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Unconstrained Receding-Horizon Control of and Allgower [5], is based on using a quadratic endpoint penalty of
Nonlinear Systems the formax(t + T)7 Px(t + T) for somea > 0 and some positive

definite matrix P. In a more recent paper by Magni and Sepulchre
Ali Jadbabaie, Jie Yu, and John Hauser [12] and later by De Nicolaet al. [14], stability of the receding

horizon scheme is guaranteed (for continuous-time and discrete-time
systems, respectively) by using a (possibly nonquadratic) end point
i X penalty which is the cost incurred if a locally stabilizing linear control
control may be used to construct a stabilizing controller for a nonlinear . . . . .
system. In this note, we show that similar stabilization results may be aW is applied at the end_ of the time horizén TI'_"_? Ilrlear control law
achieved using unconstrained finite horizon optimal control. The key ensures local exponential stability of the equilibriumrat= 0, and
idea is to approximate the tail of the infinite horizon cost-to-go using, it is assumed that the region of attraction of the linear controller is
as terminal cost, an appropriate control Lyapunov function. Roughly |arge enough that can be reached from the initial condition within the

speaking, the terminal control Lyapunov function (CLF) should provide .. . ; o AT
an (incremental) upper bound on the cost. In this fashion, important time interval[0, T]. Moreover, it is assumed that the optimization is

stability characteristics may be retained without the use of terminal Pe€rformed ovelmdmissiblecontrol sequences, i.e., control sequences
constraints such as those employed by a number of other researchers. which guarantee that at the end of the horizon the state has reached a
The absence of constraints allows a significant speedup in computation. syitable neighborhood of the origin which is an exponential stability

Furthermore, it is shown that in order to guarantee stability, it suffices t0 o inn for the linear controller. In other words, a state inequality
satisfy an improvement property, thereby relaxing the requirement that L L
constraint is implicitly imposed.

truly optimal trajectories be found. We provide a complete analysis of the
stability and region of attraction/operation properties of receding horizon An approach for the receding horizon control of globally stabiliz-
control strategies that utilize finite horizon approximations in the proposed  able nonlinear systems was developed by Primibal. [16]. In this

class. It is shown that the guaranteed region of operation contains that of approach, first a globally stabilizing control law is achieved by finding

the CLF controller and may be made as large as desired by increasing the . .
optimization horizon (restricted, of course, to the infinite horizon domain). & global control Lyapunov function (CLF). Once the global CLF is ob-

Moreover, it is easily seen that both CLF and infinite-horizon optimal ~ tained, stability of the receding horizon controller is guaranteed by in-
control approaches are limiting cases of our receding horizon strategy. cluding additional state constraints that require the derivative of the
The key results are illustrated using a familiar example, the inverted pen- - CLF along the receding horizon trajectory to be negative and also that
dulum, where significant improvements in guaranteed region of operation o gecrease in the value of the CLF be greater than that obtained using
and cost are noted. . .
the controller derived from the CLF. There are a variety of methods
Index Terms—Control Lyapunov functions (CLFs), model predictive  that can exploit system structure, e.g., differential flatness and back-
gggggl' nonlinear control design, optimal control, receding horizon  1onhing 1o construct suitable CLFs. Although the current results rely
' on a global CLF, itis clear that local versions of this approach may be
developed.
|. INTRODUCTION An alternative approach was developed by the authors in [9], [8].

. . . . This approach obtains stability guarantees through the useagfiaori
Receding horizon control strategies, also known as model predict F as a terminal cost rather than by imposing state inequality (or

control (MPC).’ ha.v.e become quite popularrecently. Thisinterestis pa_ré uality) constraints. The attendant speedup in calculations can be dra-
due to the availability of faster and cheaper computers as well as effici

numerical algorithms for solving optimization problems. Another ke& tic. Moreover, stability continues to be guaranteed as long as the
L ) . ' Fisan ropri r nd on th -to-go.
advantage of these strategies is the potential ability to handle contr S an (appropriate) upper bound on the cost-to-go

saturations. Many of the successful applications of receding horizpn he terminalcostshould be thought of as approximationto the
: y PP 9 nfinite horizon) value function rather than as a termipahalty In-

control methods have been in the area of chemical process control. '%d, simulation results in [8] indicate that, contrary to what one might

is due, in part, to the fact that a number of important industrial chemict%(fmk a mere upper bound on the cost-to-go does not generally provide

processes are open-loop stable so that stability is not a primary conce nappropriate terminal cost.

for many of these methods. However, application of these methods tcéince itis rarely possible to obtain a global CLF (as most systems are

unstable plants has appeared to be more difficult. Several researcrr]1%rtseven globally stabilizable), itis desirable to be able to estimate the re-

ha:]/ter aItIen}lpt\?vciitto adﬂre?is ﬁ\h:w ptrott))illietm (r)i];iStalb':'ty for receding horlz&%n ofattractionofarecedinghorizoncontroller. Inparticular,onewould
controtto allowts application in stability criticarareas. . like to know whether region of attraction (or operation) estimates for the
Keerthi and Gilbert [10] imposed a terminal state equality constraint . . .
t+T) — 0. Thi lts in a finite-hori timizati bl receding horizon system contain those of the CLF controlled system and
j;/(ﬁi? t)rn_ ) ¢ t'S Lesu smlna: :inlne Horldzorg onpd:nmlza'vll?nhplrok emrg what extent these regions may be expanded, e.g., to the regions for the
ch mns out o be computationally demanding. Vichaiska arn finite horizon controller, by increasing the horizonlength.
Mayne [13] ensured closed-loop stability by requiring thét + 7°)

i itabl iahborhood of th - d then th ¢ These issues are completely addressed in this paper.
enters a suitable neighborhood of the orgin an en the con IrOI'I'his paper is organized as follows. The problem setting is described
law is switched to a locally stabilizing linear controller. Another

T - in Section 1. In Section 1lI, we explore the important relationships be-
approach proposed by Parisini and Zoppoli [15] and later by Ch‘lgvr\‘/een an infinite horizon optimal control problem and its finite horizon

approximations and present the main results. The optimality condition
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where the vector fieldf: R* x R™ — R" is C* and possesses aparticular, letV be a nonnegativ€® function and define the finite
linearly controllable critical point at the origin, e.¢:(0, 0) = 0 and horizon cost [fromz using«(-)] to be

(A, B) := (D:1f(0, 0), D2f(0, ())) is controllable. We require the

e
setf(x, R™) C R" to be convex for eack € R". Given an initial Jr (.r. u(~)) = / q(;z:“(r; x), u(T)) dr+V (;z,»“(T; :L'))
statex and a control trajectory(-), the state trajectory®(-; x) is the 0
(absolutely continuous) curve R satisfying and denote the optimal cost (fram) as

" " .
@ (tx)=w —I-/ f(.r”(T:, x), 'u‘(T)) dr Trle) = 11,1(11; Jr (w’ u())
0

As in the infinite horizon case, one can show, by geometric means,
that.J} is locally smooth €?). Other properties, e.g., local positive
definiteness, will depend on the choiceloéfandT'.

Let I'*° denote the domain of%, (the subset oR"™ on which.J%,
is finite). It is not too difficult to show that the cost functiodg, and
J7,T > 0 are continuous functions dn., using the same arguments
where is continuous in all variables and monotone increasing in 55 i [1, Prop. 3.1]. We make the following assumption.
and|lu(-)[lr = [[u(-)llz,c0. ). Most models of physical systems will " standing Assumption (SAJThe minimum value of cost functions
satisfy a bound of this type. J5, Jx T > 0, is attained.

The performance of the system will be measured by a given incré-The assumption (SA) guarantees the existence of an optimal trajec-
mental cosy: R” x R™ — RthatisC*” and fully penalizes both state tory

and control according to

for ¢ > 0. We require that the trajectories of the system satisfy an
priori bound

[|x(®)|] < B(x, T, ||u()]1) < oo, t €0, 1]

(ar?(t; x), ur(t; J)) t €0, T]

aw, w) > cq(flel)* + lul*), @ €R" u€R™
such that
for somec, > 0 andq(0, 0) = 0. We further require that the function
u — g(x, u) be convex for eachr € R". These conditions imply Jr (7" up (- -’0)) = Ji(x).
that the quadratic approximation gfat the origin is positive—definite,
D?¢(0, 0) > ¢, > 0. Continuity ofur-(.; ) follows directly from Pontryagin’s Maximum

We will also suppose thaf andg are sufficiently compatible to Principle. This trajectory is not necessarily unique. In fact, in examples
uniquely define &> Hamiltonian for the (optimized) system. In partic-one finds two trajectories of equal (minimal) cost originating at points
ular, we will require that there is@? functionz*: R* x R — R™: where J7 is only continuous (and not differentiable). Under assump-
(z,p) — u*(x, p) providing a global minimum of the pre-Hamil- tions of the sort given (convexity, boundedness, etc.), one canturn (SA)

tonian K (, p. u) := p' f(x. u) + ¢(x, u) so that the Hamiltonian into a proposition. This involves the use of techniques from regularity
H(z,p) = K (I », T (z, p)> is C2. Such au*(-, -) is locally theory and the direct methods of the calculus of variations, see [4] and

guaranteed by the implicit function theorem (though we would requi
f, ¢ € C?). Note that this condition is trivially satisfied for control
affine f and quadratig] for thenu — K (z, p, u) is strictly convex
andreal analytid. = {o e JL(x) < r?}
The cost of applying a contrad(-) from an initial statez over the ) -

infinite-time interval[0, oc) is given by are compact and path connected and moreb¥et= | J, ., T':°. Note

- also thatl'> may be a proper subset Bf* since there' may be states

T (¢ u‘(.)) - / q(wu(ﬂ ), u‘(T)) dr. that cannot be driven to the origin. We use(rather thar) here to

0 reflect the fact that our incremental cost is quadratically bounded from

below. We refer to sub-level sets & andV" using

It is easy to see that’, is proper on its domain so that the sublevel
sets

The optimal cost (fromx) is given by

'l .= path connected componentof € I'™°: J; () < r*}

Too(a) = il(lf) Joo (“" “(')) containing0
) and
wher_e t_he control functlons_(-) be_long to some reasonable c_:lass of Q). := path connected componentpf € R": V(x) < r*}
admissible controls (e.g., piecewise continuous). The function o
JZ% (z) is often called theptimal value functioffior the infinite horizon containing0.

optimal control problem. For the class pfandg considered, we know
that.JZ, is a positive definiteC? function on a neighborhood of the
origin. This follows from thegeometryof the corresponding Hamil-
tonian system [19], [20]. In particular, sin¢e, p) = (0, 0) is a hy- In this section, we explore some of the relationships between an infi-
perbolic critical point of the Hamiltonian vector fieldl7(x, p) :=  nite-horizon optimal control problem and its finite-horizon approxima-
DyH(x, p), —D1H(z, p) Ty the local properties of . are deter- tions. We will show that the use of an appropriate terminal cost allows

mined by the linear-quadratic approximation to the problem and, moié to retain desirable features of the infinite-horizon problem.
over, D275 (0) = P > 0 whereP is the stabilizing solution of the
appropriate algebraic Riccati equation.

For practical purposes, we are interested in approximating the infi-What infinite horizon problem properties are interesting for finite
nite horizon optimization problem with one over a finite horizon. Iorizon approximations and, in particular, are useful for receding

IIl. I NFINITE AND FINITE HORIZON OPTIMIZATION

A. Infinite Horizon Properties
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horizon strategies? This is a question that we intend to answer in thiay be nicely behaved, the “optimal” receding-horizon closed-loop

section. system can be unstable!
Let (2%, u5)(-; =) be any optimal trajectory originating at. A more considered approach is to make good use of a suitable ter-
Then, for anys > 0, we have minal costV. Evidently, the best choice for the terminal costigr) =

J%. (x) since then the optimal finite and infinite horizon costs are the
5 same. Of course, ithe optimal value function were available there

Jh (w;(é; J.)) = J%(2) — / q(w;(r; &), ul (7 J.)) dr. would be no need to solve a trajectory optimization problem. What

0 properties of the optimal value function should be retained in the ter-

(1) minal cost? To be effective, the terminal cost must account for the dis-

carded tail by ensuring that the origin can be reached from the terminal
statex™(T; ) in an efficient manner (as measuredg)yOne way to
do this is to use an appropriate control Lyapunov function (CLF).
To this end, suppose thaf is a properC? function satisfying

Since, by (SA)7 — u’,(7; x) is continuous for- > 0, we see that

T (w265 0)) = T (o) V(0) =0
lim . n
5N0 6 Viz) > col|x r €R"
= —q(aﬁ use (03 .r)) < -c ||,77||2 . . . . .
P Tee = 1 and that is compatible with the incremental cost in the sense that
so thatJ3. possesses a well defined (negative—definite) directional min (V + q)(w’ w) <0 @)
derivative ineachoptimal directionf (:E, ule (0; l)) In fact, we may " -

write
i on a neighborhood of = 0. Here,V(m, w) = DV (x)- f(x, u).
J5 (.r. U (05 ;v)) + q(;z:, w5, (0; w)) =0 (2) Condition (3) (together with the properties pfandq) guarantees the
existence of &' feedback law stabilizing the origin. Indeed, the feed-
where.JZ_(z, u) is the directional derivative of %, in the direction back
(x, u) (When it exists). [At points of differentiability/%, (z, u) = . o
fz;J;(;;- £l w)]. FAe Wt w= k() =7 (r DV()") “)
We conclude that each sub-level &, » > 0, is positively in-
variant under optimal actions, both incremental ¥ 0) and infin-
itesimal. Also, in all cases, these sets are attracted to the origin
ponentially fast. In particular, the (not necessarily unique) feedbac
u = koo () := ul.(0; 2) exponentially stabilizes the origin.

does the job. Note thdt’ can be thought of as a Control Lyapunov

Functlon which is also an upper bound on the cost-to-go. [The defini-

Qn of the CLF requires that onlypin,, V (x, v) < 0]. The maximum
principle ensures that = JZ, also satisfies (3) according to (2).
Continuity and properness &f guarantee the existence of a contin-

uous nondecreasing function— z, (r) such thal’(x) < @, (r)||=|?

for all = € €2, sothate ¢ ., implies that||z||®> > 3 /Z.(r0). Also,

As noted above, one may use optimal (infinite-horizon) actions tet,,, > 0 be the largest such that (3) is satisfied for all € ... The
provide a stabilizing feedback for a nonlinear system. It is natural {gllowing result provides a basis for the use of finite horizon optimiza-
expect that a similar result would be possible using a finite-horizaipn in a receding horizon control strategy (cf. [9]).
optimization. For instance, one could implementaeding horizon  Theorem 1: Suppose that € R* andZ’ > 0 are such that
scheme as follows. From the current state), obtain an optimal tra-

jectory (7, u“})(T; :c(t)), 7 € [0, T, and use as feedbaeKt) =

B. Finite Horizon Properties

v (Ts 2) € Q. ®)
wp (O: ,r(f)). (This feedback is not uniquely defined at points where
more than one optimal trajectory is available.) This approach requi . . e
one to continuously re-solve the finite horizon optimization. An alter-?ﬁen for eachd € [0, T, the optimal cost frorer(4; «) satisfies
native scheme is to solve the finite horizon optimization every 0

j ] sx(t)), T , 0 X/ ko * ° « N
seconds and use the control trajectm@(r r( )), € [0, 8], to T (85 ) < Th(a) — / q(wT(T; ), W (7 1’,)) ir.  (6)
drive the system from(t) attimet tox7 ( 8, «(t) ) attimet+4. [Prac- 0
tically speaking, a better idea is to use a local tracking controller to reg-

ulate the system about the desired trajectafy, u})(7: =(t)), 7 € Note that(z7, u%)(+; ) can beanyoptimal trajectory for the problem

. . . . with horizonT'.

[0, 6].] We will denote this receding horizon schemeTa{(T, 6). ) . . .
One might also consider using a variable > 0, which will be de- Proof. Let (’r(f)’ “'(7_%)),‘ e [ QT]' be the trajectory
noted asRH (T, {6:}). Note that the receding horizon strategy deobtaln?d by concatenatingsr, ur)(t; «), < LO* 1], and
fined a (sampled datdpedbackaw in contrast with the one shot use(z"> u")(t = T: ar(Tix)), t € [T, 2T). Here (2", u¥)(s: w0) is
of an open loop optimal trajectory. the closed-loop trajectory starting frarg at times = 0

In defining (unconstrained) finite-horizon approximations to the in-
finite-horizon problem, the key design parameters are the terminal cost S k

- ; - : x"(s; o) = 20 + flaz(r; xo) k(,r (73 ,ro)) dr

functionV and the horizon length’ (and, perhaps also, the increment ’ o ’ ’ ’
6). What choices will result in success?

Itis well known (and easily demonstrated with linear examples), that
simple truncation of the integral (i.6/, = 0) may have disastrous ef- whereu = k(x) is any feedback law such th@t + q)( k(ﬂf)) <
fectsifl’ > 0istoosmall. Indeed, although the resulting value functiofor = € €2, , e.g., that defined by (4).
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Consider now the cost of using-) for T' seconds beginning at an the receding horizon controller does at least as good a job as the CLF

initial statex-(6; =), § € [0, T]. We have controller, from the point of view of theoretical operating region pre-
dictions.
. . Proposition 3: ForallT > 0, x € F',T,U implies thate7 (T; x) €
JT(”’I(‘S? ), ”(')) Q,,. Moreover,},, Cc 7 forall T > 0.
T46 Proof: LetT > 0 andx € '} and note that
:/ q(;z»(T), 17(7')) dr+V(;§(T+6))
b & T
=Jr(z) - ron(rs ), we(r, ) Ydr = V{eh(T: = Nap(T; x <7“§—/ (s @), wi(r x)) dr < vl
Tita) = [ a(siire . wire ) ar =V (T2 ) V(o) <oi= [ a0, v o)

+ /:+6 (3. i) Jar 4V (3(T +)

The second statement was proved in the proof of Lemma 2. O
-8 We now show that application of the receding horizon strategy re-
< Jp(a) - / (J(éL’*T(T: ), up (T éL’)) dr sults in the exponential convergence of the trajectory to the origin:
0 Theorem 4: LetT > 0 and consider the use of a receding horizon
schemeRH (T, {&x}) with eachs, € (0, T] andy"_, 6, — oo as
where we have used the fact tfq{tﬂ(r), a(r)) < —V(;E (r), a(T) k — oo. Then, for each € F%;T), the resulting trajectory converges
for all 7 € [T, 2T7]. The result follows since the optimal cost satisfie$0 the origin exponentially fast, wher¢T') is the largest radius such
Tr(an(8; 2)) < Jr(ah (67 @), a(-)). O that for eachu.) € F;—(T),ITF(T; xg) € Q. o ,

At this point, one is tempted to conclude that our approach to ap- Proof: TleenT > P seter andme. S”Sh thav'z () %,CT”‘T”
proximating the infinite horizon problem using a CLF terminal cost ¢ € Trr) and Joo(z) > mellz|” Vo € Tyg). Let
has been successful. After all, (6) is an appropriate approximation (torn(t), URH(t)>, t > 0, be the receding horizon trajectory
(1) for invariance purposes. In fact, Theorem 1 is sufficient to conclu@giginating from an arbitrary:, € 1“72@) and define
the desired invariance and attractiveness properties in the cagé that
is aglobal CLF, for then that pesky “if” condition (5) will be trivially .o
satisfied. w (t; X0, uRH(-)> = / q(JJRH(T% 'lLRH(T)> dr.

The situation whef¥ is but a local CLF is much more delicate. In- t
deed, we must determine conditions under which (6) will hold under it-
eration of the receding horizon map, i.e., whethip{ T; 23 (6; ) ) € [The control trajectory urmn(:) iS piecewise continuous since
Q., holds. One way to ensure success is to soleerstrainedopti- €ach optimal control trajectory:; (#; «), ¢ > 0, is contin-
mization that imposes such a condition, see, e.g., [14], [13]. We wilPUS a@s a function of time]. As shown in Proposition 9 below,
show that such an approach is unnecessary. W (t; wo, URH(')) < Jr (J'Hﬂ(t))- Also, sinceRH(T, {é+}) is a

We begiq with a surprisir_wg Iemn?atha_t helps us control the behavgﬂboptimal strategyl”. (‘”Hﬂ(t)> <W (t; o0, URH(:‘))- Now, since
of the terminal state of optimal trajectories.

Lemma 2: Suppose that € Q,., 7 < r,. Then,z%(T; z) € Q. Q(JURH(l‘)-, URHU)) — 0 ast — oo, we have
for everyT > 0.

Proof: As before, let(z*, u*)(t; ), + > 0, be the trajectory 9
(starting atr) obtained using a feedback contiol= k(z) satisfying e w (f:, o, unn(-)) = - q(}rn,n(f)., umr(t))
V.—i-.q)(.r, k(:r)) < 0 onf2,,. The optimal cost with horizo#" > 0 < — eylleru(d)]
satisfies (-
< - ; Jr (l'l{ﬂ(t))
T c N
Ti(e) < / q(}rk(T; 2, u* (7 ,r)) dr+V (mk(T; r)) < — i W (t; 2o, URH(-))
0
e
ok <o ok - 4 .k [
< /0 - (‘L (5 ), w™ (7 ‘L)) dr+1 (‘L (T ‘l')) so thatW ( ¢; xo, uRH(')> < e‘(“q/CT)LI"T"(O; To, ’URH(')>- The re-
=V(x) <7’ sult follows since
Thus, Mo [|ern (D] < I («fﬁﬂ (t))
< Wr(fi xo, URH('))
>k * "T >k *
If(;pT(T; r)) =J;(x) —/ q(;r,/[(r; @), up(T; r)) dr _(C et
0 ‘ ! W(0; zo, ”RH(‘))
< Jp(z) < Vi) <2 O

<e
< 6*(0q/CT)tJ;; (o)
<c

. re(Cal T g |2, O
Note that Lemma 2loes notsay thatr7(¢t; ) € Q,, forallt €
[0, T] whenz € €, . This is false in general as simple examples
show. Indeed, one might say that methods that attempt to maintain th&lote that the optimal contral- (-; ) is uniquely defined in a neigh-
invariance of2,., » < r,,, are inefficient. (Moreover, adding constraintsborhood of the origin sincd’ () is locally C*? so that the locally de-
of that sort also drive up the computation cost.) finedinstantaneouseceding horizon contral = kr(z) := w7 (0; z)

A key motivation for using online optimization is emlargethe op- (i.e., 6 = 0) defines a feedback providing local exponential stability
erating region for a controller. We are now in a position to show thaf the origin. Indeed, the resulting feedback law is identical to that
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obtained by solving the associated Hamilton—-Jacobi—Bellman PDihereb,(r) := maxgeree V' (x). Next, we note that, regardless of the
When there are stategpossessing multiple optimal trajectories (as ochorizon lengthrl’, the trajectoryrr(-; =) must enter the sé€t,., within
curs in the example below), it is no longer clear that an instantaneaubounded interval of time. Indeed, let T';° andT" > 0 be arbitrary
receding horizon control can be successfully employed. A completad suppose thatr (¢; «) ¢ €., on an intervak € [0, ¢1). In this
examination of the properties of the resulting differential inclusion isase, the optimal cost satisfies
beyond the scope of this paper. From a practical point of view, the re-
striction tod > 0 is quite sufficient as some computation time is always
required. . T, . iy

Theorem 4 says that for evefixed T > 0, the receding horizon Jr(w) = /0 ‘1(“(7? @), ur (T3 "")) dr +V (“'T(T? ""))

scheme using &@'-horizon optimization is effective. What it does not “t

say, in particular, is that we may vaffy and expect a stable process, > / cqllap (73 2)||” dr
i.e., stability is not guaranteed (by our results) when different horizon “c )

lengths are allowed at each receding horizon iteration. In contrast, we > EU(Z'U) ruti.

note that one does not need to usiixad é when implementing are-
ceding horizon scheme since (6) implies th&{6; =) € l"fv for all
6 € (0, T1. Combining the two inequalities, we see that, Ior> 0 sufficiently

One expects that the region of effectiveness should grow as the %{?@e,x?(ﬁ ) must entef?,., with the first arrival timet, («, T)) sat-
timization horizonT is increased, eventually covering alllof®. This ° o

isfyin
cannot be done without increasindpeyondr,, as the following result ving
on inclusions shows. _ 2y
Proposition 5: Letr > 0 be given and suppose thEt> 0 is such f(e T) < Fy(r) = 22U LZ(T)
that €q "o
25 (T 2) € Q, In particular, we see that_ usin, = 7 (r) +¢ ¢ > 0, guar-
’ antees the existence of times(z) < T,, + € I}°, such that
forall# € 7. Then v(ay, (u (2); I) < r2. The result}, (T,; «) € Q,., follows by
T T Lemma 2 completing the proof. O
r, cr,t . . .
r ’ The following corollary follows immediately from the above Propo-
‘ . . o o sition.
forall 7, > T s_o that, in partlcularl"r. crr. Corollary 7: Letxo € I'>° be arbitrary. There exist 7' < oo such
Proof: Using (an extended version af)-) from the proof of The- that
orem 1, we see that )
1) 2o € intI'T;
2) 25(T; x) € Q. forallz € TT.
T
Jr, (I ﬂ(.)) = / q(l»;(T; x), ur(7; m) dr This also shows thdt™ is an open set.
0 We are now prepared to present the following theorem.
. /-Tl («i(T) ﬁ(T)) dr+V (j(T )> Theorem 8: Let A be a compact subset 6f°. There is al’ < oo
T AR ! such that\ is contained in the exponential region of attraction for the
1 . y receding horizon strategy H (T, &) for everys € (0, T1.
< /O q(’rT(T? ), wp(Ts "7)) dr Proof: For eachr € A, letU(z) = int Ff((;)) whereT(x) and
A “ s r(x) are given by Corollary 7. The collectiofU/(z)}.ea is an open
+V (xT(T? 5”)> = Jr(z). cover of A. By compactness, there is a finite subcoy&i(x:)}i<w.
SettingT; = T(x;) andr; = r(x;) we see that
It follows that J5, (z) < J7(z) forall = € T (cf. [12]). O
An important question is whether there exists a suitable horizon , T T, T,
length for any desired radius The following result guarantees the ex- Ac U I c YUYF” ch
. . . . . . . . <N <N
istence of a suitable optimization horizon for a given (desired) radius - -
r.
Proposition 6: For anyr > 0 there is al, = To,(r) such that whereT,, = max; T;, r,, = max; r; and the last two inclusions
follow from Proposition 5.
25(T; ) C Dy, SettTingT =T, (andr = ry,) we see that (T; x) € §2,ﬁv for aTII
' 2 € 'y, D A.The result follows since (6) ensures thé&t(é; «) € T';.
forall 6 € (0, T7. |
forallz € Ts° and allT” > T, (7). In particularz’ (T; ) C 2, for Theorem 8 tells us that we may make the effective operating region
alz e TT. of a receding horizon control strategy as large as we like (relative to
Proof: First, note that/ (=) is bounded (hence, well defined) onthe infinite-horizon operating region). Of great importance is the fact
Iee forall T > 0 since that this result is obtained using finite-horizon optimization without

imposingany constraints on the terminal cost.
- The following result provides a performance guarantee for our re-
Ti(x) < / q(a,;(ﬂ;p)? wt (7 l,)> dr+V (;n;(T; I)> ceding ho_r_izon control strategies.
0 Proposition 9: Suppose that?’, » > 0 are such that
<JZ(x) + by (r) 2 (T; ) € Q,, foralz € TT. Letzy € T7 and consider a
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trajectory (m (t), wrn (t)), t > 0, resulting from the use of a re- How may we ensure, at each step, the existence of an improving

ceding horizon strategRH (T’ {81 }) (with & > 0, 320 _ & — oo CONOlUi41(9)?
asl — o). Then, the cost of this strategy satisfies Proposition 11: Suppose thatzo and wue(-) are such that
x*(T; o) € £,,. Then, there exists a sequence of controls

{u:(-)}{° such thate" (6; =;) = 2,11 — 0 @asi — oc.
T (;L’o, Urh(')) < Jh(z0). Proof: Given x;, wi(-), choose w;yi1(-) such that
a1 (T xiqq) € Qr,and the improvement property (7) is satisfied.
One choice is the control obtained by using the remainder; 6f)
Proof: The receding-horizon strategy defines a sequengsiiowed by a CLF feedback control (as in the proof of Theorenl.
of points {zx};Z, according tozy1 = 27(bk, ) Where  One may (and many have) use constrained optimization to solve, at
Sh_o® — oo asl — oc. Using a telescoping argument,each step, a feasibility problem of the sort indicated. In that regard, the
the result follows easily from the fact (Proposition 5) thakbove result shows thatthe problem will remain feasible if it is initially
Jr(eg) < J7ls (k). [0 thus. Also, since feasible controls may be obtaifmdfree, we may
The above proposition generalizes the fact that use any means whatsoever (including unconstrained optimization) in
our search for better controls, accepting only those that satisfy both
terminal and improvement conditions.

(
= / q(w(r), u(T)) dr <V (r(O)) V. EXAMPLE
0 For the purpose of illustration, we consider the problem of balancing
an inverted pendulum on a cart. We discard the states associated with
whenV’ is positive definite [implyingz(¢) — 0]. In both cases, we the cart to allow two dimensional visualization. (Please note that this
obtain an upper bound on the cost fdiamily of trajectories. is a highly unrealistic system as it allows equilibria where the cart is
We also point out that the cost of using a receding horizon contrgkperiencing continuous acceleration—the systefarigzisualization
strategy approaches the infinite horizon cost as the hofizés in-  only.) The pendulum is modeled as a thin rod of masand lengtHi
creased sincdl, (o) < Joo (:co, 'urh(~)> < Ji(zo) andJ7(zo) —  (the center of mass is at distaricom pivot) riding on a cart of mass
J (7o) asT — oo. M with applied (horizontal) force.. The dynamics of the pendulum
are then given by (witli measured from the vertical up position)

V+q) (ar(t), u(t)) <0, t>0

IV. RELAXING THE REQUIREMENT FOROPTIMALITY

In the previous section, we have detailed the theoretical properties of j— g/Usin 8 —m,6%/2 sin 26 — m,./ml cos fu
ideal receding horizon strategies whereimglabal minimum is com- 4/3 — my cos? ¢
puted at each step. Only in very special cases (e.g., linear dynamics,

strictly convex cost, etc.) can one expect reliable (approximate) comﬁ . V0 is th i is th lerati
putation of a global minimum. It is the purpose of this section to illusy, €€ = m/(m + M) is the mass ratio anglis the acceleration
gravity. Specific values used ane = 2 kg, M = 8 kg, =1/2m,

trate one of the many ways in which this requirement may be relaxé)é. o
. g dg = 9.8 m/s’
See Scokaert, Mayne, and Rawlings [18] for results of this nature f3pay ) ) . . o
discrete-time systems. System performa[)]ce is me{)asured uszlng the quadratic incremental
— 2 | =) p

Receding-horizon techniques produce a sequence of (state and 88[?—?‘1(‘?’ u)__g Oélx}r+ 8'0?12 + 0.01u” where asILIJ_suaI the sftate
trol) trajectories with ever decreasing cost. Stabilization or, more th {1, 22) _d(l ‘d )I.w 0 obtain ?n aﬁproprlate lcontr_o i yapug%v une- |
cisely, convergence of the cost may be obtained by ensuring that thFé? » we modeled the system locally as a polytopic linear difterentia

is sufficientimprovemenat each step. Thus, we may replace the opt|['c usion (PLDI) [2]. This approach is quite satisfactory for this simple

mality test ateachstep by a test for improvemehetweersteps. The (planar) s_ystem overa Ia_rge range of angles. Working ?"er arange of
following result provides a sufficient condition to ensure convergen&us Of minus 60, we obtained the quadratic CliF(x) = 2" P with
of the state to the origin.
Proposition 10: Fix T, 6 > 0 and lete;, u;(-),7 > 0, be such that 151.57 42.36
zip1 = 2" (6 x;) and P= { 42.36 12.96} '

Jr (l'i-i—lw uz+1(-)> <Jr-s (I'i-&-l-/ wi(-+ 5))- (7)  Simple numerical calculations (in low dimensions!) show thatx
6.34, that is,min, (V + ¢)(«, u) is negative on solid-ellipses(2.
) with aradius* < 6.34. An optimization technique that can be adapted
Then,z; — 0 asi — oo. to the problem of computing, in higher dimensions can be found in
Proof: Note that the sequence of costs:= Jr (i, ui(-) ) is  [17].

monotone decreasing and bounded from below. It follows that the in-By Theorem 4, we know that, f&F > 0, FZU is an invariant subset of

cremental cost the region of attraction for the receding-horizon controf®t( (7, &)
with & € (0, 7. Fig. 1(a) depicts the s&t’ for 7' = 0.3, r, = 6.34

-6 _ ) together with trajectories? (-; «) for x on the boundary. Also shown

bci =i = Cig1 2 /0 q(ﬂfuz (73 @), ”i(")> dr is the set?,, . The inclusior€2,, C T} (Proposition 5) is evident as

is the fact that} (T, ) € Q,, for = € 'l . Fig. 1(b) provides a
o ) ] comparison of receding horizon trajectories [fo# (0.3, 0.05)] with
must go to zero as — co. This implies thate; — 0 since there is @ hose obtained using the CLF controliee= k(z) = arg min. (V +
x > 0 such thatf} Q(l‘“(ﬂ ), 'U(T)) dr > w - min{1, [|2]|*} for  ¢)(x, w). Note thatl'Z. is not invariant under the CLF flow. As ex-
everyu(-). O pected, the receding horizon trajectories do remain inEﬂ;!e
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Fig. 1. (a) Sublevel sét? for T = 0.3 andr = r, = 6.34 together with(2,._ . Also depicted are the trajectories.(-; =) for = on the boundary oF 7. (b)

Receding horizoR7(0.3, 0.05) and CLF controller (dashed) trajectories.

(1]

Fig. 2. State and control trajectories (RH—solid and CLF—dashed) from
x5 = (—3.5, 5.9). [2]

We also note that the CLF controller often requires significantly [3]
more control authority. For example, as shown in Fig. 2, the CLF con- (4]
troller demands almost 15 times as much authority when stabilizing
from zo = (—3.5, 5.9). (The pair originating atq = (—4.0, 7.5) [5]
has a ratio greater than 35) This is not too surprising since the CLF
controller was designed for angular deviations of perhaps 60 degreefe]
and qualified on the se®.,. The chosen, is well outside of the
guaranteed CLF performance region. In contrast, a small optimizationy7]
horizon " = 0.3 compared with a convergence time>1.5) allows
the receding horizon controller to exploit its knowledge of the nonlinear [8]
system dynamics in this region.

In this case, we see that significant performance improvements argg
obtained through the use of a relatively inexpensive receding horizon
strategy. [10]

The appropriate finite horizon optimization problems were solved
numerically using RIOTS [17] as well as some local codes that are
under development. [11]

VI. CONCLUSION [12]

In this note, we have developed a family of receding horizon con-
trol strategies that obtain excellent stability and performance propertigs 5
through the use of a CLF as terminal cost. This approach is quite nat-
ural, providing a happy medium between the use of a CLF controller

and an ideal infinite horizon controller. Of practical significance, we
have shown that this approach does not require the introduction of ter-
minal constraints (for stability), thereby eliminating a key source of
computational burden. In fact, it appears that these computations may
be made fast enough to allow their use even in challenging areas such
as flight control. Furthermore, it was shown that in order to maintain
stability, it suffices to improve on the cost, thereby eliminating the need
for precise calculation of (globally) optimal trajectories. An interesting
further research direction is the extension of these techniques to the
case of the trajectory tracking for nonlinear systems. Of course, the sit-
uation is much more complicated since the problem of finding useful
trajectories of a nonlinear system is itself a rather difficult problem. A
first step in that direction is the use wéjectory morphingechniques

(71, [6].
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Consider the class of nonlinear continuous-time systems described
by the state-space equations

Anticipatory Iterative Learning Control for Nonlinear

i(t) = f(x(t)) + Bla(t)ult) 1)
Systems with Arbitrary Relative Degree y(t) =g

j(x(t)) )

Mingxuan Sun and Danwei Wang
wherer € R",u € R" andy € R™ denote the state, control input and
output of the system, respectively. The functigits) € R", B(-) =
Abstract—in this note, the anticipatory iterative learning control is ex-  [b;(+),+++.b.(-)] € R**" andg(:) = [¢1(:),*++, gm()]T € R™ are
tended to a class of nonlinear continuous-time systems without restriction smaoth in their domain of definition and are known of certain prop-

on relative degree. The learning algorithm calculates the required input . . o . I L
action for the next operation cycle based on the pair of input action taken erties only. This system performs repetitive operations within a finite

and its resultant variables. The tracking error convergence performance is time interval[0, T']. For each fixedr(0), S denotes a mapping from
examined under input saturation being taken into account. The learning (x(0),u(t),t € [0,T7) to (z(¢),t € [0,T]) andO a mapping from
algorithm is shown effective even if differentiation of any order from the  (:(0), u(#),* € [0, T]) to (y(¢), t € [0, T]). In these notations;(-) =

tracking error is not used. S(x(0),u(+)) andy(-) = O(x(0),u(-)). The control problem to be
Index Terms—Convergence, learning control, nonlinear systems, relative solved is formulated as follows. Given a realizable trajectary), t €
degree. [0, T] and a tolerance error bound> 0, find a control input:(¢),t €

[0,T], by applying an ILC technique, so that the error between the
output trajectory(¢) and the desired ong;(¢) is within the tolerance

I INTRODUCTION error bound, i.e.||y«(t) — y(¢)|| < =,t € [0,T], where]| - || is the
Recently, rigorous analyses of continuous-time iterative learningctor norm defined afa|| = maxi<i<x |a:| for ann-dimensional
control (ILC) have been developed, see, for example, [2]-{10]. Wectora = [ai,---.a,]". Throughout the paper, for a matri =

particular, a fundamental characteristic of a class of learning contfal;;} € R™*", the induced normf{ || = maxi<i<m Si=y |ais].
design methodologies is examined in [5], which clarifies the necessily solve this problem, we use the ILC in the form of the following an-
of the use of error derivative for systems without direct transmissiaitipatory updating law [1]:
term. In [6], this characteristic is further clarified for nonlinear
continuous-time systems where error derivatives, the highest order
is equal to the relative degree of the systems, are used to update (1) = {uk(f) +Tx(t)er(t+ o), iftel0,T— o] 3)
the control input. ILC using the highest-order error derivatives only AR (T — o), ift e (T —o0,T]
is termed D-type ILC. Numerical calculations might be required v, (t) = sat(v.(t)) 4)
to obtain error derivatives for the implementation. However, the
signals obtained by numerical differentiation will be very noisy if
the measurement is contaminated with noise. ILC without usinghere
differentiation is referred to as P-type ILC. Several technical analyzes; > 0 small number;
of P-type ILC are presented for nonlinear continuous-time systemsy, number of operation cycle;
er(t) = ya(t) — yx(t) output or tracking error;
T'w(t) € R7*™ learning gain matrix piecewise continuous
' _ _ and bounded.

me’\?%r(]elésgyFxsfggii\(tidE’\éli?gf%lc\’/eznooo; revised September 9, 2000. Recol"his_ updating law is based on the causal relationship between the con-
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