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Abstract: Higher order terms in the effective action of non-commutative gauge
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manifestly respect the non-commutative gauge invariance of the tree level action. In

U(1) gauge theories, we note that these generalized ?-products occur in the expansion

of some quantities that are invariant under non-commutative gauge transformations,

but contain an infinite number of powers of the non-commutative gauge field. One

example is an open Wilson line. Another is the expression for a commutative field

strength tensor Fab in terms of the non-commutative gauge field Âa. Seiberg and

Witten derived differential equations that relate commutative and non-commutative

gauge transformations, gauge fields and field strengths. In the U(1) case we solve

these equations neglecting terms of fourth order in Â but keeping all orders in the

non-commutative parameter θkl.
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Non-commutative field theories are quantum field theories which live on a space-

time in which the coordinates do not commute:

[xi, xj] = i θij . (1)

Non-commutative gauge theories emerge naturally when considering the low energy

limit of open strings in the presence of a background B-field [1]–[6]. The low energy

effective action is obtained by considering the tree level scattering of massless open

string states. The zero slope limit is taken in such a way that the open string met-

ric and noncommutativity parameter θij remain finite [3]. In this limit the effective

action for the non-commutative gauge theory can be obtained from that of the or-

dinary gauge theory simply by replacing ordinary products of fields with Moyal or

?-products. The ?-product is defined by:

f(x) ? g(x) = exp

[
i

2
θij
∂

∂xi
∂

∂yj

]
f(x)g(y)

∣∣∣∣
x=y

. (2)

For instance, the non-commutative U(1) gauge theory action is

S = − 1
4g2

∫
d4x F̂ab ? F̂

ab , (3)

where the non-commutative gauge field strength is

F̂ab = ∂aÂb − ∂bÂa − i[Âa, ?Âb] . (4)

We have introduced the notation [A, ?B] ≡ A ? B − B ? A. In eq. (4), [Aa, ?Ab]
does not vanish because the ?-product is non commutative. The action in eq. (3) is

invariant under the infinitesmal non-commutative gauge transformation

δλ̂Âa = ∂aλ̂+ i[λ̂, ?Âa] ,

δλ̂F̂ab = i[λ̂, ?F̂ab] . (5)

Non-commutative field theories exhibit peculiar phenomena unlike that of local

quantum field theories. The action in eq. (3) is actually thought to be renormaliz-

able [8]–[20] even though it contains an infinite number of higher derivative operators.

Another peculiar phenomenon is UV-IR mixing [21]–[25]. The commutation relation

in eq. (1) gives rise to an uncertainty relation which forces objects which are localized

over a short distance in one space direction to be spread out over a long distance in

an orthogonal direction. Thus UV and IR modes of the theory are linked and the

usual decoupling of the ultraviolet from the infrared does not occur in these theories.

The appearance of Moyal products in the action of non-commutative gauge the-

ories is quite natural in light of the commutation relation in eq. (1). Since eq. (1)

is essentially identical to the commutation relation of annihilation and creation op-

erators, there is an isomorphism between functions f of ordinary coordinates and
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operators Of in the Hilbert space of annihilation and creation operators. To define
the map from ordinary functions to operators in Hilbert space, a prescription for

specifying the ordering of annihilation and creation operators in Of is needed. If
Weyl ordering is used to define this map, then it is easy to show that the Moyal

product of functions is isomorphic to ordinary operator multiplication (see e.g. [26]).

Higher order terms in the effective action for massless open string fields [27,

28], certain global anomalies in U(1) non-commutative gauge theories coupled to

matter [29] and the coupling of open strings to closed strings in the presence of

a background B-field [30, 31] exhibit a more complicated mathematical structure

than what is seen at tree level. Instead of the Moyal products the higher order

contributions to the effective action contain generalized ?-products such as

f(x) ?′ g(x) =
sin
(
∂1∧∂2
2

)
∂1∧∂2
2

f(x1)g(x2)

∣∣∣∣∣
xi=x

(6)

and

[f(x)g(x)h(x)]?3 =


sin

(
∂2∧∂3
2

)
sin
(
∂1∧(∂2+∂3)

2

)
(∂1+∂2)∧∂3

2
∂1∧(∂2+∂3)

2

+ (1↔ 2)

×

× f(x1)g(x2)h(x3)
∣∣∣∣
xi=x

, (7)

where

∂1 ∧ ∂2 = θij ∂
∂xi1

∂

∂xj2
. (8)

Note that ?′ is symmetric in f and g and ?3 is invariant under all permutations of
f, g and h, though this may not be obvious from eq. (7).

The appearance of these generalized ?-products in the effective action is some-

what confusing. First of all, the effective action does not manifestly respect the

non-commutative U(1) gauge symmetry of eq. (5). It is hard to believe that radia-

tive corrections do not respect the gauge symmetry of the tree level action. Second,

while the Moyal product can be simply understood as a consequence of the commu-

tation relation in eq. (1), the nature of these generalized ?-products remains unclear.

In this paper, we point out that the generalized ?-products also appear in the

expansion of gauge invariant operators constructed in [32, 33]. These operators are

local operators attached to open Wilson lines. Expanding the Wilson line to O(Â2) in

the gauge field we find the generalized ?-products in eqs. (6) and (7). This gives some

support to the conjecture of [27, 28] that there may be a way of rewriting the effective

action so that the non-commutative gauge symmetry is manifest. We also point out

that a specific gauge invariant operator is closely related to the solutions of the

Seiberg-Witten (SW) differential equation for the U(1) gauge theory. The solution
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of SW equation is a map between ordinary gauge fields and non-commutative gauge

fields which preserves the gauge equivalence classes of the respective theories. We

present a solution of the SW equation which is correct to all orders in θij and to

O(Â3) in the gauge field. This solution also exhibits the generalized ?-products.

We begin with a brief review of the gauge invariant operators introduced in [32,

33] (see also [34]). Non-commutative U(1) gauge theory with matter only in the

adjoint representation has no local gauge invariant operators. There are non-local

gauge invariant operators which are the Fourier transform of local operators attached

to an open Wilson line.

The Wilson line is defined by

W (x, C) = P? exp

(
−i
∫ 1
0

dσ
dζ i

dσ
Âi(x+ ζ(σ))

)
, (9)

where C denotes path parametrized by ζ i(σ), such that ζ i(0) = 0 and ζ i(1) = li.

P? denotes the usual path ordering with ordinary products of fields replaced by

?-products. The Wilson line transforms under non-commutative U(1) gauge trans-

formations as

W (x, C) −→ U(x) ? W (x, C) ? U(x+ l)† . (10)

Now consider a local operator constructed from the non-commutative gauge field

which transforms as

Ô −→ U(x) ? Ô ? U(x)† . (11)

An example of such an operator is Ô = F̂ab. The operator Õ with Fourier transform

Õ(FT) =
∫
d4x Ô ? W (x, C) ? eikx , (12)

is invariant under non-commutative gauge transformations [32, 33] provided we

choose li = θijkj .

Expanding the gauge invariant operator Õ to O(Â2), we obtain

Õ(FT) =
∫
d4x Ô ? W (x, C) ? eikx

=

∫
d4x Ô ?

[
1− i

∫ 1
0

dσ
dζ i

dσ
Âi(x+ ζ(σ))− (13)

−
∫ 1
0

dσ1

∫ 1
σ1

dσ2
dζj

dσ1

dζk

dσ2
Âj(x+ζ(σ1)) ? Âi(x+ζ(σ2)) + · · ·

]
? eikx.

The result of doing these integrals depends on the path chosen. We will choose the

path corresponding to a straight Wilson line: ζ i(σ) = θijkjσ. We then use

Âi(x+ θkσ) = e
−σk∧∂Âi(x) . (14)
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The integrals are over σi are simple and it is not hard to show that

Õ(FT) =
∫
d4x

[
Ô + θij∂j(Ô ?′ Âi) + 1

2
θijθkl∂j∂l[Ô Âi Âk] ?3 + · · ·

]
eikx . (15)

It is straightforward to check that the series inside the brackets of eq. (15) is gauge

invariant up to terms of O(Â2). Two identities which are useful for this are

θij∂if ?
′ ∂jg = −i[f, ?g] ,

f ?′ [g, ?h] + g ?′ [f, ?h] = iθij∂i[f g ∂jh] ?3 . (16)

Even though the definition of Õ was given in terms of ordinary ?-products its expan-

sion in powers of the non-commutative gauge field involves ?′- and ?3-products.
Next we briefly discuss the Seiberg-Witten map between ordinary gauge fields

and non-commutative gauge fields and show that the generalized ?-products also

appear in this map.

Non-commutative Yang-Mills is in fact equivalent to ordinary gauge theory per-

turbed by an infinite number of higher dimension operators. It is possible to show

that there exists a map between non-commutative gauge fields and ordinary gauge

fields which preserves the gauge equivalence classes of the respective theories, despite

the fact that the theories have two different gauge groups [3]. One way to demon-

strate this is to show that the two space-time theories can be obtained from the same

world sheet sigma model regulated in two different ways.

The relationship between the commutative gauge field and field strength and the

analogous non-commutative quantities depends on the parameter θkl. For θkl = 0,

Fab = F̂ab and Aa = Âa. It is possible derive differential equations for the gauge field,

gauge parameter and field strength as functions of θkl: [3]

δÂa = −1
4
δθkl
[
Âk ? (∂lÂa + F̂la) + (∂lÂa + F̂la) ? Âk

]
,

δλ̂ =
1

4
δθkl(∂kλ̂ ? Âl + Âl ? ∂kλ̂) ,

δF̂ab =
1

4
δθkl
[
2F̂ak ? F̂bl + 2F̂bl ? F̂ak − Âk ? (D̂lF̂ab + ∂lF̂ab)−
− (D̂lF̂ab + ∂lF̂ab) ? Âk

]
. (17)

In the remainder of this paper, we will refer to these equations as the Seiberg-Witten

(SW) equations.

In [3] the SW equations were solved for the special case of constant U(1) fields.

In [30], the equations were solved to O(Â2) by integrating along a special path in the

space of matrices θkl. Specifically, [30] takes the anticommuting parameter to be α θkl,

then integrates α from 0 to 1 with the boundary condition F̂ab(α = 0) = Fab, Âa(α =

0) = Aa and λ̂(α = 0) = λ. Note that the solution obtained by integrating the SW
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equation depends on the path of integration [35]. However, the path dependence can

be absorbed entirely into a field redefinition of the non-commutative gauge field. For

the case of a U(1) gauge theory, the solution for the field strength tensor is

Fab = F̂ab + θ
kl(Âk ?

′ ∂lF̂ab − F̂ak ?′ F̂bl) +O(Â3) . (18)

The result is exact in θ and correct to order O(Â2) in the fields. The l.h.s. of

eq. (18) is invariant under the ordinary U(1) gauge transformation. Since the SW

map preserves gauge equivalence classes, the r.h.s. of eq. (18) should be invariant

under non-commutative U(1) gauge transformations to O(Â). It is straightforward

to check that this is the case.

Integrating the SW equations to O(Â2) is straightforward because at this order

one can neglect the θkl dependence of Âa and F̂ab in eq. (17). Direct integration of

the SW equations is difficult at higher orders in Â. Below we will give a method

which allows one to obtain higher order solutions to the SW equations.

This method exploits the similarity of the solution to the SW equation and the

gauge invariant operator:

F̃
(FT)
ab =

∫
d4xF̂ab ? W (x, C) ? e

ikx

=

∫
d4x
[
F̂ab + θ

kl∂l(Âk ?
′ F̂ab) + · · ·

]
eikx

=

∫
d4x

[
F̂ab + θ

kl

(
Âk ?

′ ∂lF̂ab +
1

2
F̂lk ?

′ F̂ab

)
+ · · ·

]
eikx . (19)

Notice that one of the order O(Â2) terms in the expansion of F̃ab is identical to

an O(Â2) term in the solution to the SW equation for Fab given in eq. (18). This

is because both F̃ab and Fab are gauge invariant, and the term θ
klÂk ?

′ ∂lF̂ab is
necessary to ensure gauge invariance to O(Â). F̃ab and Fab differ by terms which

are by themselves gauge invariant to O(Â). A crucial difference between F̃ab and

Fab is that Fab is a field strength and therefore obeys the Bianchi identity while F̃ab
does not.

Using what we know about the gauge invariant operator F̃ab it is possible to

construct the O(Â3) solution to the SW equations. To the O(Â2) solution to the

SW equations for the field strength given in eq. (18) we add the O(Â3) term in the

expansion of F̃ab

F̂ab + θ
ij∂j(Âi ?

′ F̂ab) +
1

2
θijθkl∂i∂k[F̂ab Âj Âl] ?3 +

+ θij
(
1

2
F̂ab ?

′ F̂ij − F̂ai ?′ F̂bj
)
. (20)

The first three terms are gauge invariant to O(Â2). The remaining terms under a

gauge transformation give rise to an O(λ̂F̂ 2) term, which can be cancelled by adding
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terms O(ÂF̂ 2). Using the identities in eq. (16) it is easy to show that the following

quantity is gauge invariant to O(Â2):

F̂ab + θ
ij
(
∂j(Âi ?

′ F̂ab) +
1

2
F̂ab ?

′ F̂ij − F̂ai ?′ F̂bj
)
+

+
1

2
θijθkl

(
∂i∂k[F̂ab Âl Âj ] ?3 −∂k[F̂ij F̂ab Âl] ?3 +2∂k[F̂ai F̂bj Âl] ?3

)
. (21)

Equation (21) can be written as

θijθkl
(
1

2
[F̂aiF̂bjF̂kl] ?3 −1

8
[F̂abF̂ijF̂kl] ?3 −1

4
[F̂abF̂jkF̂il] ?3 +[F̂ikF̂alF̂bj]?3

)
+

+ ∂aAb − ∂bAa , (22)

where

Ab = Âb +
1

2
θijÂi ?

′ (∂jÂb + F̂jb) + (23)

+
1

2
θijθkl

[
−Âi ∂kÂb (∂jÂl + F̂jl) + ∂k∂iÂb Âj Âl + 2∂kÂi ∂bÂj Âl

]
?3 +O(Â

4) .

Since eq. (21) is gauge invariant to O(Â2), Ab must transform like an ordinary U(1)

gauge field up to terms O(Â3). Hence, Ab is a solution to the SW differential equation

for the gauge field. Explicitly δλAb = ∂bλ where,

λ = λ̂+
1

2
θijÂi ?

′ ∂jλ̂+
1

2
θijθkl

[
∂k∂iλ̂ Âj Âl + ∂kλ̂ Âi ∂lÂj

]
?3 +O(Â

3) . (24)

λ in eq. (24) is the solution to the SW differential equation for the gauge parameter.

The field strength constructed from the gauge field in eq. (23), Fab = ∂aAb−∂bAa, is
gauge invariant to O(Â2) and obeys the Bianchi identity. Using our previous results

it is easy to show that

Fab = F̂ab + θ
ij
(
∂j(Âi ?

′ F̂ab) +
1

2
F̂ab ?

′ F̂ij − F̂ai ?′ F̂bj
)
+

+
1

2
θijθkl

(
∂i∂k[F̂ab Âi Âj] ?3 −∂k[F̂ij F̂ab Âl] ?3 +2∂k[F̂ai F̂bj Âl] ?3

)
−

− θijθkl
(1
2
[F̂aiF̂bjF̂kl] ?3 −1

8
[F̂abF̂ijF̂kl] ?3 −1

4
[F̂abF̂jkF̂il] ?3 +[F̂ikF̂alF̂bj ] ?3

)
+

+O(Â4) . (25)

Fab in eq. (25) is the solution of the SW differential equation for the field strength.

In [36] a path integral representation of the map between commutative and non-

commutative gauge fields is derived. Explicit constructions of the Seiberg-Witten

map have also been obtained in [37, 38] and extended to the non-abelian case in [39].

In [36], a solution for Â(A) to O(A3) is obtained. The O(A2) part of the solution

in [36] is exact in θ and exhibits the ?′-product. However, the O(A3) part of the
solution in [36] is not exact in θ so does not have the ?3-product.
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The SW equations only involve ordinary ?-products. However we have seen that

the solution to these equations when expanded in powers of the non-commutative

gauge field involve ?′- and ?3-products. These generalized ?-products also appear in
the expansion of the gauge invariant Wilson line, as well higher orders in the effec-

tive action of non-commutative gauge theories and in the coupling of massless closed

string states to non-commutative gauge fields. Though existing calculations [27, 28]

of higher order terms in the effective action do not respect the non-commutative

gauge symmetry of the tree level action, the existence of similar structures in the

expansion of gauge invariant non-local quantities suggests that it should be pos-

sible to write down gauge invariant, albeit non local, expressions for the effective

action [27, 28].
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