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The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechani-
cal theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss
several consequences of this result in the context of quantum information theory. First, we show that the
information that leaks out to spacelike separated regions is negligible and that there is a finite speed at
which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used
to prove lower bounds on the time it takes to convert states without topological quantum order to states
with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales

like the boundary of that block.
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The principle of causality forms one of the pillars of
modern physics. It dictates that there is a finite speed at
which information can propagate. Because of the existence
of a light cone, relativistic quantum field theories auto-
matically exhibit that property. The situation is, however,
not so clear in nonrelativistic quantum mechanics, where a
strict notion of a light cone does not exist. It has indeed
been noticed that local operations can in principle be used
to send information over arbitrary distances in arbitrary
small times [1]. The seminal work of Lieb and Robinson
[2] and recent generalizations due to Hastings [3] and
Nachtergaele and Sims [4], however, show that the situ-
ation in not so bad: if evolution is governed by local
Hamiltonians, then nonrelativistic quantum mechanics
gives rise to an effective light cone with exponentially
decaying tails. Because of this exponential attenuation,
we will show how a quantitative version of causality
emerges where the amount of information that can be
exchanged is exponentially small within space-time re-
gions not connected by a light cone.

A related question is how fast correlations can be created
between two widely separated regions in space. Note that
in this case, the principle of causality does not prohibit the
buildup of correlations faster than the speed of light, as
correlations as such cannot be used to signal information;
this is precisely the argument used to show that the exis-
tence of entanglement does not violate causality. Again
using the Lieb-Robinson bound, we will show that there is
a finite velocity at which correlations can be distributed.
This automatically implies that the time it takes to distrib-
ute entanglement between two nodes in a spin-network
scales as the distance between the nodes, solving an open
question raised in [5]. Note that we assume that all classical
communication is also described by local Hamiltonian
evolution, as otherwise it is possible to distribute entangle-
ment over arbitrary distances in a single unit of time by
making use of the concept of quantum teleportation [6,7].
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Similar techniques can be used to prove lower bounds on
the time it takes to create exotic quantum states exhibiting
topological quantum order [8,9] by local Hamiltonian evo-
lution: a time proportional to the size of the system is
needed. This is relevant in the light of topological quantum
memories and computing, and it shows that the procedure
described in [10] to create toric code states is essentially
optimal. Although such a result is not too surprising on
physical grounds, it is certainly nontrivial from the com-
putational complexity point of view, as it is notoriously
difficult to prove lower bounds on the depth of quantum
circuits to achieve specific tasks.

Finally, we will discuss bounds on the generation of
entanglement by local Hamiltonian evolution: if a quantum
system is subject to a time-dependent Hamiltonian over a
finite time, then an effective area law is obtained, which
states that, for large enough blocks, the increase of entropy
of that block is at most proportional to its surface. This is
relevant in the context of ground states of spin systems.

Let us start by defining the kind of systems and evolution
we will consider in this Letter. We will consider a spin-
network endowed with a metric. For simplicity, let us
assume that spins are located at vertices of a graph G =
(V,E) and dynamics is generated by time-dependent
Hamiltonian whose terms h;;(t) couple only nearest-
neighbor spins:

(i.j)EE

All results derived can, however, also be shown to hold in
the case of fermions or local Hamiltonians with exponen-
tially decaying interactions, as the Lieb-Robinson bounds
still apply. Consider two nonoverlapping blocks of spins
A,BCV. We would like to know how operations in
region A affect observables in region B at some later mo-
ment of time. The Lieb-Robinson bound makes a statement
about the operator norm of the commutator of any opera-
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tors O, and Op in regions A and B taken at different times;
it states that

i

IE0A (1), 05Ol = cNusnll OO exp(—ﬂ>

3

where L is the distance between A and B (the number of
edges in the shortest path connecting A and B), N, =
min{|A|, | B|} is the number of vertices in the smallest of A
and B, while ¢, v, ¢ > 0 are constants [11] depending only
upon g = max; e max, ||h;;(r)|| and maximum vertex
degree of the graph (which we assume to be constant) [12].
Let us first check that this indeed bounds the amount of
information that can be sent from A to B through the spin
network. Let C = V \ (A4 U B) be the part of the network to
which neither A nor B have access. Without loss of general-
ity, we can assume that A encodes Alice’s message by
applying some unitary transformation UX on her subsys-
tem, where k is varied depending on the information she
wants to send; i.e., a different unitary operation is applied if
she wants to send a different message (the most general
operation she can implement is a completely positive map
which can indeed be implemented by unitary evolution
with an extra ancilla which can be included in region A).
Waiting for time 7, the whole system evolves according to
the unitary operation Uygc(2). If the global initial state of
the system is given by pg, then we can interpret this
procedure as a quantum channel where the input is

wac = UﬁpoUT
and the output is
a(t) = TracUapc(0)ph pc Ul e (1),

Let us show that a%() has a very weak dependence on k.
Indeed, denote o(¢) the state that B would obtain if Alice
would not have done anything (i.e., U, = 1). Then for any
observable Op acting on the subsystem B and associated
Op(t) = U}BC(I)OBUABC(t), we have

Tr{05[a(1) — ol (]} = Tr(poULTUX, 05(1)])
= |IlU%, 050l < ellogll,

where € is given by the Lieb-Robinson bound:

N e p( L— U|t|>
€ = cNpj, expl —— ).
3
Therefore % (¢) and o(¢) are € close in the trace norm:
V ki |log(t) — o0l = e €]

If the probabilities to implement the unitaries UX are
specified by {p,}, then the amount of information that is
sent through this quantum channel is given by the Holevo
capacity [13]:

€)= (S piohi) = S pistrho)
k k

where S(- - +) is the von Neumann entropy. Let m be the
Hilbert space dimension of individual spins. Combining
Eq. (1) with the Fannes inequality [14],

|S(np) — S(op)| = 8|Bllogm — 8logs,
8 =llmp — ol

valid for any density operators 71z, o on the subsystem B,
we can bound the capacity as C,(t) = 2¢(|B|logm —
loge). Fix the time ¢ and increase the distance L, such
that size of B grows at most polynomially with L. Clearly,
the capacity C,(7) decreases exponentially fast with the
distance L — v|t| and is hence negligible for distances
L > vt|. This indeed proves that the amount of informa-
tion that can be sent outside the light cone is exponentially
small.

Let us next show that the amount of correlations that can
be created by local Hamiltonian evolution vanishes also
exponentially outside an effective light cone. Assume that
we have a state |¢) with finite correlation length y, i.e., one
in which all connected correlation functions, (O, 0p), =

Wo4(0)05(O)|gh) — (O] )X Pl Op (1)), decay expo-

nentially:
. L
(040m).1 = zexp( ),

for any regions A, B with separation L, and any operators
O,, Op normalized such that [|O4]|, ||Oll = 1. The ques-
tion we ask is the following: How long does it take to create
correlations between two regions separated by a distance L
when the evolution is generated by a local Hamiltonian?
For this purpose, we need the following ingredient.
Consider an operator O, over region A and the correspond-
ing time-evolved operator O4(f). We would like to prove
that O4(¢) can be well approximated by an operator acting
on spins only in the effective light cone of A. Choose an
integer /, and let S denote the set of spins having distance at
least / from A. Denote

0\(n) = m Trs(04(1) ® 1.

Then the Lieb-Robinson bound allows us to prove that

104(r) = OL Il = CIAIeXp<— : _va). )

Indeed, let U be a unitary operator acting on S and u(U) be
the Haar measure for U. Then we have

0l\(1) = j du(U)UOLO U,

and therefore

104(0) = 04Nl = [dp(O)I[U, 0,01

Applying the Lieb-Robinson bound to the commutator
[U, 04(1)] with N, replaced by |A| we arrive at Eq. (2).
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We now consider the connected correlation function be-
tween O, and Oy at time . Taking into account ||O/, (1)l
03Il =1, we obtain O4()O0s(N).| = 2c(IA] +
IBI) exp[—(I — v1)/€] + KOL(DORM)| = 2c(lAl +
|Bl) exp[— (I — vt)/&] + ¢exp[—(L — 20)/x]. Pick-
ing the optimal [ = (yvr + £L)/(x + 2£), we find that
the connected correlation function at time ¢ is bounded
by ¢(|Al + |Bl) exp[—(L — 2v1)/x'], where ' = x + 2§,
hence proving that there is indeed a bounded velocity at
which correlations can be created.

As an application, let us consider the complexity of
creating the Greenberger-Horne-Zeilinger (GHZ) state
[15] lpguz) = 100+ - -0) + |11 - - - 1) out of the ferromag-
netic state |¢f;) = | + + - - - +) where all spins point in
the x direction; the spins are defined on an arbitrary lattice
(e.g., square lattice). Because the connected correlations of
|thGnz) do not decay, as opposed to the case of |i,,,), the
above results imply that the time it will take to transform
those states into each other by any time-dependent local
Hamiltonian evolution scales linearly with the diameter of
the system. Typically such lower bounds on quantum
circuits are difficult to prove, but in this case the result
follows directly from the Lieb-Robinson bounds.

Let us next apply the Lieb-Robinson techniques to a
more exotic problem. The concept of topological quantum
order (TQO) is exceptional in the sense that it is a property
of a quantum state rather than of a Hamiltonian. Loosely
speaking, a quantum state |4 ) exhibits TQO if and only if
there exists another one orthogonal to it, |i,), such that for
all local observables O,,. we have (i,|0,.l¢) =
(2| Oroclih) and (11 01oc|h,) = 0. TQO arises most fre-
quently on systems with a nontrivial topology, such as a
torus. States with this property are natural candidates for
protecting quantum information from decoherence: deco-
herence can be thought of as a process in which an external
quantum system couples locally to the system of interest,
and as such effectively acquires information about the state
of the system. However, if the quantum information is
stored in a superposition of the two orthogonal states
with exactly the same local properties, then there is no
way the environment can access that information, and if
(1| O1oclty) = 0, there is no way the environment can
correlate itself with it, and as such cannot decohere it.

Formally, we define states |#,), |1,) to have TQO with
error (I, €) if for any observable O, with ||Op.ll =1
supported on a set with diameter [ or less, we have
K11 Osocl 1) = (2| Opoclb)| = 2€ and (1| Oyoclh)| =
€. Colloquially, we say that a state is topologically ordered
if it has TQO to accuracy (I, €), where [ is of order the
linear size of the system, say, half the linear size, and € is
exponentially small in /, while a state is not topologically
ordered if it has topological order only to accuracy (I, €)
with [, € both of order unity.

We now ask the following question: Starting from a
state |¢y) which has no TQO, is it possible to find
lower bounds on the time it would take to create a state

|¢)) (or “brother” state |i/,)) with TQO if we allow for
any local time-dependent Hamiltonian evolution for
a time ¢ with associated unitary transformation U, so that
lif1) = Uliy)? We now prove by contradiction that, using
the above colloquial definition of TQO, it requires a time ¢
of order the linear size of the system to achieve this. Let the
final state have TQO to accuracy (I¢, €f). Consider now the

state |ho) = Ut|ih,). Let O, be a norm-1 operator with
support on a set of diameter /; (here and below the graph G
is a regular lattice in R?Y). We have, from Eq. (2),

Kol Orocltho) — (W0l Orelb)l = 1l U0 U hy) —
(U0 Uyl = O(ep + I exp[—(l; — I; — v)/€)),
and similar bounds for matrix elements of O, between
lho) and |hy). Then, since {iJy|ihy) = 0, we can choose
;=1 f/ 2 in the above expression, and it follows that the
initial state is topologically ordered to accuracy (e;, [;)
with €, = O(e; + l;lfl exp[—(l;/2 —vt)/&] and [; =
1;/2. Using the colloquial definition of TQO, then if vt <«
1;/2, it follows that if the final state is topologically
ordered, so is the initial state, finishing the proof. Again,
the Lieb-Robinson bounds enable us to prove lower bounds
on the circuit complexity, in this case for creating states
with TQO. This proves, for example, that the strategy
outlined in [10] for creating toric code states is essentially
optimal.

Until now, we have been considering the evolution
generated by local Hamiltonians, and made quantitative
statements about the speed at which correlations can be
built up. In a similar vein, we can quantify how much
entanglement or entropy can be generated by such an
evolution. In particular, we are interested in the amount
of entanglement that can be created per unit of time be-
tween a block of spins A and the rest of the system B =
V' \ A. We want to bound the rate at which entanglement is
created by any Hamiltonian of the form

,
H (1) = Ha0) + H ) + Y r(07% © T,
k=1

where operators JX, J% act on their respective domains, and
we assume ||[J% ||, [l7%]] = 1. Locality of F (¢) implies that
the number of terms P in the sum is proportional to the
perimeter of A. Any real-time evolution can be approxi-
mated to arbitrary precision by a Trotter decomposition
where at each time only one term JX ® 7% couples A, B.
Now we can use the results derived in [16] and later
generalized in [17]. It was derived there that the rate at
which the entanglement, as measured by the entropy
S(py), can be created using any product norm-1
Hamiltonian J 4 ® [J 5 is bounded above by a constant

¢t = 20max] Vx(1 — x)log al

~ 1.9,
1 —x

This result is rather nontrivial because the maximum en-
tangling rate does not depend upon dimensions of Hilbert
spaces describing A and B which may be arbitrarily large.
Because of the Trotter approximation, we have
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dS(py) - L
_ A7 < 1)].
ar c k;h’k( )|

Hence the rate at which entanglement between A and B is
created scales at most like the perimeter of A (and not as
the volume). If the interactions amplitudes are bounded by
a constant, max; max,|r(f)] = g, we get

P
0d7<z Irk(7)|> = c*gPt.

k=1

1
Soa(0) = S(pa) = ¢ [

—
This is the result we were looking for: the amount of
entanglement that can be created in a finite time in a block
of spins scales like the perimeter of the block and not as its
volume. In particular, if one starts with a state that obeys
the area law, i.e., for which the entropy of large blocks
scales like their perimeter, and evolves it over some finite
time, then it will still obey the area law.

This is relevant in the context of numerical renormal-
ization group methods, as it is precisely the fact that ground
states obey an area law that leads to the remarkable preci-
sion of those methods [18]. Ground states of spin systems
belonging to the same phase can be converted into each
other by local quasiadiabatic evolution [19] over a finite
time, and it hence indicates that if there exists an efficient
parametrization of one state within a phase using matrix
product states or generalizations, then all of them can be
represented efficiently.

In conclusion, we investigated apparent paradoxes aris-
ing in the context of causality and nonrelativistic theories
of quantum spin systems. Lieb-Robinson bounds show that
even in a nonrelativistic setting, a quantitative notion of a
light cone arises where the light cone has exponential tails
which give rise to the apparent paradoxes. The shape of the
light cone is solely determined by the norm of the local
terms in the Hamiltonian and is hence related to some
speed of sound. We have shown that the information that
is leaking through the exponential tails is useless, which
shows that nonrelativistic quantum mechanics is no-
signaling in a quantitative way. Similarly, we have shown
that there is a finite speed at which correlations and en-
tanglement can be built up in a spin network. A nontrivial
application of those results arises in the context of topo-
logical quantum order: we could prove that the time it takes
to create a state with topological quantum order out of one
that has not this property scales linearly in the size of the
system. Finally, we have proven that the entropy of a block
of spins created by any local evolution coupling it to
another domain scales at most like the surface of the block.
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