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A DIRECT METHOD FOR COMPUTING HIGHER ORDER FOLDS*

ZHONG-HUA YANG AND H. B. KELLER

Abstract. We consider the computation of higher order fold or limit points of two parameter-dependent
nonlinear problems. A direct method is proposed and an efficient implementation of the direct method is
presented. Numerical results for the thermal ignition problem are given.
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1. Introduction. This paper is concerned with the computation of special kinds
of singular points, which are called (simple) higher order fold or limit points. They
may arise in two parameter nonlinear problems of the form

(1.1) f(A,/, x) 0

where A,/ , x X, a Banach space, and f is a C mapping from x x X --> X. A
problem in the theory of thermal ignition is one such problem [1], [2], [3] which we
treat. Two parameter nonlinear problems arise in many other physical applications [6],
[8]. The problem in thermal ignition has the form

Lx h(A,/x, x),
(1.2)

Bx 0

where L is a uniformly elliptic differential operator, B is a boundary operator, A is a
rate parameter,/ is related to the activation energy, and h has the form

(1.3) h(A, p, x)= A exp (1...?X.x).
The solution x is the dimensionless temperature. Of particular interest are the values
Ao and o which correspond to the loss of criticality in the exothermic reaction described
by (1.2). These values correspond to "folds" or "limit" points.

Spence and Werner 10] proved that a cubic fold point (Ao,/Xo, Xo) off with regard
to A corresponds to a quadratic fold point (Ao,/Xo, Xo, 4o) of an extended system, F,
of f, provided certain conditions are satisfied. They located the cubic fold by using a
continuation method [5] to compute the quadratic fold point of an "extended system".
The main idea in this paper is to reduce a problem with cubic folds to a regular problem
by using a larger "double extended system". We also present an efficient implementa-
tion for solving the larger "double extended system". Thus we locate a cubic fold
directly, without any continuation. Related techniques in 11 show how to find isolas
and cusps using extended systems.

In 2 we give a brief review of simple fold points, the degree of a fold, and
extended systems. The main idea of our treatment of higher degree fold points is
contained in Theorem 2.1. The efficient implementation of Newton’s method is given
in 3. In 4 we give numerical results.
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2. Folds, degree of a fold, and extended systems. First we review some of the
definitions and the main results about folds. Let Y be a Banach space and consider
the C mapping

Y- Y,
F"

(Ix, y --> F Ix,y

We use the notation F, (a), F,, (a), Fy(a), F,y(a), Fyy (a), Fyyy a),. ., to denote the
partial Fr6chet-derivatives of F at a (Ix, y) R x Y. We denote the dual pairing of
y Y and q Y* by q,y.

DEFiNiTION 2.1. A point ao (Ixo, Yo) Y is a fold point of F (with respect
to Ix) if

(2.1) F(ao) :0,

(2.2) Ker Fe(ao) # 0,

(2.3) F,(ao) - Range F(ao).
DEFINITION 2.4. A fold point ao is a simple fold of F if in addition to (2.1)-(2.3)

(2.4a) dim Ker Fr(ao)= codim Range F(ao)= 1.

In this case there exist nontrivial bo Y and qo Y* such that

(2.4b) Ker Fy(ao) {otdpola },

(2.4c) Range Fr(ao) {y YIq’oY 0}.

As is well known, near a simple fold point ao, the zero set of F, denoted by F-l(0),
is a smooth curve

F: F-’(O) fq U {[ t(s), y(s)]llS Sol <-_ 6}.

Here (J is a neighborhood of the fold point ao, 6 is positive and Ix (.), y(. are smooth
mappings satisfying

Ix(So)=Ixo, y(so)=Yo, I’(s)l/lly’(s)ll>O.

Along F we have the identity

(2.5a) F(Ix(s), y(s))=0

and we can differentiate it with respect to s as many times as the smoothness of F
allows. In place of F,(Ix(s),y(s)),. .,Fyyy(Ix(s),y(s)), we shall write
F($),""", Fyyy(S). Then we get by differentiating in (2.5a)

(2.5b) F,(s)Ix’(s)+Fy(s)y’(s)=-O, IS-Sol<&
Obviously (2.3) and (2.4) imply from (2.5) evaluated at So, that

(2.6a) tx’(So) =0,

(2.6b) y’(so) a4o for some a R, a 0 (say a 1).

The first nonvanishing derivative of Ix(s) at So determines the "degree" of the fold.
We formalize this in

DEFINITION 2.7. A simple fold point aoX Y is said to have degree m if
dPIx(So)/dsp --0 for all p < m and d"Ix(So)/ds" #0.

The result in (2.6) implies that all simple folds have degree two or greater. To
actually find the degree of a simple fold we need only differentiate further in (2.5a)
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or (2.5b) and find the first nonvanishing derivative of z(s) at So s. Thus from (2.5b)
we obtain

F, (s)l"(s) + Fy(s)y"(s) + Fro, (s)la,’(s)tz’(s) + 2F,y (s)/x’(s)y’(s)
(.5c)

+Fyy(S)y’(s)y’(s)=O, Is- ol< .
With a simple fold at s So we use (2.6) and (2.4) in the above, apply qo and note
that (2.3) and (2.4c) imply qoF,(So)SO to get

(2.7a) z"(So)--
FyY(S)66
qoF so)

So a simple fold is of degree two if and only if
(2.7b) toFyy(So)oo O.

We introduce the extended or inflated mapping

x Yx Y-+ Yx Y,

(2.8) G: (it, y, b)- F(/x, y)
Fy tz, Y qb

where l Y* is chosen later on in 3. It is not difficult to show (see [10, Thm. 2.1])
that if

(2.9a) G(/Xo, Yo, bo) 0

and (tXo, Yo) is a simple fold of F of degree two, then

o o(2.9b) DG F. Fy 0
o o oFwyqbo Fyypo Fy

is nonsingular. As a consequence, the system G( tz, y, b) 0 can be solved by Newton’s
method in some neighborhood of (/Zo, Yo, bo). G(/z, y, b)=0 is called an extended
system for F(/x, y) 0. Various kinds of extended systems have been used by different
authors [6], [9], [10] following their introduction by Keener and Keller in [4].

We next consider two parameter nonlinear problems involving the smooth mapping

x R x X---> X,
(2.10) f’( (A, t, x) -f(A, t, x).

For some fixed value of t to we assume that

g(A, x)=- f(A, lo, x) =O

has a simple fold point (Ao, Xo) with respect to A, according to Definitions 2.1 and 2.4.
We introduce, in exact analogy with (2.8), an extended system for f(A, t, x)=0

[ 14b-i
(2.11) F(A,/, x, b)-= / f(A,/, x) | =0.

\fx(A, i, x)ck]
Here Fis amapping fromXX to XX. If we denote Y=XX
and y -= (A, x, 4) e Y, the extended system F(A, t, x, 4) 0 can be written as
F(/x, y) 0.
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Our main idea is to extend this extended system, F(, A)= 0, again and to get
the doubly extended system

(2.12) H(/x, y, ) =- F(/x, y) / 0

Fy l, Y d/
where Y, L Y*. A specific L =- (0, l, 0) will be chosen later on in order to simply
(2.12). Using this system we obtain

THEOREM 2.13. Assume F : Range Fy. Then a third degree simple fold point
(Ao,/Zo, Xo) of f(A,/x,x) with respect to A corresponds to a regular solution
(Ao, tZo, Xo, Cho, Vo) of the inflated system

(2.14) / f(A, Ix, x) /=0.
\ L4,4, +Lvl

Proof. According to Spence and Werner [10, Thm. 3.1] a third degree fold point
(Ao,/Xo, Xo) of f(A,/z, x) with respect to A corresponds to a second degree fold point
(/Zo Yo) (Ao /Xo Xo bo) of F(tz, y)in (2.11) with respect to /z provided F Range F
Further applying [10, Thm. 2.1] to F(/x, y) we get that a second degree fold point
(tZo, Yo) of F(/x, y) with respect to/z corresponds to a regular solution (/Xo, Yo, @o) of
the doubly extended system H(/x, y, )=0 in (2.12) i.e. H(/z, y, )=0 is a regular
system at (/Zo, Yo, o), provided L 1.

Next we show that the double extended system H(/x, y, )= 0 is equivalent to
(2.14) for a particular L. Let

= u

and choose L= (0, l, 0). Then (2.12) becomes

(2.15a)

(2.15b)
(2.15c)
(2.15d)

(2.15e)
(2.15f)
(2.15g)

L- I lu-1 =0,

F(/x, y) / f(A,/x, x) ) 0,

\L(, , x)4,

Fy(/Z, y) f f trfa+fxU
x6 fxx4 \Lx6 +fxx4U +Lv

By Definition 2.1, we know thatf Range fx at a fold point. From (2.150: rf +f,u =0.
We thus get tr=0 and then u N(f,,). From (2.15d) and Definition 2.4 of a simple
fold we have u cbo. Using this u in (2.15a) we get a 1 in order to satisfy (2.15b).
The solution of (2.15) is thus

(2.16) /=/Xo, Y=Yo=- Xo =o--- 4)0

o/ Vo



DIRECT METHOD FOR HIGHER ORDER FOLDS 355

Here Vo satisfies

lvo O, fx,,dpoCko+fvo=O,

and/Zo and Yo satisfy F(/Xo, Yo) 0. This shows that (ho,/Xo, Xo, bo, Vo) is also a solution
of (2.14).

On the other hand, if we know the solution (ho,/Xo, Xo, bo, Vo) of (2.14), we can
easily construct a solution of (2.15) as in (2.16). Actually we have reduced (2.15) to
(2.14), which is also a regular system, by choosing the particular L= (0, l, 0). D

Since the inflated system (2.14) is regular, we can solve it by using Newton’s
method. The solution of (2.14) is just the third degree fold point with respect to h of
the original two parameter nonlinear problem, f(h,/z, x) 0.

We now turn to the efficient solutions of (2.14).

3. Efficient implementation of Newton’s method. After discretization (2.14)
becomes a finite-dimensional nonlinear system. Let x, b, v E", the dimension of
(2.14) is actually 3n-2 because we can choose lb =br 1, Iv= vr=0, where r is a
positive integer in 1 -<_ r <= n. For convenience we shall choose r 1 and the discretized
system of (2.14) is denoted by the same notation. Newton’s method applied to (2.14)
yields:

(3.1)
-lch+ 1

[-fx 4 4)

(,)

Here superscript (v) denotes evaluation of the coefficient matrix and the right-hand
side at (/,
/x -/x 6A =h -h 6x =x -x ,6v =v -v.

In expanded form, and with the superscripts of (6Ix, 6A, 6x, 6qb, 6v) suppressed,
(3.1) can be written as

(3.2) ab =0,

(3.3) a/ =0,

(3.5)

(3.6) 6v + 6A D5 + 6/x D6+26b+6x C3.
Here we have introduced

x )6

v, X q v, Xa2=fx,x(A v,/x )b "+Lx(A /x )v
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(3.7)

Nowlet

and

,Ss r (i,, ix_ ix#,. ., ix, ,Sx #, ),

Bt T (BA, iq2, ", ib.),

BrT SA, BY2, ", 6V. ),

(,’ ),

i.e.,/ with first column replaced by D1. We rewrite (3.4), (3.5), (3.6) as

(3.8)

(3.9)

(3.10)

M6s C1 + Sxl C2- 6/x

MBt C2-BIX-t- 6A, (D-D3)-6/z"

M6r=C3-2I6qb -25x + 6A (D-Ds) 6/x. D6.

Close to the fold point, M will be nonsingular by [7, Thm. 1] with Px x- Xl(]) and
the condition (I-P)CboO is satisfied by the bo given in (2.4b). Thus (3.8) can be
solved for Ss in terms of Bx and 5/x. By solving Ma C1, M/3 C2, M: D2 we obtain

(3.11)

(3.12)

Ss a +x /3 8t," :,

ax (ax,, +x,(/+ ;)-. ,..., .+ x,(.+ 6)- a. .).

Substituting (3.11), (3.12) into (3.9) gives

Mat C4+ aX C + 6" C6,

where

0

C4 C2 1 !2 + a(9-93),

1 /+6c=-a, 2.
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0

C6 B1 ..2 1()1 -[])3) -[])4.

Then (3.9) can be solved for 6t in terms of 6Xl and 6/.. By solving My C4, ,’/ C5,
M" C6 we get

(3.13)

(3.14)

6t y + 6Xl r/+ 6/x. sr,

6A ’Y1 + 6Xl */1 + 6tZ" ’1,

61t) r (0, Y2 + Xl 2+" 2," Yn + Xl n +" n).

Substituting (3.11), (3.12), (3.14) into (3.10) gives

d6r C7 + 6x1C + 6C9,
where

0 0

C7 -- C 2B1 72
B2

a2 -- OI(D1 D7),

Now (3.10) can be solved for 6r in terms of 6X and 6/x. By solving Me C7, ,0"--C8,
Msr C9 we get:

Thus

(3.15)

(3.16)

6r e + 6X O" + 6].1, 7".

6A 61 + 6X O" + 6[.1, 7"1,

31) T (0, 17,2 -- 6X2 0"2 + 6[d, 7"2, E ql_ 6X 0"n + 6[d, 7"n )"

Finally we solve for 31, 6/x and 6X from (3.11), (3.13), (3.15) and we get 6x, 6oh, 6v
by substituting 31, 6/x and 6Xl into (3.12), (3.14), (3.16). This concludes one step of
Newton’s method (3.1) applied to (2.14). Our indicated algorithm for solving the linear
system defining the Newton iterates is similar to one proposed in [7].

4. Numerical example. We consider the boundary value problem

(4.1a) fCA, l,x)=--x"+A exp
l+/xx

(4.1b) x(0) x(1) =0
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which describes an exothermic chemical reaction in an infinite slab [3]. It is discretized
on the mesh tj =jh, j 0, 1, 2, , n + 1 using the Collatz Mehrstellenverfahren:

h2

X(tj_l) 2x( tj)-F X(tj+l) -i- IX"(tj_l) -I- 10x"(tj) d- X"( tj+l)] h2x"( tj) -F O(h6).

The discretized form of (4.1) is thus"

(4.2) Ax+E(A,z,x)=O, xo=x,/=O,

where

(4.3a) E=(E,. ,E,) r,

(4.3b) +expE, - A exp
1 -i-1’ + 10 exp

1 + txxi 1

(4.3c) A--

(-2 1 0 01
1 -2 1 0

1. 0

1 "-2
1 -2

The double extended system now has the form

(4.4)

1- 1

Ax + E(A, lz, x)
[A + Ex(A, tx, x)]ch =0.

Exx(A, be, x) +[A+ E,,(A,/x, x)]v
lv

We choose so that hh th,, lv= v,, where rn (n + 1)/2. (Of course we must
choose n odd.) The calculation of each Newton’s step requires solving nine n x n
systems with the same coefficient matrix. The results of computation are given in tables
1, 2 and 3. They show good agreement with the results in [10].

REFERENCES

1] N. W. BAZLEY AND G. C. WAKE, The disappearance of criticality in the theory of thermal ignition, Z.
Angew. Math. Phys., 29 (1979), pp. 971-976.

[2] T. BODDINGTON, P. GRAY AND C. ROBINSON, Thermal explosions and the disappearance ofcriticality
at small activation energies: exact results for the slab, Prov. Roy. Soc. London A., 368 (1979), pp.
441-468.

[3] D. W. FRADKIN AND G. C. WAKE, The critical explosion parameter of thermal ignition, J. Inst. Math.
Appl., 20 (1977), pp. 471-484.

[4] J. P. KEENER AND H. B. KELLER, Perturbed bifurcation theory, Arch. Rational Mech. Anal., 50 (1973),
pp. 159-175.

[5] H. B. KELLER, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Application of
Bifurcation Theory, P. H. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359-384.

[6] H. B. KELLER AND R. K.-H. SZETO, Calculation offlows between rotating disks, Computing Methods
in Applied Sciences and Engineering, Proc. 4th International Symposium, Versailles, 1979, North-
Holland, Amsterdam, 1980, pp. 51-61.

[7] G. MOORE AND A. SPENCE, The calculation of turning points of nonlinear equations, SIAM J. Numer.
Anal., 17 (1980), pp. 567-576.



DIRECT METHOD FOR HIGHER ORDER FOLDS 361

[8] W. H. RAY, Bifurcation and stability problems in astrophysics, in Application of Bifurcation Theory,
P. H. Rabinowitz, ed., Academic Press, New York, 1977, pp. 285-315.

[9] R. SEYDEL, Numerical computation of branches in nonlinear equations, Numer. Math., 33 (1979), pp.
339-352.

[10] A. SPENCE AND B. WERNER, Non-simple turning points and cusps, IMA J. Numer. Anal., 2 (1982)
pp. 413-427.

[11] A. JEPSON AND A. SPENCE, Folds in solutions of two parameter systems and their calculation: Part I.,
SIAM J. Numer. Anal., 22 (1985), pp. 347-368.


