SIAM J. SCI. STAT. COMPUT. © 1986 Society for Industrial and Applied Mathematics
Vol. 7, No. 2, April 1986 001

A DIRECT METHOD FOR COMPUTING HIGHER ORDER FOLDS*

ZHONG-HUA YANG?T AND H. B. KELLER%

Abstract. We consider the computation of higher order fold or limit points of two parameter-dependent
nonlinear problems. A direct method is proposed and an efficient implementation of the direct method is
presented. Numerical results for the thermal ignition problem are given.
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1. Introduction. This paper is concerned with the computation of special kinds
of singular points, which are called (simple) higher order fold or limit points. They
may arise in two parameter nonlinear problems of the form

(1.1) S, 1, x)=0

where A, u € R, x € X, a Banach space, and f is a C* mapping from RxRx X - X. A
problem in the theory of thermal ignition is one such problem [1], [2], [3] which we
treat. Two parameter nonlinear problems arise in many other physical applications [6],
[8]. The problem in thermal ignition has the form

Lx = h(Aﬁ M, x)’
Bx=0

1.2)

where L is a uniformly elliptic differential operator, B is a boundary operator, A is a
rate parameter, w is related to the activation energy, and h has the form

x
(1.3) h(A, pu,x)=A2A exp(l_‘_“x).
The solution x is the dimensionless temperature. Of particular interest are the values
Ao and p, which correspond to the loss of criticality in the exothermic reaction described
by (1.2). These values correspond to ““folds” or “limit” points.

Spence and Werner [10] proved that a cubic fold point (g, o, Xo) of f with regard
to A corresponds to a quadratic fold point (A, po, Xo, do) Oof an extended system, F,
of f, provided certain conditions are satisfied. They located the cubic fold by using a
continuation method [5] to compute the quadratic fold point of an “‘extended system”.
The main idea in this paper is to reduce a problem with cubic folds to a regular problem
by using a larger “double extended system™. We also present an efficient implementa-
tion for solving the larger ‘“double extended system”. Thus we locate a cubic fold
directly, without any continuation. Related techniques in [11] show how to find isolas
and cusps using extended systems.

In § 2 we give a brief review of simple fold points, the degree of a fold, and
extended systems. The main idea of our treatment of higher degree fold points is
contained in Theorem 2.1. The efficient implementation of Newton’s method is given
in § 3. In § 4 we give numerical results.
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2. Folds, degree of a fold, and extended systems. First we review some of the
definitions and the main results about folds. Let Y be a Banach space and consider
the C* mapping

{RX Y->Y,
(s ¥)=> F(p,y).

We use the notation F,(a), F,.(a), F,(a), F,,(a), F,,(a), F,,(a),- -, to denote the
partial Fréchet-derivatives of F at a=(pu, y)eRx Y. We denote the dual pairing of
yeY and Y€ Y* by .

DEFINITION 2.1. A point ao= (o, yo) ERX Y is a fold point of F (with respect
to w) if

(2.1) F(ay) =0,
(2.2) Ker F,(a,) #0,
(2.3) F, (a,) £ Range F,(a,).
DEFINITION 2.4. A fold point a, is a simple fold of F if in addition to (2.1)-(2.3)
(2.4a) dim Ker F,(a,) = codim Range F,(a,) = 1.
In this case there exist nontrivial ¢o€ Y and o€ Y* such that
(2.4b) Ker F,(ay) = {ado|a R},
(2.4¢) Range F,(a,) ={y € Y|¢oy =0}.

As is well known, near a simple fold point a,, the zero set of F, denoted by F~'(0),
is a smooth curve

L: FH0)NU ={[ u(s), y(s)1lls = so| = 8}.

Here U is a neighborhood of the fold point a,, § is positive and u(+), y(-) are smooth
mappings satisfying

m(so0) = po,  ¥(s0) =¥o, |m'(s)|+y'(s)[|>0.
Along I we have the identity
(2.5a) F(u(s), y(s))=0

and we can differentiate it with respect to s as many times as the smoothness of F

allows. In place of F,(u(s),y(s)), -, F,,(u(s),y(s)), we shall write
F,(s), -+, F,,(s). Then we get by differentiating in (2.5a)

(2.5b) F,(s)u'(s)+ F,(s)y'(s)=0, |s —so| < 8.
Obviously (2.3) and (2.4) imply from (2.5) evaluated at s,, that
(2.6a) u'(50) =0,

(2.6b) Y'(so) =ad, for some acR, a#0 (say a =1).

The first nonvanishing derivative of u(s) at s, determines the “degree” of the fold.
We formalize this in

DerFINITION 2.7. A simple fold point goeRX Y is said to have degree m if
d*u(se)/ds? =0 for all p<m and d™u(sy)/ds™ #0.

The result in (2.6) implies that all simple folds have degree two or greater. To
actually find the degree of a simple fold we need only differentiate further in (2.5a)
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or (2.5b) and find the first nonvanishing derivative of w(s) at s, =s. Thus from (2.5b)
we obtain

FL(s)u"(s)+ E,(5)y"(s)+ Fuu(s)m'(s)w'(s) +2F,, (s)p'(s)y'(s)
+Fyy(s)y'(s)y'(s)=0, |s —so| < 8.

With a simple fold at s =s, we use (2.6) and (2.4) in the above, apply ¢, and note
that (2.3) and (2.4c) imply ¢F, (s0) #0 to get

(2.5¢)

” ‘I’OFyy(sO)d)Od)O
2.7 ==
(2.7a) " (o) (f’oFy(so)
So a simple fold is of degree two if and only if
(2-7b) ¢0Fyy(s0)¢0¢0 # O°

We introduce the extended or inflated mapping

RXYXY->R+YXY,
Ip—1
G:
(w3, 0)>| F(up,y) |,
Fy(u,y)¢

where € Y* is chosen later on in § 3. It is not difficult to show (see [10, Thm. 2.1])
that if

(2.8)

(2.92) G(po, Yo, o) =0

and (o, yo) is a simple fold of F of degree two, then
0 0 l

(2.9b) DG°=| F, F$ 0

F(;)J.y¢0 ng(bo F?’

is nonsingular. As a consequence, the system G(pu, y, ¢) =0 can be solved by Newton’s

method in some neighborhood of (g, yo, #o). G( w1, y, d)=0 is called an extended
system for F(u,y)=0. Various kinds of extended systems have been used by different

authors [6], [9], [10] following their introduction by Keener and Keller in [4].
We next consider two parameter nonlinear problems involving the smooth mapping

RXRXX»X’
(2.10) f~{(A, w, X) > fOA, , x).

For some fixed value of u = u, we assume that
g(/\’ x) Ef(A, Mo, x) = 0

has a simple fold point (A, X,) with respect to A, according to Definitions 2.1 and 2.4.
We introduce, in exact analogy with (2.8), an extended system for f(A, u, x)=0
Ip—1
(2.11) F(A p,x, p)=| f(A, u,x) |=0.
fe(A, p, x)
Here F is a mapping from RXRX X XX to RX X X X. If we denote Y=Rx X xX

and y=(A,x, ¢) €Y, the extended system F(A, u,x, ¢)=0 can be written as
F(p,y)=0.
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Our main idea is to extend this extended system, F(u, A) =0, again and to get
the doubly extended system
Ld-1
(2.12) H(p,y,®)=| F(up,y) |=0
Fy(p, y)®

where ®e Y, Le Y*. A specific L= (0, [, 0) will be chosen later on in order to simply
(2.12). Using this system we obtain

THEOREM 2.13. Assume F, ¢ Range F. Then a third degree simple fold point
(Ao, o, Xo) Of f(A, u,x) with respect to A corresponds to a regular solution
(Ao, o, Xo, Do, V) Of the inflated system

lp —1
v
(2.14) f(A, m,x) |=0.
Lo, pm, x)
S+ frv

Proof. According to Spence and Werner [10, Thm. 3.1] a third degree fold point
(Ao, to, Xo) Of f(A, u, x) with respect to A corresponds to a second degree fold point
(105 Yo) = (Ao, Mo, X0, Bo) Of F(p, y)in (2.11) with respect to u provided F, £ Range F9.
Further applying [10, Thm. 2.1] to F(u,y) we get that a second degree fold point
(0, ¥o) of F(u,y) with respect to u corresponds to a regular solution (o, ¥o, ®o) of
the doubly extended system H(u,y, ®)=0 in (2.12) i.e. H(u,y,®)=0 is a regular
system at (uq, ¥o, ®o), provided Ld =1.

Next we show that the double extended system H(u,y, ®) =0 is equivalent to
(2.14) for a particular L. Let

&
Il
e = S

and choose L=(0, [,0). Then (2.12) becomes
(2.152) LO—-1=lu—-1=0,

(2.15b) lp—1

(2.15¢) F(u,y)=| f(A,p,x) |=0,

(2.15d) feA, p, x)

(2.15¢) 0 0 I\/o v \
(2.15f) F(u, )@= fi f OJjul= of\ + fu ):0,
(2.15g) fixbd fxb S \V Tfyxb + fxpu + frv

By Definition 2.1, we know that f, £ Range f at a fold point. From (2.15f): of, + fau =0.
We thus get =0 and then ue N(f;). From (2.15d) and Definition 2.4 of a simple
fold we have u = a¢,. Using this u in (2.15a) we get a =1 in order to satisfy (2.15b).
The solution of (2.15) is thus

Ao 0
(2.16) m=po, Y=Yo=|X |, P=0, oo |-

o Vo

I
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Here v, satisfies

lvy=0, f?cx¢0¢0 +f?cvo =0,
and w, and y, satisfy F( e, ¥o) =0. This shows that (A, o, Xo, @0, Vo) is also a solution
of (2.14).

On the other hand, if we know the solution (A, o, Xo, o, Vo) Of (2.14), we can
easily construct a solution of (2.15) as in (2.16). Actually we have reduced (2.15) to
(2.14), which is also a regular system, by choosing the particular L=(0,,0). O

Since the inflated system (2.14) is regular, we can solve it by using Newton’s
method. The solution of (2.14) is just the third degree fold point with respect to A of
the original two parameter nonlinear problem, f(A, u, x) =0.

We now turn to the efficient solutions of (2.14).

3. Efficient implementation of Newton’s method. After discretization (2.14)
becomes a finite-dimensional nonlinear system. Let x, ¢, ve E", the dimension of
(2.14) is actually 3n—2 because we can choose lp = ¢, =1, lv=0v,=0, where r is a
positive integer in 1= r = n. For convenience we shall choose r =1 and the discretized
system of (2.14) is denoted by the same notation. Newton’s method applied to (2.14)
yields:

0 0 0 1 0™ 'uu+1 —u”
0 0 0 0 ! PRARESD i
fp- fA f; 0 0 xv+l —x*
Sux® fixd St fi 0 ¢ - "
Juxxdd +fux¥0  fixxbd +fis0  foxdd + a0 2fad L v" M —0”
(3.1) et 1@
-l
= -f
—fxd
—fexp — fov

Here superscript (v) denotes evaluation of the coefficient matrix and the right-hand
side at (u”, A%, x”, ¢, v”). The starting value is (u°, A°, x°, ¢°, v°). We write du” =
/"V+l _/-L", SAV — )\V+l _)‘V’ qu ___xu+l ~xu’ 6¢v — ¢v+1 _¢V’ 61)’} — Uv+] _ UV.

In expanded form, and with the superscripts of (8u, 8A, 8x, 8¢, dv) suppressed,
(3.1) can be written as

(3.2) 8¢, =0,

(3.3) Sv,=0,

(3.4) Adx+6A-D,+8u-D,=C,,

(3.5) Adp+ 8\ - D+ 8- Dy +B,6x=C,,

(3.6) ASv+ 8\ - Ds+ Sy - Dg+2B,5¢ +B,6x =C,.

Here we have introduced
A=fA%p"x"),  Bi=fuA%, ", x")¢"%,
By =fox(A", 07, X") 7" + £ (A, w7, x”)07,
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Di=AA% 0" x"),  D=f(A%p" x7),
Dy =fix(A%, 1", x7)¢%,  Da=fux(A", 0%, x") %,
Ds=fixx(A", ", ") @%b + fix (X7, %, x") 07,
De=fuex(A", 1", X)) y" + fux (A7, 0%, X))V,
Ci==f(A% u"x"),  Co=—fA%, ", x")d",
Ci=—fu(A, ", x") 97" —f(A7, n7, x")0".

3.7)

Now let

SST = (aA, 6x2— axl(b;’ Y 6xn _8x1¢:),
6tT = (8/\, 6¢2a Y 6¢n)’
8rT =(8A, bvy, - - -, bV,),
and
d=(D,}A),

i.e., A with first column replaced by D,. We rewrite (3.4), (3.5), (3.6) as

(3.8) &«65 = C‘+6.Xx N Cz“’&ﬂ ‘ Dz,
(3.9) Adt = CZ_BISX""S/\ ° (D‘ _D3) - 8}.6 * D4,
(3.10) Adr=C;—2B,6¢ —B,8x+ A - (D, —Ds) — éu - Dg.

Close to the fold point, & will be nonsingular by [7, Thm. 1] with Px =x —x,¢" and
the condition (I — P)¢,# 0 is satisfied by the ¢, given in (2.4b). Thus (3.8) can be
solved for &s in terms of 6x, and Su. By solving Ja =C,, AB =C,, #¢ =D, we obtain

Os=oa+6x, - B—06u- &
ie.,
(3.11) A =a;+8x,- B,—du- &,
(3.12)  &xT=(8x), ar+ 8 (Bat b3) =B &y, 0, €+ 8%, (Bt D) — S &)
Substituting (3.11), (3.12) into (3.9) gives
A8t =C 4+ 8x, - Cs+ 8 - C,

where

C4= Cz"Bl a-z + al([Dl _D3)’

ﬁzf"’; +6,(D, ~Ds),

But &7
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0

Co=8, 7 |-&4®,-0,)-D,

&n
Then (3.9) can be solved for 6¢ in terms of 8x, and 8u. By solving oy =C,, &n =C;,
AL =C¢ we get
St=y+68x,-n+déu-¢

ie.,
(3.13) 8/\ = ‘yl+5x1 . 7]1+6/.L N gl’
(314) 8¢T=(0, 72+8x1 . 1’2+8/" “lo s Yn+6x1 ’ nn+6l" . gn)

Substituting (3.11), (3.12), (3.14) into (3.10) gives
.S?fﬁr = C7 + 8x1C8+ 8/.LC9,

where
0 0
C,+C,—28,| 7 |-B,| T |+ 2,0, D),
vl e
0 1
co=—28,| " |-, ** |4 5,0, -y,
n)  \B.to
0 0
Co=—2B, {:2 +B, '522 —Dg— £(D, — D).
o e

Now (3.10) can be solved for r in terms of 6x, and Su. By solving oe =C,, oo =C;,
AL =Cy we get:

r=e+6x, - o+éu-

Thus
(3.15) SA =g, +6x, o +8u- 1,
(3.16) 80T =(0, £+ 8%, - 0+ 8- T, 0, Ent OX,  0ut S T,).

Finally we solve for 8A, du and éx, from (3.11), (3.13), (3.15) and we get 8x, 8¢, Sv
by substituting 8A, du and 6x, into (3.12), (3.14), (3.16). This concludes one step of
Newton’s method (3.1) applied to (2.14). Our indicated algorithm for solving the linear
system defining the Newton iterates is similar to one proposed in [7].

4. Numerical example. We consider the boundary value problem

(4.1a) SA, w, x)=x"+A exp ( a ) =0,
1+ ux

(4.1b) x(0)=x(1)=0
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which describes an exothermic chemical reaction in an infinite slab [3]. It is discretized
on the mesh ¢;=jh, j=0,1,2,-- -, n+1 using the Collatz Mehrstellenverfahren:

2
x(tj—l) —2x(tj) + x(tj+1) _il_z[x”(tj—l) + IOx"(tj) + x"(tjﬂ)] = hzx”(tj) + O(h6)-

The discretized form of (4.1) is thus:
(4.2) Ax+E(A, u,x)=0, xg=X,+,=0, xeR",
where

(4.33) EE (El’ Y En)’;

h? Xi—1 ) ( Xi ) ( Xi+1 )]
4.3b E=—-]A —)+10 + —_
( ) 12 [exp (1 + ux;_, xp 1+ px; xp 1+ ux;i,
-2 1 0 - - -

(4.3¢) A=

The double extended system now has the form

I —1
Ax+E(A, u, x)
(4.4) [A+E (A, p, x)]¢ =0.
E (A, u, x) b +[A+ E(A, u, x)]v
Iv

We choose [ so that Ip = ¢, Iv=1,, where m=(n+1)/2. (Of course we must
choose n odd.) The calculation of each Newton’s step requires solving nine nXn
systems with the same coefficient matrix. The results of computation are given in tables
1, 2 and 3. They show good agreement with the results in [10].
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