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Unconstrained Receding-Horizon Control of
Nonlinear Systems

Ali Jadbabaie, Jie Yu, and John Hauser

Abstract—It is well known that unconstrained infinite-horizon optimal
control may be used to construct a stabilizing controller for a nonlinear
system. In this note, we show that similar stabilization results may be
achieved using unconstrained finite horizon optimal control. The key
idea is to approximate the tail of the infinite horizon cost-to-go using,
as terminal cost, an appropriate control Lyapunov function. Roughly
speaking, the terminal control Lyapunov function (CLF) should provide
an (incremental) upper bound on the cost. In this fashion, important
stability characteristics may be retained without the use of terminal
constraints such as those employed by a number of other researchers.
The absence of constraints allows a significant speedup in computation.
Furthermore, it is shown that in order to guarantee stability, it suffices to
satisfy an improvement property, thereby relaxing the requirement that
truly optimal trajectories be found. We provide a complete analysis of the
stability and region of attraction/operation properties of receding horizon
control strategies that utilize finite horizon approximations in the proposed
class. It is shown that the guaranteed region of operation contains that of
the CLF controller and may be made as large as desired by increasing the
optimization horizon (restricted, of course, to the infinite horizon domain).
Moreover, it is easily seen that both CLF and infinite-horizon optimal
control approaches are limiting cases of our receding horizon strategy.

The key results are illustrated using a familiar example, the inverted pen-
dulum, where significant improvements in guaranteed region of operation
and cost are noted.

Index Terms—Control Lyapunov functions (CLFs), model predictive
control, nonlinear control design, optimal control, receding horizon
control.

I. INTRODUCTION

Receding horizon control strategies, also known as model predictive
control (MPC),havebecomequitepopularrecently.This interest ispartly
due to theavailability of fasterand cheaper computersaswell as efficient
numerical algorithms for solving optimization problems. Another key
advantage of these strategies is the potential ability to handle control
saturations. Many of the successful applications of receding horizon
control methods have been in the area of chemical process control. This
is due, in part, to the fact that a number of important industrial chemical
processes are open-loop stable so that stability is not a primary concern
for many of these methods. However, application of these methods to
unstable plants has appeared to be more difficult. Several researchers
have attempted to address the problem of stability for receding horizon
control toallow itsapplication instabilitycriticalareas.

Keerthi and Gilbert [10] imposed a terminal state equality constraint
x(t + T ) = 0. This results in a finite-horizon optimization problem
which turns out to be computationally demanding. Michalska and
Mayne [13] ensured closed-loop stability by requiring thatx(t + T )
enters a suitable neighborhood of the origin and then the control
law is switched to a locally stabilizing linear controller. Another
approach proposed by Parisini and Zoppoli [15] and later by Chen
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and Allgöwer [5], is based on using a quadratic endpoint penalty of
the formax(t + T )TPx(t + T ) for somea > 0 and some positive
definite matrixP . In a more recent paper by Magni and Sepulchre
[12] and later by De Nicolaoet al. [14], stability of the receding
horizon scheme is guaranteed (for continuous-time and discrete-time
systems, respectively) by using a (possibly nonquadratic) end point
penalty which is the cost incurred if a locally stabilizing linear control
law is applied at the end of the time horizonT . The linear control law
ensures local exponential stability of the equilibrium atx = 0, and
it is assumed that the region of attraction of the linear controller is
large enough that can be reached from the initial condition within the
time interval[0; T ]. Moreover, it is assumed that the optimization is
performed overadmissiblecontrol sequences, i.e., control sequences
which guarantee that at the end of the horizon the state has reached a
suitable neighborhood of the origin which is an exponential stability
region for the linear controller. In other words, a state inequality
constraint is implicitly imposed.

An approach for the receding horizon control of globally stabiliz-
able nonlinear systems was developed by Primbset al. [16]. In this
approach, first a globally stabilizing control law is achieved by finding
a global control Lyapunov function (CLF). Once the global CLF is ob-
tained, stability of the receding horizon controller is guaranteed by in-
cluding additional state constraints that require the derivative of the
CLF along the receding horizon trajectory to be negative and also that
the decrease in the value of the CLF be greater than that obtained using
the controller derived from the CLF. There are a variety of methods
that can exploit system structure, e.g., differential flatness and back-
stepping, to construct suitable CLFs. Although the current results rely
on a global CLF, it is clear that local versions of this approach may be
developed.

An alternative approach was developed by the authors in [9], [8].
This approach obtains stability guarantees through the use of ana priori
CLF as a terminal cost rather than by imposing state inequality (or
equality) constraints. The attendant speedup in calculations can be dra-
matic. Moreover, stability continues to be guaranteed as long as the
CLF is an (appropriate) upper bound on the cost-to-go.

The terminalcostshould be thought of as anapproximationto the
(infinite horizon) value function rather than as a terminalpenalty. In-
deed, simulation results in [8] indicate that, contrary to what one might
think, a mere upper bound on the cost-to-go does not generally provide
an appropriate terminal cost.

Since it is rarely possible to obtain a global CLF (as most systems are
not even globally stabilizable), it isdesirable to be able to estimate the re-
gionofattractionofarecedinghorizoncontroller.Inparticular,onewould
like to know whether region of attraction (or operation) estimates for the
receding horizon system contain those of the CLF controlled system and
to what extent these regions may be expanded, e.g., to the regions for the
infinitehorizoncontroller,by increasingthehorizonlength.

These issues are completely addressed in this paper.
This paper is organized as follows. The problem setting is described

in Section II. In Section III, we explore the important relationships be-
tween an infinite horizon optimal control problem and its finite horizon
approximations and present the main results. The optimality condition
is replaced by an improvement property in Section IV. The key results
are illustrated in Section V using an inverted pendulum example. Fi-
nally, our conclusions are presented in Section VI.

II. PROBLEM SETTING

The nonlinear system under consideration is

_x = f(x; u)
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where the vector fieldf : n � m ! n is C2 and possesses a
linearly controllable critical point at the origin, e.g.,f(0; 0) = 0 and

(A; B) := D1f(0; 0), D2f(0; 0) is controllable. We require the

setf(x; m) � n to be convex for eachx 2 n. Given an initial
statex and a control trajectoryu(�), the state trajectoryxu(�; x) is the
(absolutely continuous) curve inn satisfying

x
u(t; x) = x+

t

0

f x
u(� ; x); u(�) d�

for t � 0. We require that the trajectories of the system satisfy ana
priori bound

kx(t)k � �(x; T; ku(�)k1) <1; t 2 [0; T ]

where� is continuous in all variables and monotone increasing inT

andku(�)k1 = ku(�)kL (0; T ). Most models of physical systems will
satisfy a bound of this type.

The performance of the system will be measured by a given incre-
mental costq: n� m ! that isC2 and fully penalizes both state
and control according to

q(x; u) � cq(kxk
2 + kuk2); x 2 n

; u 2 m

for somecq > 0 andq(0; 0) = 0. We further require that the function
u 7! q(x; u) be convex for eachx 2 n. These conditions imply
that the quadratic approximation ofq at the origin is positive–definite,
D2q(0; 0) � cqI > 0.

We will also suppose thatf and q are sufficiently compatible to
uniquely define aC2 Hamiltonian for the (optimized) system. In partic-
ular, we will require that there is aC2 functionu�: n � n ! m:
(x; p) 7! u�(x; p) providing a global minimum of the pre-Hamil-
tonianK(x; p; u) := pT f(x; u) + q(x; u) so that the Hamiltonian

H(x; p) := K x; p; u�(x; p) is C2. Such au�(�; �) is locally
guaranteed by the implicit function theorem (though we would require
f; q 2 C3). Note that this condition is trivially satisfied for control
affine f and quadraticq] for thenu 7! K(x; p; u) is strictly convex
andreal analytic].

The cost of applying a controlu(�) from an initial statex over the
infinite-time interval[0; 1) is given by

J1 x; u(�) =
1

0

q x
u(� ; x); u(�) d�:

The optimal cost (fromx) is given by

J
�
1(x) = inf

u(�)
J1 x; u(�)

where the control functionsu(�) belong to some reasonable class of
admissible controls (e.g., piecewise continuous). The functionx 7!
J�1(x) is often called theoptimal value functionfor the infinite horizon
optimal control problem. For the class off andq considered, we know
that J�1 is a positive definiteC2 function on a neighborhood of the
origin. This follows from thegeometryof the corresponding Hamil-
tonian system [19], [20]. In particular, since(x; p) = (0; 0) is a hy-
perbolic critical point of the Hamiltonian vector fieldXH(x; p) :=

D2H(x; p), �D1H(x; p)
T

, the local properties ofJ�1 are deter-
mined by the linear-quadratic approximation to the problem and, more-
over,D2J�1(0) = P > 0 whereP is the stabilizing solution of the
appropriate algebraic Riccati equation.

For practical purposes, we are interested in approximating the infi-
nite horizon optimization problem with one over a finite horizon. In

particular, letV be a nonnegativeC2 function and define the finite
horizon cost [fromx usingu(�)] to be

JT x; u(�) =
T

0

q x
u(� ; x); u(�) d� + V x

u(T ; x)

and denote the optimal cost (fromx) as

J
�
T (x) = inf

u(�)
JT x; u(�) :

As in the infinite horizon case, one can show, by geometric means,
that J�T is locally smooth (C2). Other properties, e.g., local positive
definiteness, will depend on the choice ofV andT .

Let �1 denote the domain ofJ�1 (the subset of n on whichJ�1
is finite). It is not too difficult to show that the cost functionsJ�1 and
J�T , T � 0 are continuous functions on�1 using the same arguments
as in [1, Prop. 3.1]. We make the following assumption.

Standing Assumption (SA):The minimum value of cost functions
J�1, J�T , T � 0, is attained.

The assumption (SA) guarantees the existence of an optimal trajec-
tory

x
�
T (t; x); u

�
T (t; x) ; t 2 [0; T ]

such that

JT x; u
�
T (�; x) = J

�
T (x):

Continuity ofu�T (:; x) follows directly from Pontryagin’s Maximum
Principle. This trajectory is not necessarily unique. In fact, in examples
one finds two trajectories of equal (minimal) cost originating at points
whereJ�T is only continuous (and not differentiable). Under assump-
tions of the sort given (convexity, boundedness, etc.), one can turn (SA)
into a proposition. This involves the use of techniques from regularity
theory and the direct methods of the calculus of variations, see [4] and
[3].

It is easy to see thatJ�1 is proper on its domain so that the sublevel
sets

�1r := fx 2 �1: J�1(x) � r
2g

are compact and path connected and moreover�1 =
r�0 �

1
r . Note

also that�1 may be a proper subset ofn since there may be states
that cannot be driven to the origin. We user2 (rather thanr) here to
reflect the fact that our incremental cost is quadratically bounded from
below. We refer to sub-level sets ofJ�T andV using

�Tr := path connected component offx 2 �1: J�T (x) � r
2g

containing0

and


r := path connected component offx 2 n: V (x) � r
2g

containing0:

III. I NFINITE AND FINITE HORIZON OPTIMIZATION

In this section, we explore some of the relationships between an infi-
nite-horizon optimal control problem and its finite-horizon approxima-
tions. We will show that the use of an appropriate terminal cost allows
us to retain desirable features of the infinite-horizon problem.

A. Infinite Horizon Properties

What infinite horizon problem properties are interesting for finite
horizon approximations and, in particular, are useful for receding
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horizon strategies? This is a question that we intend to answer in this
section.

Let (x�1; u�1)(�; x) be any optimal trajectory originating atx.
Then, for any� > 0, we have

J�1 x�1(�; x) =J�1(x)�
�

0

q x�1(� ; x); u�1(� ; x) d�:

(1)

Since, by (SA),� 7! u�1(� ; x) is continuous for� � 0, we see that

lim
�&0

J�1 x�1(�; x) � J�1(x)

�

= �q x; u�1(0; x) � �cqkxk
2

so thatJ�1 possesses a well defined (negative–definite) directional
derivative ineachoptimal directionf x; u�1(0; x) . In fact, we may
write

_J�1 x; u�1(0; x) + q x; u�1(0; x) = 0 (2)

where _J�1(x; u) is the directional derivative ofJ�1 in the direction
f(x; u) (when it exists). [At points of differentiability,_J�1(x; u) =
DJ�1(x) � f(x; u)].

We conclude that each sub-level set�1r , r > 0, is positively in-
variant under optimal actions, both incremental (� > 0) and infin-
itesimal. Also, in all cases, these sets are attracted to the origin ex-
ponentially fast. In particular, the (not necessarily unique) feedback
u = k1(x) := u�1(0; x) exponentially stabilizes the origin.

B. Finite Horizon Properties

As noted above, one may use optimal (infinite-horizon) actions to
provide a stabilizing feedback for a nonlinear system. It is natural to
expect that a similar result would be possible using a finite-horizon
optimization. For instance, one could implement areceding horizon
scheme as follows. From the current statex(t), obtain an optimal tra-

jectory (x�T ; u
�
T ) � ; x(t) , � 2 [0; T ], and use as feedbacku(t) =

u�T 0; x(t) . (This feedback is not uniquely defined at points where
more than one optimal trajectory is available.) This approach requires
one to continuously re-solve the finite horizon optimization. An alter-
native scheme is to solve the finite horizon optimization every� > 0

seconds and use the control trajectoryu�T � ; x(t) , � 2 [0; �], to

drive the system fromx(t) at timet tox�T �; x(t) at timet+�. [Prac-
tically speaking, a better idea is to use a local tracking controller to reg-
ulate the system about the desired trajectory(x�T ; u

�
T ) � ; x(t) , � 2

[0; �].] We will denote this receding horizon scheme asRH(T; �).
One might also consider using a variable�k > 0, which will be de-
noted asRH(T; f�kg). Note that the receding horizon strategy de-
fined a (sampled data)feedbacklaw in contrast with the one shot use
of an open loop optimal trajectory.

In defining (unconstrained) finite-horizon approximations to the in-
finite-horizon problem, the key design parameters are the terminal cost
functionV and the horizon lengthT (and, perhaps also, the increment
�). What choices will result in success?

It is well known (and easily demonstrated with linear examples), that
simple truncation of the integral (i.e.,V � 0) may have disastrous ef-
fects ifT > 0 is too small. Indeed, although the resulting value function

may be nicely behaved, the “optimal” receding-horizon closed-loop
system can be unstable!

A more considered approach is to make good use of a suitable ter-
minal costV . Evidently, the best choice for the terminal cost isV (x) =
J�1(x) since then the optimal finite and infinite horizon costs are the
same. Of course, ifthe optimal value function were available there
would be no need to solve a trajectory optimization problem. What
properties of the optimal value function should be retained in the ter-
minal cost? To be effective, the terminal cost must account for the dis-
carded tail by ensuring that the origin can be reached from the terminal
statexu(T ; x) in an efficient manner (as measured byq). One way to
do this is to use an appropriate control Lyapunov function (CLF).

To this end, suppose thatV is a properC2 function satisfying
V (0) = 0

V (x) � cvkxk
2; x 2 n

and that is compatible with the incremental cost in the sense that

min
u

_V + q (x; u) � 0 (3)

on a neighborhood ofx = 0. Here, _V (x; u) := DV (x) � f(x; u).
Condition (3) (together with the properties off andq) guarantees the
existence of aC1 feedback law stabilizing the origin. Indeed, the feed-
back

u = kV (x) := u� x; DV (x)T (4)

does the job. Note thatV can be thought of as a Control Lyapunov
Function which is also an upper bound on the cost-to-go. [The defini-
tion of the CLF requires that onlyminu _V (x; u) � 0]. The maximum
principle ensures thatV = J�1 also satisfies (3) according to (2).

Continuity and properness ofV guarantee the existence of a contin-
uous nondecreasing functionr 7! cv(r) such thatV (x) � cv(r)kxk

2

for all x 2 
r so thatx 62 
r implies thatkxk2 � r20=cv(r0). Also,
let rv > 0 be the largestr such that (3) is satisfied for allx 2 
r . The
following result provides a basis for the use of finite horizon optimiza-
tion in a receding horizon control strategy (cf. [9]).

Theorem 1: Suppose thatx 2 n andT > 0 are such that

x�T (T ; x) 2 
r : (5)

Then, for each� 2 [0; T ], the optimal cost fromx�T (�; x) satisfies

J�T (x
�
T (�; x)) � J�T (x)�

�

0

q x�T (� ; x); u
�
T (� ; x) d�: (6)

Note that(x�T ; u
�
T )(�; x) can beanyoptimal trajectory for the problem

with horizonT .
Proof: Let ~x(t); ~u(t) , t 2 [0; 2T ], be the trajectory

obtained by concatenating(x�T ; u
�
T )(t; x), t 2 [0; T ], and

(xk; uk)(t � T ; x�T (T ; x)), t 2 [T; 2T ]. Here,(xk; uk)(s; x0) is
the closed-loop trajectory starting fromx0 at times = 0

xk(s; x0) = x0 +
s

0

f xk(� ; x0); k xk(� ; x0) d�

whereu = k(x) is any feedback law such that( _V +q) x; k(x) � 0

for x 2 
r , e.g., that defined by (4).
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Consider now the cost of using~u(�) for T seconds beginning at an
initial statex�T (�; x), � 2 [0; T ]. We have

JT (x
�

T �; x); ~u(�)

=
T+�

�

q ~x(� ); ~u(�) d� + V ~x(T + �)

= J
�

T (x)�
�

0

q x
�

T (� ; x); u
�

T (� ; x) d� � V x
�

T (T ; x)

+
T+�

T

q ~x(�); ~u(�) d� + V ~x(T + �)

� J
�

T (x)�
�

0

q x
�

T (� ; x); u
�

T (� ; x) d�

where we have used the fact thatq ~x(�); ~u(�) � � _V (~x � ); ~u(�)

for all � 2 [T; 2T ]. The result follows since the optimal cost satisfies

J�T x�T (�; x) � JT (x
�

T �; x); ~u(�) .
At this point, one is tempted to conclude that our approach to ap-

proximating the infinite horizon problem using a CLF terminal cost
has been successful. After all, (6) is an appropriate approximation to
(1) for invariance purposes. In fact, Theorem 1 is sufficient to conclude
the desired invariance and attractiveness properties in the case thatV

is aglobal CLF, for then that pesky “if” condition (5) will be trivially
satisfied.

The situation whenV is but a local CLF is much more delicate. In-
deed, we must determine conditions under which (6) will hold under it-
eration of the receding horizon map, i.e., whetherx�T T ; x�T (�; x) 2


r holds. One way to ensure success is to solve aconstrainedopti-
mization that imposes such a condition, see, e.g., [14], [13]. We will
show that such an approach is unnecessary.

We begin with a surprising lemma that helps us control the behavior
of the terminal state of optimal trajectories.

Lemma 2: Suppose thatx 2 
r , r � rv . Then,x�T (T ; x) 2 
r

for everyT � 0.
Proof: As before, let(xk; uk)(t; x), t � 0, be the trajectory

(starting atx) obtained using a feedback controlu = k(x) satisfying
_V + q)(x; k(x) � 0 on
r . The optimal cost with horizonT � 0

satisfies

J
�

T (x) �
T

0

q x
k(� ; x); uk(� ; x) d� + V x

k(T ; x)

�
T

0

� _V x
k(� ; x); uk(� ; x) d� + V x

k(T ; x)

=V (x) � r
2
:

Thus,

V x
�

T (T ; x) =J
�

T (x)�
T

0

q x
�

T (� ; x); u
�

T (� ; x) d�

�J
�

T (x) � V (x) � r
2
:

Note that Lemma 2does notsay thatx�T (t; x) 2 
r for all t 2
[0; T ] whenx 2 
r . This is false in general as simple examples
show. Indeed, one might say that methods that attempt to maintain the
invariance of
r , r � rv , are inefficient. (Moreover, adding constraints
of that sort also drive up the computation cost.)

A key motivation for using online optimization is toenlargethe op-
erating region for a controller. We are now in a position to show that

the receding horizon controller does at least as good a job as the CLF
controller, from the point of view of theoretical operating region pre-
dictions.

Proposition 3: For all T � 0, x 2 �T
r implies thatx�T (T ; x) 2


r . Moreover,
r � �T
r for all T � 0.

Proof: Let T � 0 andx 2 �T
r and note that

V x
�

T (T ; x) � r
2
v �

T

0

q x
�

T (� ; x); u
�

T (� ; x) d� � r
2
v:

The second statement was proved in the proof of Lemma 2.
We now show that application of the receding horizon strategy re-

sults in the exponential convergence of the trajectory to the origin:
Theorem 4: Let T > 0 and consider the use of a receding horizon

schemeRH(T; f�kg) with each�k 2 (0; T ] and k
j=0 �j ! 1 as

k !1. Then, for eachx0 2 �T
r(T ), the resulting trajectory converges

to the origin exponentially fast, wherer(T ) is the largest radius such
that for eachx0 2 �T

r(T ), x
�

T (T ; x0) 2 
r .
Proof: GivenT > 0, setcT andm1 such thatJ�T (x) � cTkxk

2

8x 2 �T
r(T ) and J�

1
(x) � m1kxk

2 8x 2 �T
r(T ). Let

xRH(t); uRH(t) , t � 0, be the receding horizon trajectory

originating from an arbitraryx0 2 �T
r(T ) and define

W t; x0; uRH(�) :=
1

t

q xRH(�); uRH(�) d�:

[The control trajectory uRH(�) is piecewise continuous since
each optimal control trajectoryu�T (t; x), t � 0, is contin-
uous as a function of time]. As shown in Proposition 9 below,
W t; x0; uRH(�) � J�T xRH(t) . Also, sinceRH(T; f�kg) is a

suboptimal strategy,J�
1

xRH(t) �W t; x0; uRH(�) . Now, since

q xRH(t); uRH(t) ! 0 ast ! 1, we have

@

@t
W t; x0; uRH(�) = � q xRH(t); uRH(t)

� � cqkxRH(t)k
2

� �
cq

cT
J
�

T xRH(t)

� �
cq

cT
W t; x0; uRH(�)

so thatW t; x0; uRH(�) � e�(c =c )tW 0; x0; uRH(�) . The re-
sult follows since

m1kxRH(t)k
2 �J

�

1
xRH(t)

�W t; x0; uRH(�)

� e
� c =c )t

W (0; x0; uRH(�)

� e
�(c =c )t

J
�

T (x0)

� cTe
�(c =c )tkx0k

2
:

Note that the optimal controlu�T (�; x) is uniquely defined in a neigh-
borhood of the origin sinceJ�T (�) is locallyC2 so that the locally de-
fined instantaneousreceding horizon controlu = kT (x) := u�T (0; x)
(i.e., � = 0) defines a feedback providing local exponential stability
of the origin. Indeed, the resulting feedback law is identical to that
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obtained by solving the associated Hamilton–Jacobi–Bellman PDE.
When there are statesx possessing multiple optimal trajectories (as oc-
curs in the example below), it is no longer clear that an instantaneous
receding horizon control can be successfully employed. A complete
examination of the properties of the resulting differential inclusion is
beyond the scope of this paper. From a practical point of view, the re-
striction to� > 0 is quite sufficient as some computation time is always
required.

Theorem 4 says that for everyfixedT > 0, the receding horizon
scheme using aT -horizon optimization is effective. What it does not
say, in particular, is that we may varyT and expect a stable process,
i.e., stability is not guaranteed (by our results) when different horizon
lengths are allowed at each receding horizon iteration. In contrast, we
note that one does not need to use afixed� when implementing a re-
ceding horizon scheme since (6) implies thatx�T (�; x) 2 �Tr for all
� 2 (0; T ].

One expects that the region of effectiveness should grow as the op-
timization horizonT is increased, eventually covering all of�1. This
cannot be done without increasingr beyondrv as the following result
on inclusions shows.

Proposition 5: Let r > 0 be given and suppose thatT > 0 is such
that

x
�
T (T ; x) 2 
r

for all x 2 �Tr . Then

�Tr � �Tr

for all T1 � T so that, in particular,�Tr � �1r .
Proof: Using (an extended version of)~u(�) from the proof of The-

orem 1, we see that

JT x; ~u(�) =
T

0

q x
�
T (� ; x); u

�
T (� ; x) d�

+
T

T

q ~x(�); ~u(�) d� + V ~x(T1)

�
T

0

q x
�
T (� ; x); u

�
T (� ; x) d�

+ V x
�
T (T ; x) = J

�
T (x):

It follows thatJ�T (x) � J�T (x) for all x 2 �Tr (cf. [12]).
An important question is whether there exists a suitable horizon

length for any desired radiusr. The following result guarantees the ex-
istence of a suitable optimization horizon for a given (desired) radius
r.

Proposition 6: For anyr > 0 there is aTv = Tv(r) such that

x
�
T (T ; x) � 
r

for all x 2 �1r and allT � Tv(r). In particular,x�T (T ; x) � 
r for
all x 2 �Tr .

Proof: First, note thatJ�T (x) is bounded (hence, well defined) on
�1r for all T � 0 since

J
�
T (x) �

T

0

q x
�
1(� ; x); u�1(� ; x) d� + V x

�
1(T ; x)

�J
�
1(x) + bv(r)

wherebv(r) := maxx2� V (x). Next, we note that, regardless of the
horizon lengthT , the trajectoryx�T (�; x) must enter the set
r within
a bounded interval of time. Indeed, letx 2 �1r andT > 0 be arbitrary
and suppose thatx�T (t; x) 62 
r on an intervalt 2 [0; t1). In this
case, the optimal cost satisfies

J
�
T (x) =

T

0

q x
�
T (� ; x); u

�
T (� ; x) d� + V x

�
T (T ; x)

�
t

0

cqkx
�
T (� ; x)k

2
d�

�
cq

cv(rv)
r
2
vt1:

Combining the two inequalities, we see that, forT > 0 sufficiently
large,x�T (�; x) must enter
r with the first arrival timet1(x; T ) sat-
isfying

t1(x; T ) � t1(r) :=
cv(rv)

cq

r2 + bv(r)

r2v
:

In particular, we see that usingTv = t1(r) + �, � > 0, guar-
antees the existence of timest1(x) < Tv , x 2 �1r , such that

V x�T t1(x); x � r2v . The resultx�T (Tv; x) 2 
r follows by

Lemma 2 completing the proof.
The following corollary follows immediately from the above Propo-

sition.
Corollary 7: Letx0 2 �1 be arbitrary. There existr, T <1 such

that

1) x0 2 int �Tr ;
2) x�T (T ; x) 2 
r for all x 2 �Tr .

This also shows that�1 is an open set.
We are now prepared to present the following theorem.
Theorem 8: Let � be a compact subset of�1. There is aT < 1

such that� is contained in the exponential region of attraction for the
receding horizon strategyRH(T; �) for every� 2 (0; T ].

Proof: For eachx 2 �, let U(x) = int�
T (x)
r(x) whereT (x) and

r(x) are given by Corollary 7. The collectionfU(x)gx2� is an open
cover of�. By compactness, there is a finite subcoverfU(xi)gi�N .
SettingTi = T (xi) andri = r(xi) we see that

� �
i�N

�Tr �
i�N

�Tr � �Tr

whereTm = maxi Ti, rm = maxi ri and the last two inclusions
follow from Proposition 5.

SettingT = Tm (andr = rm) we see thatx�T (T ; x) 2 
r for all
x 2 �Tr � �. The result follows since (6) ensures thatx�T (�; x) 2 �Tr
for all � 2 (0; T ].

Theorem 8 tells us that we may make the effective operating region
of a receding horizon control strategy as large as we like (relative to
the infinite-horizon operating region). Of great importance is the fact
that this result is obtained using finite-horizon optimization without
imposinganyconstraints on the terminal cost.

The following result provides a performance guarantee for our re-
ceding horizon control strategies.

Proposition 9: Suppose thatT , r > 0 are such that
x�T (T ; x) 2 
r for all x 2 �Tr . Let x0 2 �Tr and consider a
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trajectory xrh(t); urh(t) , t � 0, resulting from the use of a re-

ceding horizon strategyRH(T; f�kg) (with �k > 0, l

k=0
�k ! 1

asl ! 1). Then, the cost of this strategy satisfies

J1 x0; urh(�) � J�T (x0):

Proof: The receding-horizon strategy defines a sequence
of points fxkg1k=0 according to xk+1 = x�T (�k; xk) where

l

k=0
�k ! 1 as l ! 1. Using a telescoping argument,

the result follows easily from the fact (Proposition 5) that
J�T (xk) � J�T�� (xk).

The above proposition generalizes the fact that

( _V + q) x(t); u(t) � 0; t � 0

=)
1

0

q x(� ); u(�) d� �V x(0)

whenV is positive definite [implyingx(t) ! 0]. In both cases, we
obtain an upper bound on the cost for afamily of trajectories.

We also point out that the cost of using a receding horizon control
strategy approaches the infinite horizon cost as the horizonT is in-
creased sinceJ�

1
(x0) � J1 x0; urh(�) � J�T (x0) andJ�T (x0)!

J�
1
(x0) asT ! 1.

IV. RELAXING THE REQUIREMENT FOROPTIMALITY

In the previous section, we have detailed the theoretical properties of
ideal receding horizon strategies wherein aglobal minimum is com-
puted at each step. Only in very special cases (e.g., linear dynamics,
strictly convex cost, etc.) can one expect reliable (approximate) com-
putation of a global minimum. It is the purpose of this section to illus-
trate one of the many ways in which this requirement may be relaxed.
See Scokaert, Mayne, and Rawlings [18] for results of this nature for
discrete-time systems.

Receding-horizon techniques produce a sequence of (state and con-
trol) trajectories with ever decreasing cost. Stabilization or, more pre-
cisely, convergence of the cost may be obtained by ensuring that there
is sufficientimprovementat each step. Thus, we may replace the opti-
mality test ateachstep by a test for improvementbetweensteps. The
following result provides a sufficient condition to ensure convergence
of the state to the origin.

Proposition 10: Fix T; � > 0 and letxi; ui(�), i � 0, be such that
xi+1 = xu (�; xi) and

JT xi+1; ui+1(�) � JT�� xi+1; ui(�+ �) : (7)

Then,xi ! 0 asi ! 1.
Proof: Note that the sequence of costsci := JT xi; ui(�) is

monotone decreasing and bounded from below. It follows that the in-
cremental cost

�ci = ci � ci+1 �
�

0

q xu (� ; xi); ui(�) d�

must go to zero asi ! 1. This implies thatxi ! 0 since there is a
� > 0 such that �

0
q xu(� ; x), u(�) d� � � � minf1; kxk2g for

everyu(�).

How may we ensure, at each step, the existence of an improving
controlui+1(�)?

Proposition 11: Suppose thatx0 and u0(�) are such that
xu (T ; x0) 2 
r . Then, there exists a sequence of controls
fui(�)g

1

1 such thatxu (�; xi) = xi+1 ! 0 asi ! 1.
Proof: Given xi, ui(�), choose ui+1(�) such that

xu (T ; xi+1) 2 
r and the improvement property (7) is satisfied.
One choice is the control obtained by using the remainder ofui(�)
followed by a CLF feedback control (as in the proof of Theorem 1.

One may (and many have) use constrained optimization to solve, at
each step, a feasibility problem of the sort indicated. In that regard, the
above result shows that the problem will remain feasible if it is initially
thus. Also, since feasible controls may be obtainedfor free, we may
use any means whatsoever (including unconstrained optimization) in
our search for better controls, accepting only those that satisfy both
terminal and improvement conditions.

V. EXAMPLE

For the purpose of illustration, we consider the problem of balancing
an inverted pendulum on a cart. We discard the states associated with
the cart to allow two dimensional visualization. (Please note that this
is a highly unrealistic system as it allows equilibria where the cart is
experiencing continuous acceleration—the system isfor visualization
only.) The pendulum is modeled as a thin rod of massm and length2l
(the center of mass is at distancel from pivot) riding on a cart of mass
M with applied (horizontal) forceu. The dynamics of the pendulum
are then given by (with� measured from the vertical up position)

�� =
g=l sin � �mr

_�2=2 sin 2� �mr=ml cos �u

4=3�mr cos2 �

wheremr = m=(m+M) is the mass ratio andg is the acceleration
of gravity. Specific values used arem = 2 kg,M = 8 kg, l = 1=2 m,
andg = 9:8 m=s2.

System performance is measured using the quadratic incremental
costq(x; u) = 0:1x21 + 0:05x22 + 0:01u2 where as usual the state
is (x1; x2) = (�; _�). To obtain an appropriate control Lyapunov func-
tion, we modeled the system locally as a polytopic linear differential
inclusion (PLDI) [2]. This approach is quite satisfactory for this simple
(planar) system over a large range of angles. Working over a range of
plus or minus 60�, we obtained the quadratic CLFV (x) = xTPx with

P =
151:57 42:36

42:36 12:96
:

Simple numerical calculations (in low dimensions!) show thatrv �
6:34, that is,minu( _V + q)(x; u) is negative on solidP -ellipses
r

with a radiusr < 6:34. An optimization technique that can be adapted
to the problem of computingrv in higher dimensions can be found in
[11].

By Theorem 4, we know that, forT � 0,�T

r is an invariant subset of
the region of attraction for the receding-horizon controllerRH(T; �)
with � 2 (0; T ]. Fig. 1(a) depicts the set�T

r for T = 0:3, rv = 6:34
together with trajectoriesx�T (�; x) for x on the boundary. Also shown
is the set
r . The inclusion
r � �T

r (Proposition 5) is evident as
is the fact thatx�T (T; x) 2 
r for x 2 �T

r . Fig. 1(b) provides a
comparison of receding horizon trajectories [forRH(0:3; 0:05)] with
those obtained using the CLF controlleru = k(x) = arg minw( _V +
q)(x; w). Note that�T

r is not invariant under the CLF flow. As ex-
pected, the receding horizon trajectories do remain inside�T

r .
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(a) (b)

Fig. 1. (a) Sublevel set� for T = 0:3 andr = r = 6:34 together with
 . Also depicted are the trajectoriesx (�; x) for x on the boundary of� . (b)
Receding horizonRH(0:3; 0:05) and CLF controller (dashed) trajectories.

Fig. 2. State and control trajectories (RH—solid and CLF—dashed) from
x = (�3:5; 5:9).

We also note that the CLF controller often requires significantly
more control authority. For example, as shown in Fig. 2, the CLF con-
troller demands almost 15 times as much authority when stabilizing
from x0 = (�3:5; 5:9). (The pair originating atx0 = (�4:0; 7:5)
has a ratio greater than 35) This is not too surprising since the CLF
controller was designed for angular deviations of perhaps 60 degrees
and qualified on the set
r . The chosenx0 is well outside of the
guaranteed CLF performance region. In contrast, a small optimization
horizon (T = 0:3 compared with a convergence time of>1.5) allows
the receding horizon controller to exploit its knowledge of the nonlinear
system dynamics in this region.

In this case, we see that significant performance improvements are
obtained through the use of a relatively inexpensive receding horizon
strategy.

The appropriate finite horizon optimization problems were solved
numerically using RIOTS [17] as well as some local codes that are
under development.

VI. CONCLUSION

In this note, we have developed a family of receding horizon con-
trol strategies that obtain excellent stability and performance properties
through the use of a CLF as terminal cost. This approach is quite nat-
ural, providing a happy medium between the use of a CLF controller

and an ideal infinite horizon controller. Of practical significance, we
have shown that this approach does not require the introduction of ter-
minal constraints (for stability), thereby eliminating a key source of
computational burden. In fact, it appears that these computations may
be made fast enough to allow their use even in challenging areas such
as flight control. Furthermore, it was shown that in order to maintain
stability, it suffices to improve on the cost, thereby eliminating the need
for precise calculation of (globally) optimal trajectories. An interesting
further research direction is the extension of these techniques to the
case of the trajectory tracking for nonlinear systems. Of course, the sit-
uation is much more complicated since the problem of finding useful
trajectories of a nonlinear system is itself a rather difficult problem. A
first step in that direction is the use oftrajectory morphingtechniques
[7], [6].
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Anticipatory Iterative Learning Control for Nonlinear
Systems with Arbitrary Relative Degree

Mingxuan Sun and Danwei Wang

Abstract—In this note, the anticipatory iterative learning control is ex-
tended to a class of nonlinear continuous-time systems without restriction
on relative degree. The learning algorithm calculates the required input
action for the next operation cycle based on the pair of input action taken
and its resultant variables. The tracking error convergence performance is
examined under input saturation being taken into account. The learning
algorithm is shown effective even if differentiation of any order from the
tracking error is not used.

Index Terms—Convergence, learning control, nonlinear systems, relative
degree.

I. INTRODUCTION

Recently, rigorous analyses of continuous-time iterative learning
control (ILC) have been developed, see, for example, [2]–[10]. In
particular, a fundamental characteristic of a class of learning control
design methodologies is examined in [5], which clarifies the necessity
of the use of error derivative for systems without direct transmission
term. In [6], this characteristic is further clarified for nonlinear
continuous-time systems where error derivatives, the highest order
is equal to the relative degree of the systems, are used to update
the control input. ILC using the highest-order error derivatives only
is termed D-type ILC. Numerical calculations might be required
to obtain error derivatives for the implementation. However, the
signals obtained by numerical differentiation will be very noisy if
the measurement is contaminated with noise. ILC without using
differentiation is referred to as P-type ILC. Several technical analyzes
of P-type ILC are presented for nonlinear continuous-time systems
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with relative degree one, by imposing somewhat strict restriction
on system dynamics, for example, the passivity property [11] and
the boundedness of derivative of the input-output coupling matrix
[12],[13]. Most recently, in [1], a fundamental concept is introduced
in parallel to the two basic schemes: D-type and P-type ILCs. This
design approach has the anticipatory characteristic of the D-type ILC
and the simplicity like P-type ILC. Results have been developed again
for nonlinear continuous-time systems with relative degree one and
experimental results are obtained in robotic systems. This approach
is also studied in the form of noncausal filtering [9]. In this note, the
anticipatory learning algorithm [1] is applied to systems with arbitrary
relative degree. A definition of extended relative degree is presented
to explore a causal property of the systems under consideration. The
tracking error convergence results are established.

II. PROBLEM FORMULATION

Consider the class of nonlinear continuous-time systems described
by the state-space equations

_x(t) = f(x(t)) +B(x(t))u(t) (1)

y(t) = g(x(t)) (2)

wherex 2 Rn,u 2 Rr andy 2 Rm denote the state, control input and
output of the system, respectively. The functionsf(�) 2 Rn, B(�) =
[b1(�); � � � ; br(�)] 2 Rn�r andg(�) = [g1(�); � � � ; gm(�)]

T 2 Rm are
smooth in their domain of definition and are known of certain prop-
erties only. This system performs repetitive operations within a finite
time interval[0; T ]. For each fixedx(0), S denotes a mapping from
(x(0); u(t); t 2 [0; T ]) to (x(t); t 2 [0; T ]) andO a mapping from
(x(0); u(t); t 2 [0; T ]) to (y(t); t 2 [0; T ]). In these notations,x(�) =
S(x(0); u(�)) andy(�) = O(x(0); u(�)). The control problem to be
solved is formulated as follows. Given a realizable trajectoryyd(t); t 2
[0; T ] and a tolerance error bound" > 0, find a control inputu(t); t 2
[0; T ], by applying an ILC technique, so that the error between the
output trajectoryy(t) and the desired oneyd(t) is within the tolerance
error bound, i.e.,kyd(t) � y(t)k < "; t 2 [0; T ], wherek � k is the
vector norm defined askak = max1�i�n jaij for ann-dimensional
vectora = [a1; � � � ; an]

T . Throughout the paper, for a matrixA =
faijg 2 Rm�n, the induced normkAk = max1�i�m �n

j=1 jaij j.
To solve this problem, we use the ILC in the form of the following an-
ticipatory updating law [1]:

vk+1(t) =
uk(t) + �k(t)ek(t+ �); if t 2 [0; T � �]

vk(T � �); if t 2 (T � �; T ]
(3)

uk(t) = sat(vk(t)) (4)

where
� > 0 small number;
k number of operation cycle;
ek(t) = yd(t)� yk(t) output or tracking error;
�k(t) 2 Rr�m learning gain matrix piecewise continuous

and bounded.
This updating law is based on the causal relationship between the con-
trol input and the system output to be specified in the next section.
The time shift ahead in the tracking error installs the anticipatory char-
acteristic in the updating law, where actuator saturation is taken into
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