such that the euclidean expression for p ◦ p is positive,6 so that
Feynman graphs are well defined. In order to check unitarity of the theory one must

analytically continue answers to Minkowski space. Therefore, if in Minkowski space

p◦p < 0, Green’s functions acquire branch cuts as a function of momentum. It is the
presence of these extra branch cuts7 that causes nonunitary answers, since they lead

to extra imaginary pieces for S-matrix elements that violate the optical theorem.

We will analyze in detail the four-dimensional case and comment below on the

other cases. A necessary condition for unitarity is that the eigenvalues of gµνθ are

nonnegative. This ensures that p ◦ p ≥ 0 and that no unphysical branch cuts in
Green’s functions appear. Therefore, we demand that

det(gµνθ ) = det(−θµρGρσθσν) ≥ 0 . (3.2)

It is useful to rewrite the background metric of the field theory as

Gµν =
(
(g − 2πα′B)g−1(g + 2πα′B))

µν
. (3.3)

Using (2.2) it follows that

det(gµνθ ) = (2πα
′)4 det

(
− 1

g + 2πα′B
Bg−1B

1

g − 2πα′B
)
. (3.4)

Using the fact that det(g + 2πα′B) = det(g − 2πα′B) one gets

det(gµνθ ) = (2πα
′)4

1

det2(g + 2πα′B) det(−g)
2

det(B) . (3.5)

Now, since det(−g) < 0 and det2(g + 2πα′B) ≥ 0, and
2

det(B) = (E ·B)4 = I42 , (3.6)

a necessary condition for unitarity is that

I2 = E ·B = 0 . (3.7)

6We will avoid values of the external momenta for which p◦p = 0, which lead to peculiar infrared
divergences.
7Green’s functions in these theories also have the conventional physical branch cuts associated

with threshold production of multiparticle states.
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Therefore, there are three cases to be considered that can lead to a unitary

quantum field theory:8

(7) In this case one can transform to a frame in which only the B-field is non-

zero, for example B12 6= 0. This leads to space-like noncommutativity with θ12 = θ.

Then, we have p ◦ p = θ2(p21 + p22) ≥ 0 and the theory is unitary.
(8) In this case one can go to a frame in which only the E-field is non-zero, for

example B01 6= 0. This leads to time-like noncommutativity with θ01 = θ. Then,

p ◦ p = θ2(p20 − p21) can be negative and the theory is not unitary.
(9) In this case one can go to a frame with B02 = B12. This leads to light-like

noncommutativity with θ02 = −θ12 = θ. Then, p ◦ p = θ2(p0 − p1)
2 ≥ 0 and the

theory is unitary.

Therefore, there is precise agreement between the backgrounds which have a

decoupled non-commutative field theory limit and the field theories which have a

perturbatively unitary S-matrix. It is easy to generalize this also to other dimen-

sions: the behavior of p ◦ p in the presence of space-like, time-like and light-like
noncommutativity is always as in the cases (7), (8) and (9) discussed above (re-

spectively). In the rest of the paper we will concentrate on theories with light-like

noncommutativity.

4. Decoupling limit with light-like noncommutativity

In the previous two sections we showed that there could exist a decoupled light-

like non-commutative field theory limit of string theory, and that the resulting field

theory is quantum mechanically unitary. In this section we will study this decoupled

field theory limit in detail for all D-branes of type-II string theory. It is convenient

to analyze such decoupled field theories in light-cone coordinates, x± = 1√
2
(x0± x1).

By a Lorentz transformation we can always choose the light-like noncommu-

tativity parameter to be θ2− ≡ Θ 6= 0, with all other noncommutativity parame-
ters vanishing. In the usual coordinates such noncommutativity appears whenever

θ20 = −θ21 = Θ/√2. Such a configuration involves noncommutativity in the time
direction (θ20 6= 0), which results in a theory non-local in time. Naively, one would
not expect such a theory to be unitary, nor would one expect that it can be obtained

from a decoupled limit of string theory. However, we can always choose to perform a

light-cone quantization in which x+ is the time coordinate. The field theory is local

in the x+ time coordinate since θi+ = 0. Therefore, one would expect the light-cone

hamiltonian H ≡ P+ to be hermitean, and the field theory to be well defined. In this

section we describe how to get a field theory with this type of noncommutativity as

a limit of string theory.

8We will take the open string metric to be Gµν = ηµν in the equations below, a different metric

with the same signature will lead to the same results.
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We start with k Dp-branes with general p, but we will focus only on the first three

coordinates9 since the others will always have a flat metric and no background fields.

We take the closed string metric to be the Minkowski metric gµν = ηµν , and turn on

a non-zero B2+. Using (2.2) [3], we find the open string metric G
+− = −G22 = −1,

G−− = −(2πα′B2+)2, and the noncommutativity parameter θ2− = (2πα′)2B2+. We
wish to discuss a decoupling limit in which we take α′ → 0 to decouple the closed
strings and the massive open strings. In order to obtain a finite noncommutativity

parameter θ2− ≡ Θ in the gauge theory we need to take a very largeB2+ = Θ/(2πα′)2.
Equivalently, one can turn on a constant flux in the overall U(1) factor in the D-brane

gauge group, F2+ = Θ/(2πα
′)2 (times the identity matrix). This requires taking a

very large electric field E2. As discussed in section 2, when the background flux is

light-like, a large electric field does not lead to an instability.

At first sight, we end up in this limit with a strange open string metric with an

infinite G−− component. However, this does not actually have any physical effect,
and we can easily fix this10 by a change of coordinates

y+ ≡ x+ ; y− ≡ x− +
1

2
G−−x+ ; yi ≡ xi (i = 2, . . . , p) . (4.1)

In the new coordinates the open string metric is Gµν = ηµν and we have a finite

noncommutativity parameter θ2− = Θ, so we obtain precisely the field theories dis-
cussed above. Equivalently, we could have started with a closed string metric with

g++ which goes to infinity such that the open string metric is diagonal; this situation

is related to the situation we describe here by a shift similar to (4.1).

It is important to note that the theories with light-like noncommutativity which

we discuss here do not have a typical noncommutativity scale in them, since there

is no Lorentz-invariant scalar one can make out of θ2−. Longitudinal Lorentz boosts
can rescale θ2− to any (non-zero) value we wish it to be. The scaling of B2+ which
we describe above is the one which gives θ2− = Θ = constant in the decoupling limit,
but any scaling of these parameters (which gives a non-zero and finite θ2−) is related
by a boost to the scaling we describe above. Correlation functions in these theories

depend on the longitudinal boost invariant combination θ2−P−.
Using (2.3) we find that the open string coupling constant in this case is the same

as it was without the B-field, namely Go = gs, so that the Yang-Mills (YM) coupling

constant is given by the usual formula g2YM = (2π)
p−2gs(α′)(p−3)/2. The discussion of

the possible decoupling limits is thus exactly the same as without the B-field and

not the same as in the case of a space-like B-field. One scales α′ → 0 to decouple the
field theory from the bulk and scales gs such that one is left with a non-trivial field

theory on the brane (gYM is kept fixed). We will now analyze the decoupled theories

that we get in different dimensions:

9In order to have a light-like non-commutative field theory p ≥ 2.
10This was suggested to us by N. Seiberg.
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4.1 D3-branes

For k D3-branes we can take α′ → 0 keeping gs fixed, and we get a U(k) NCYM
theory with finite noncommutativity, which is decoupled from the closed strings and

from the massive open strings by the same arguments used in the absence of the

B-field.

It is interesting to note that in the (3 + 1)-dimensional case the U(k) gauge

theories that we find go to themselves under S-duality, unlike the theories with space-

like noncommutativity which are S-dual to non-commutative open string theories

(NCOS) [8]. In the light-like case the (3 + 1)-dimensional decoupled theories inherit

the S-duality transformation from type-IIB string theory. This transformation inverts

the (complexified) gauge coupling and changes the background flux; to leading order

in the background flux it exchanges Fµν with (∗F )µν [21], where ∗ denotes the Hodge
operation, and for light-like fields this is actually the exact transformation. This

leads to a field theory with a light-like noncommutativity parameter θ3−. Generally,
S-duality changes the light-like noncommutativity parameter by θi− → εijθj−, where
the epsilon symbol involves the directions transverse to the light-cone coordinates.

4.2 D2-branes

For k D2-branes, if we want to keep the YM coupling constant fixed as we take

α′ → 0 we must also scale gs ∝ (α′)1/2 → 0 at the same time, but this obviously
does not affect the decoupling arguments. In this limit we find precisely the (2 + 1)-

dimensional U(k) light-like non-commutative supersymmetric gauge theory.

4.3 D4-branes

Things become more interesting if we discuss the decoupling limit for k D4-branes.

In this case, if we wish to take α′ → 0 and keep the YM coupling constant fixed,
we must scale gs to infinity as (α

′)−1/2. Thus, it is more appropriate to think of the
theory as M-theory compactified on a circle. The Planck scale in M-theory scales

as M3
p = M3

s /gs ∝ (α′)−1 so it goes to infinity, while the radius of the M-theory
circle remains finite (as in the absence of the B-field), R11 = gs(α

′)1/2 ' g2YM. The

decoupled theory on the D4-branes should thus be viewed as a decoupled theory on

k M5-branes compactified on a finite circle. This is not surprising since the (4 + 1)-

dimensional gauge theory on its own is non renormalizable even before we add the

noncommutativity.

When we go to M-theory it is natural to keep the metric on the brane (which is

the same as the metric in the bulk up to an infinite g++ which we discussed above)

in the form Gµν = ηµν . In these coordinates the x11 direction has periodicity 2πR11.

Translating the relation B2+ ' Θ/(2πα′)2 to M-theory variables, we find that the

9
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3-form of M-theory scales as

C2(11)+ ' −ΘR11M6
p (4.2)

in the limit we are taking, with R11 constant and Mp going to infinity.

We claim that this limit, for k M5-branes oriented in the (0, 1, 2, 3, 4, 11) direc-

tions, defines a decoupled “non-commutative” variation of the (2, 0) theory living on

the M5-branes. In M-theory, one can gauge away any constant components of the

background C-field that are transverse to the M5-branes, as well as the anti-self-dual

components of C along the M5-branes. So, we can take the background C-field to

be self-dual, with non-vanishing C34+ = C2(11)+. Equivalently, instead of the C-field

we can take the self-dual 3-form worldvolume field H34+ = H2(11)+ on the M5-branes

to scale in the same way that we scaled the C-field in the decoupling limit. Here,

we used the fact that for light-like fields the non-linear self-duality condition on the

3-form field H actually becomes linear [3].

It is not clear how to characterize the “noncommutativity” (or whatever general-

izes this notion) in the six-dimensional theory. It seems reasonable to expect that this

theory has a 3-form “generalized noncommutativity parameter”, which would be (for

example) the coefficient of the leading (dimension 9) irrelevant operator appearing in

the low-energy expansion of the theory. If we call this parameter ψµνρ, dimensional

analysis and Lorentz covariance determine that in the light-like “non-commutative”

case described above it will be given by ψ2(11)− = −C2(11)+/M6
p ' ΘR11. This means

if we take the R11 → ∞ (or gYM → ∞) limit in the theory described above, we
do not get a theory with finite “noncommutativity”. Rather, such a theory would

arise from taking C2(11)+ ' −ψM6
p with ψ kept constant as Mp → ∞. However,

since we do not understand the notion of “generalized noncommutativity” we can-

not rigorously justify these claims. In [12, 13] it was suggested that six-dimensional

“non-commutative” theories can be characterized by an open membrane metric which

could be analogous to the open string metric described above; in our case this “open

membrane” metric turns out to be ηµν , just like the open string metric on the D4-

brane. The fact that the “open membrane metric” remains finite as we take Mp to

infinity is consistent with our claim the the six-dimensional theory is a field theory,

with no additional open strings or membranes.

A theory which seems to describe the DLCQ of the six-dimensional theory de-

scribed above was discussed in [22, section 4]. The decoupled theory of k M5-branes

with N units of light-like momentum (P− = N/R) was described in terms of the

gYM → ∞ limit of the Higgs branch of the N = 8 U(N) (0 + 1)-dimensional SYM
theory with k hypermultiplets in the fundamental representation [23], and the Fayet-

Iliopoulos (FI) parameters of this theory were identified (in a particular normaliza-

tion) with Cij+/RM
6
p (where R is the radius of the compact light-like direction).

Note that in the DLCQ, where the x− direction is compact, we can no longer per-
form arbitrary longitudinal Lorentz boosts since these also rescale the radius R; the

10
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combination Cij+/R appearing in the DLCQ is boost-invariant and can thus be used

to characterize the “noncommutativity” of the theory. The fact that the DLCQ

depends on Cij+/M
6
p is consistent with our conjecture for the “generalized noncom-

mutativity parameter” described above. The infinite shift we found (4.1) between

the closed string and open string coordinates can be identified with the infinite shift

found in the DLCQ between the vacuum energies of the Higgs and Coulomb branches

(in the decoupling limit).

The relation between the six-dimensional theory we described here and the “open

membrane” theories discussed in [10, 12, 13] is not clear. Those theories involve

additional degrees of freedom in addition to the six-dimensional field theory, while

such degrees of freedom do not seem to appear in our case.

4.4 D5-branes and NS5-branes

For k D5-branes, again we have to take gs to infinity as we take α
′ to zero, in

order to keep the Yang-Mills coupling fixed. The strong coupling limit of type-

IIB string theory is described by the S-dual theory, in which the string coupling

goes to zero. Thus, it is best to describe the limit we are discussing in the S-dual

theory. In this theory we find that we have k NS 5-branes, the string coupling

goes to zero, and the string tension (which is the inverse gauge coupling on the

NS5-branes) remains constant. This is the same limit used to define “little string

theories” (LSTs) [24, 25, 26], so the theory we get in this limit is a non-commutative

version of the LSTs. The S-duality turns the NS-NS B-field into a RR B-field.

Therefore, we are discussing NS 5-branes with a constant RR B2+ field which goes

to infinity. Equivalently (as in the previous cases) we can just take the gauge field

strength F2+ on the 5-branes to go to infinity. At low energies (compared to the

string tension) this limit gives a (non-renormalizable) light-like non-commutative

(5 + 1)-dimensional gauge theory, while at energies of the order of the string scale

we have the full non-commutative LST.

As in the previous discussion, the DLCQ of this NCLST is given by a simple de-

formation of the DLCQ of the LST with (1, 1) supersymmetry [27, 28]. This DLCQ

description (which is reviewed in [29]), for the theory of k 5-branes with N units of

light-like momentum, is given by the low-energy SCFT of the Coulomb branch of

the (1+1)-dimensional U(N)k gauge theory with bifundamental hypermultiplets for

consecutive U(N) groups (arranged in a circle). The non-commutative deformation

is realized in the DLCQ by adding an equal mass to the k bifundamental hypermulti-

pets. Note that this mass, like the light-like non-commutative parameter, is a vector

of the SO(4) rotation group acting on the four transverse coordinates of the 5-branes.

A similar deformation exists also for the (2, 0)-supersymmetric LST arising from

NS 5-branes in type-IIA string theory. The “non-commutative” deformation now

involves a constant RR 3-form field Cij+, or equivalently a constant 3-form field in

the 5-brane worldvolume. In the DLCQ this deformation corresponds (as discussed

11
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in [29]) to turning on a Fayet-Iliopoulos term in the corresponding (1+1)-dimensional

gauge theory [23, 30]. At low energies (compared to the string scale) the (2, 0) “non-

commutative” LST reduces to the (2, 0) “non-commutative” field theory arising from

k M5-branes, which we described in the previous subsection.

For higher-dimensional D-branes there seems to be no decoupling limit from the

bulk, just like in the case without the noncommutativity.
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