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Abstract—In this paper, we study the channel estimation and
the optimal training design for relay networks that operate under
the decode-and-forward (DF) strategy with the knowledge of the
interference covariance. In addition to the total power constraint
on all the relays, we introduce individual power constraint for
each relay, which reflects the practical scenario where all relays
are separated from one another. Considering the individual power
constraint for the relay networks is the major difference from that
in the traditional point-to-point communication systems where
only a total power constraint exists for all colocated antennas. Two
types of channel estimation are involved: maximum likelihood
(ML) and minimum mean square error (MMSE). For ML channel
estimation, the channels are assumed as deterministic and the
optimal training results from an efficient multilevel waterfilling
type solution that is derived from the majorization theory. For
MMSE channel estimation, however, the second-order statistics
of the channels are assumed known and the general optimization
problem turns out to be nonconvex. We instead consider three
special yet reasonable scenarios. The problem in the first sce-
nario is convex and could be efficiently solved by state-of-the-art
optimization tools. Closed-form waterfilling type solutions are
found in the remaining two scenarios, of which the first one has an
interesting physical interpretation as pouring water into caves.

Index Terms—Cave-filling, channel estimation, decode-and-for-
ward, majorization theory, maximum likelihood, minimum mean
square error, optimal training, relay networks, waterfilling.

I. INTRODUCTION

E MPLOYING multiple antennas can boost the system
capacity by simultaneously transmitting multiple data

streams [1], [2] and enhance the transmission reliability by
using space-time coding (STC) techniques [3], [4]. Unfortu-
nately, packing more than one antenna onto a small mobile
terminal faces many difficulties, such as the size limitation
and the hardware complexity. In order to overcome these
difficulties, one would resort to the relay network, where the
spatial diversity is achieved when relays are deemed as “virtual
antennas” for the desired user [5]–[13]. These relay nodes either
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can be provided by the telecommunication agency or could be
obtained from other cooperative users [9]–[11], where the latter
scenario is also referred to as cooperative communication since
each user, although acts as a relay for a certain period, still has
its own information to transmit.

The relay-based transmission is usually divided into two
phases. During Phase I, the source broadcasts its information
symbol to all relays. During Phase II, the relays would either
choose to amplify and retransmit the received signal, or to
decode the information bits first and then transmit newly
encoded symbols. The former process is referred to as am-
plify-and-forward (AF) relaying and the latter is referred to
as decode-and-forward (DF) relaying. Various cooperative
diversity schemes and STC techniques have been developed in
[7]–[13].

Channel estimation and optimal training design for AF relay
networks have been recently introduced in [14], where it is
shown that the estimation scheme in AF relay networks is quite
different from the traditional point-to-point communication sys-
tems. For DF relay networks, however, the transmissions during
Phase I and Phase II are actually separated by the decoding and
re-encoding strategy. Hence, the channel estimation is similar
to that in the multiple-input multiple-output (MIMO) system
and can be separately performed for the two phases. However,
since relays are geographically distributed, the individual power
constraint for each relay has to be considered. These individual
power constraints form the major challenge and, most of the
time, bring difficulties to the optimization approach. Although
there exist many training-based channel estimation methods for
traditional point-to-point systems [15]–[19], channel estimation
with individual power constraint for each antenna has not yet
been considered either in relay networks or in the traditional
multiple access systems, to the best of the authors’ knowledge.

In DF relay networks, nevertheless, a total power constraint
is also included when there exists a central control unit (CCU).
Although the CCU cannot allocate the power to each relay from
a common power pool, it can still determine how much power
each relay will spend within its own power constraint.1

In this paper, we derive the optimal training for both the
maximum likelihood (ML) channel estimation and the MMSE

1Consider the scenario where one source needs several relays to help for-
warding the message to the destination due to certain reasons. It is then natural
for the source to afford the power consumed at all relays. It is also reasonable
that the source has it own budget on how much power it can afford. All these
facts justify our introduction of a total power constraint onto all the distributed
relays. Note that the total power constraint is a unique property resulting from
the relaying nature, which does not exist in multiple-access systems.
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Fig. 1. Wireless relay networks with one source, one destination,� relays, and� interferences.

channel estimation based on the knowledge of the interference
covariance matrix and with individual and overall power con-
straints. For ML channel estimation, a multilevel waterfilling
type solution is obtained by using majorization theory [20].
However, the problem of MMSE channel estimation turns out
to be nonconvex and is hard to solve. We instead consider
three special yet reasonable scenarios: 1) white noise and
correlated channels; 2) white noise and uncorrelated channels;
and 3) equal power constraint and independent and identi-
cally distributed (i.i.d.) channels. The optimization in the first
scenario can be converted into a semidefinite programming
(SDP) problem and can be efficiently solved by SDP tools. The
solution to the second scenario has waterfilling structure but has
both the ground and the ceiling restrictions. Due to this specific
physical meaning, we name this new structure cave-filling. The
solution to the third scenario is shown to be similar to the one
in [18] and [19], after some tricky reformulation.

The rest of this paper is organized as follows. Section II
provides the system model of DF-based relay networks.
Sections III and IV present the ML channel estimation and
the MMSE channel estimation as well as their respective
optimal training design. Section V displays simulation results
to corroborate the proposed studies. Conclusions are drawn in
Section VI.

Notations: Vectors and matrices are boldface small and cap-
ital letters, respectively; the transpose, Hermitian, and inverse
of the matrix are denoted by , , and , respec-
tively; is the trace of and is the th entry of

; diag denotes a diagonal matrix with the diagonal ele-
ment constructed from ; and denote the vectors
formed by the diagonal elements and the eigenvalues of ,
both arranged in nondecreasing order; implies the el-
ement-wise inequality for vectors and ; means that
matrix is positive semidefinite; is the identity matrix;

denotes the statistical expectation; and the imaginary unit
is .

II. SYSTEM MODEL OF DF RELAY NETWORKS

Consider a wireless network with randomly placed relay
nodes , ; one source node ; one destination

node ; and interfering nodes , operating
in the same frequency band, as shown in Fig. 1. Every node
has only a single antenna that cannot transmit and receive si-
multaneously. The channel between any two nodes is assumed
quasi-stationary Rayleigh flat fading in that it is constant within
one frame but may vary from frame to frame. Denote the channel
from to as , from to as , from to as ,
and from to as , respectively,2 namely, ,

, , and . We
assume perfect synchronization among , , and . However,
no synchronization assumption is made for interfering nodes,
and only the statistics of the interference are known at s and

.
The training is accomplished by the following two phases,

each containing consecutive time slots. For Phase I, the trans-
mitter broadcasts the training signal to s and . The received
signals at are expressed as

(1)

where is the equivalent baseband signal from during Phase
I and is the white complex Gaussian noise at the th relay.
During Phase II, sends out the training signal3 of length

and receives

...

(2)

where is the signal from during Phase II and
represents the complex white Gaussian

2Note that the interference, if any, affects both the relays and the destination,
which is a highly undesired scenario.

3The relays do not need to decode the training signal � of Phase I but rather
send new training signals to the destination.
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noise vector at . The equivalent colored noise has the
covariance

(3)

which is assumed known to the destination.
The task of the channel estimation includes estimating each
at and estimating all at . The former can be carried

out using the same algorithm as in the traditional single-input
single-output (SISO) system. We omit details for brevity. In the
remainder of this paper, we will only focus on estimating .
Meanwhile, is required since there are unknown
channels to be estimated. Assume, during the training process,

can maximally provide the power of . Then the individual
power constraint of could be expressed as

(4)

To offer a more general discussion at this point, we assume that
there exists CCU, and the overall training power consumed from
relays is limited by , namely

(5)

Note that CCU in a distributed relay network cannot allocate
power to each relay from a common power pool but rather con-
trol the power level of each relay within its individual power
constraint to meet certain purpose. There are two degenerated
cases. First, if , the total power constraint is re-
dundant. Secondly, if , all the individual constraints
are redundant. In the following, we assume that

.
Remark: The model here also applies to the multiple-access

system if only the individual power constraint is imposed. How-
ever, whether there can be a total power constraint should be
based on some reasonable assumption. The related discussion
is out of the scope of this paper and will be omitted here.

III. MAXIMUM LIKELIHOOD BASED CHANNEL ESTIMATION

A. Problem Formulation

The ML estimation considers the deterministic channel, and
the channel should be estimated from

(6)

with the error covariance matrix

(7)

The mean square error (MSE) is then and
the optimal can be found by solving the following constrained
optimization problem P1:

(8)

Without loss of generality, we assume s are arranged in non-
decreasing order and define .

Before we proceed, we give several definitions in majoriza-
tion theory. More results on majorization theory can be found
in Appendix I and [20].

Definition 1: For any , let
denote the reordering of the components of such that

(9)

Definition 2: For any two , , we say is majorized
by (or majorizes ) and write if

(10)

(11)

If only (10) holds, we say is weakly majorized by and write
[20, A.2]. Note that implies .

Theorem 1: Define a new problem P2

is diagonal

(12)

where is defined in Definition 2. Suppose the optimal solu-
tion to P2 is . There exists a unitary matrix such that the
optimal for P1 can be obtained as .

Proof: See Appendix II. The way to find will be exhib-
ited in Section III-C.

Since is diagonal, we can represent as ,
where is an orthonormal matrix and is a
real diagonal matrix with diagonal element . Since
the column order of can be changed arbitrarily with the
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corresponding interchange of , we can always assume that
are arranged in nondecreasing order. Then P2 becomes

(13)

Suppose the eigenvalue decomposition of is
, where is an unitary matrix and

is a diagonal matrix. Since the
column order of can be changed arbitrarily if the diagonal
elements in are interchanged accordingly, we can always
assume that are arranged in nondecreasing order. Then, we
get into the following theorem.

Theorem 2: The optimal to (13) is
and the optimal can be found from

(14)

Proof: See Appendix III.
We can remove the constraints and

since an optimal solution always satisfies them. This point will
be made clear later.

B. Convex Optimization via Karush–Kuhn—Tucker (KKT)
Conditions

Clearly, (14) is a convex optimization problem with respect
to unknown s. Since , there must exist
an integer , such that
while . Therefore, the constraints

, for , are redundant and can be
removed for the time being.

The Lagrangian of the optimization problem is written as

(15)

where and are Lagrange multipliers and the KKT condi-
tions are listed as

The solutions to the KKT conditions can be found from the
following algorithm.

Algorithm 1: Multilevel Waterfilling

1) Set , .
2) For each , calculate the water

level (hypothesizing
patches to are saturated) and the water
level (hypothesizing
patch to are saturated). If the water
level is the lowest,
go to 3). Otherwise, if index gives the lowest
water level, set and calculate

for
. If , then and go to 3);

otherwise, and go back to 2).
3) Calculate

, for .

Proof: See Appendix IV.
Algorithm 1 actually describes a way of multilevel water-

filling, as shown in Fig. 2. Each of the patches corresponds
to one unknown variable and has a patch-width of .
A total amount of water is going to be poured into all the
patches. As the water is being poured, the water level for all
patches will increase simultaneously. However, for each patch,
there is a maximum possible water level that is computed from
the step 2). Once the water level of a patch reaches its maximum,
the water level of this patch will not be enhanced, and the re-
maining amount of the water can only be poured into the other
patches. After all the water is poured, the final water level on the

th patch is the optimal value . Step 2) in fact guarantees
that the final water level of the th patch is always lower than or
equal to that of the th patch for . From Al-
gorithm 1, the water level needs to be calculated
times in the worst case.

C. Algorithm to Find From
After obtaining the optimal , we need to construct the

original for problem P1 such that all the constraints are satis-
fied. From proof of Theorem 1, we know that the s are the
eigenvalues of and is required. Therefore,
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Fig. 2. Illustration on weighted multilevel waterfilling.

as shown in Corollary 1, we first need to find the diagonal values
of such that and .
The solution is obviously not unique. Nonetheless, we here pro-
vide a simple way to find one . Denote

.

Algorithm 2: Finding Diagonal Elements of

1) Set for all .
2) For , if , then set and set

.

Proof: See Appendix V.
After obtaining , we can find a unitary matrix

via the algorithm provided in [21, Sec. IV-A] (as explained
in Lemma 2), such that has diagonal elements

. The final optimal is , as has been indicated
in Appendix II.

IV. MINIMUM MEAN SQUARE ERROR BASED
CHANNEL ESTIMATION

Denote the covariance of as , which is assumed known
at . The linear MMSE estimator of is expressed as

(16)

The error covariance of the MMSE estimator is

Cov (17)

and the optimal training should be obtained from

(18)

The general solution to (18) is currently unknown. However,
(18) can be converted to a convex problem under several special
scenarios. For example, when each relay can offer sufficiently
large power, the individual power constraints can be removed.
Then, the problem becomes the same as the one in the traditional

colocated transmission [19]. In this section, however, we con-
sider three special yet reasonable transmission scenarios under
which the convexity of (18) can also be obtained.

A. White Interference and Correlated Channels

The case is valid when the interfering users also transmit the
white data sequence4 or when there is no interference at all. Let

in this case. Then the cost function (18) becomes
. Denoting and using

an auxiliary matrix , the optimization can be rewritten as [14]

(19)

Therefore, (19) is the so called semidefinite programming (SDP)
for the variables and . Since both the cost function and
the constraints are convex, the SDP formulation could be solved
efficiently by interior point methods [22]. The convexity of (19)
ensures that its global minimum can be found in polynomial
time. The arithmetic complexity of the interior point methods
for solving the SDP (19) is , where is
a constant to control the algorithm accuracy [22]. After getting

, the training matrix can be obtained by the corresponding
decomposition.

B. White Interference and Independent Channels

Assuming independent channels is reasonable for relay net-
works since relays are geographically distributed over a certain
region. The optimization problem (18) remains unchanged, ex-
cept that diag is a diagonal matrix.
The following theorem characterizes the optimal solution in this
scenario.

Theorem 3: The optimal must be diagonal under the
white interference and independent channels.

4The data from any user, no matter the primary user or the interfering users,
are normally white after the interleaving.
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Proof: For any matrix , we can always find a such that
, which means that satisfies all the

constraints. From the following inequality [23]:

(20)

where is an arbitrary positive definite matrix and
the equality holds if and only if is diagonal, pro-
vides a lower objective value than

. Therefore, the optimal must
be diagonal.

Let . The optimization
problem (18) can be written as

(21)

The corresponding Lagrangian is

(22)

where , , and are the corresponding Lagrange multipliers.
The KKT conditions are

(23)

The optimal is derived as

(24)

or, more concisely,
.

Proof: See Appendix VI.
Substituting the expression for into , we

obtain

(25)

from which we can calculate the optimal value of .
The left-hand side of (25) is a piecewise-linear nonde-
creasing function of 1 , with breakpoints at and

, so the equation has a unique solu-
tion. This solution also has a waterfilling type structure for the
following reasons. We may think of as the water
level associated with the th patch, while thinking of
and as the ground level and the ceiling level
of patch , respectively. The patch structure with both ground
level and ceiling level is illustrated in Fig. 3. Then we flood the
region with water to a depth . Note that those patches that have
ceiling levels lower than will be saturated and no more water
will exceed the corresponding ceiling levels. The total amount
of water used is then .
We keep on flooding the patches until we have used a total
amount of water equaling to . The depth of water above
patch is then the optimal value . There exists a difference
between this new type of waterfilling and that of the multilevel
waterfilling, where in the former we only consider one water
level during the optimization. Due to its specific physical
meaning, we will name the new structure as cave-filling.

Algorithm 3: Cave-filling

1) Sort the ground level according to another index set such
that .

2) Set .
3) Find index such that .

Calculate

(26)

If , set . If , go to 4);
If , then and go back to 3).

4) Apply the traditional waterfilling algorithm over patches
to with a total power ; namely, calculate

from

(27)

Proof: See Appendix VII.
Corresponding to outer iteration in step 3), the traditional wa-

terfilling in step 4) is referred to as the inner iteration.

C. Equal Power Constraints Under i.i.d. Channels

The assumption of i.i.d. channel is reasonable when distances
between different relays and the destination are relatively the
same. The assumption of the same maximum power consump-
tion is also valid when relays are the same type of mobile
terminals.
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Fig. 3. Illustration on cave-filling with both ground level and ceiling.

Under this circumstance, we may denote , and the
optimization is rewritten as

(28)

Theorem 4: The optimal would have equal diagonal
values under equal power constraints and i.i.d. channels.

Proof: Denote the singular value decomposition of
the optimal as , where is an

orthonormal matrix, is an unitary
matrix, and diag is a diagonal ma-
trix with nonnegative diagonal elements. Define as the

normalized discrete Fourier transform matrix with
and construct a new matrix

. Note that is a circulant ma-
trix5 and, therefore, has equal diagonal elements .
Meanwhile, the objective function
remains the same as . Since

, using
would satisfy all the individual power constraints. The total
power constraint is also satisfied since .
So, we can always consider the optimal that has equal
diagonal elements in .

The optimization is rewritten as

has equal diagonal elements

(29)

As we only consider the nondegenerated case with ,
we can remove the constraint . Meanwhile,
since we can always find a unitary matrix such
that has equal diagonal elements and gives the same value

5From [24], we know that� � � �� is a circulant matrix for any diagonal
matrix �.

of objective function, we can first look into the following opti-
mization:

(30)

Now the problem becomes the classical one that has been dis-
cussed in [12] and [18], and the solution is ,
where is the eigenmatrix of , is any uni-
tary matrix, and is
a diagonal matrix. If the eigenvalues of are arranged in non-
decreasing order, then the optimal follows the weighted
waterfilling structure

(31)

The water level should be found from

(32)

Finally, the optimal solution to the original problem (28) is
.

Corollary 2: If , the optimization can be
solved similarly as (30).

Proof: Consider a new problem by changing individual
power constraints to while keeping the
total power constraints the same. The new problem should have
an optimal objective value less than or equal to that of the orig-
inal problem. From (30), we know the final optimization solu-
tion to this new problem has equal diagonal value .
Since , all the individual power constraints are
also included in the original individual power constraints. So the
optimization to the new and original problem are the same.

V. SIMULATION RESULTS

In this section, we numerically examine the performance of
our proposed channel estimation algorithms as well as the op-
timal training designs under various scenarios. The signal-to-
noise-ratio is defined as SNR with (av-
erage power over time and spatial index).

The channels s are assumed as circularly symmetric com-
plex Gaussian random variables with variances normalized
such that . The channel covariance matrices
have the following structures:

where is a real scalar that affects the correlation between
channels. Interference covariance matrices in our example
have a similar structure as , where a real scalar is
used to control the correlation between noise. The average in-
terference power is assumed to be ten times the noise so that

.
The training sequence that is the scalar multiple of the op-

timal will be named as the proposed training sequence (Pro-
posed T). Correspondingly, the L2 norm of the optimal will
be referred to as the proposed power allocation (Proposed P).
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Fig. 4. Comparison between different training and power allocation for
ML-based channel estimation, with � � ���, � � ���, � � � � �.

Fig. 5. Comparison between different training and power allocation for ML
based channel estimation, with � � ���, � � ���, � � ��� � �.

The proportional power allocation (Proportional P) is defined
as . We mainly compare the proposed
training sequence with both orthogonal training (Orthogonal T)
and random training (Random T). Therefore, the following six
different types of the training scenarios will be examined: “Pro-
posed T, Proposed P,” “Proposed T, Proportional P,” “Orthog-
onal T, Proposed P,” “Orthogonal T, Proportional P,” “Random
T, Proposed P,” “Random T, Proportional P.” For all numerical
examples, we use 10 000 Monte Carlo runs.

A. ML Channel Estimation

To exhibit the effect of the correlated channel and the col-
ored interference, we adopt a relatively large and as

. In Fig. 4, we display the MSEs of the ML channel
estimation versus SNR for different training scenarios where

. We can see that the proposed training with

the proposed power (the optimal solution) is slightly better than
the proposed training with the proportional power. The orthog-
onal training under both power allocations has more than 6 dB
SNR loss compared to the optimal one. The performance of the
random training has around 20 dB SNR loss compared to the
optimal one and is not stable.6 since we assume the smallest
possible We then increase to eight while keeping all other
parameters fixed and show different MSEs in Fig. 5. Most ob-
servations are the same as those in Fig. 4 except that the perfor-
mance of the random training becomes more stable and is better
than that of the orthogonal training. For orthogonal and random
training, although the proportional power allocation gives better
performance than the proposed power allocation in Fig. 4, it
gives worse performance in Fig. 5.

B. MMSE Channel Estimation

1) White Interference and Correlated Channel: To exhibit
the effect of the correlated channel, we here adopt a relatively
large as . The convex optimization is conducted by
the SDP tool SeDuMi v1.1 [25]. The MSE of different algo-
rithms as a function SNR is shown in Fig. 6 with .
We find that the proposed training sequence under the proposed
power allocation gives the best performance. Interestingly, the
proposed training sequence with the proportional power alloca-
tion is always parallel to the optimal one but has 1 dB SNR loss.
Meanwhile, the orthogonal training with the proposed power al-
location performs worse at lower SNR region but performs close
to the optimal one at high SNR region. This is reasonable and
agrees with the intuition that under the white interference and
with high SNR, MMSE estimation will become similar to ML
estimation whose optimal training sequence should be orthog-
onal training. Nonetheless, with proportional power allocation,
the orthogonal training still has a 1-dB loss at high SNR. For
random training, the one with the proposed power allocation is
2 dB better than the one with proportional training. However,
both of them perform much worse than the proposed training
under the proposed power allocation.

2) White Interference and Uncorrelated Channel: In this
case, the proposed training is orthogonal. Therefore we only
compare it with random training. The MSE performance of
the four different training scenarios are shown in Fig. 7 with

. Similarly, the proposed training with proportional
power performs 1 dB worse than the proposed training with
the proposed power allocation, and the random training suffers
from a larger SNR loss.

3) Equal Power Constraints and i.i.d Channel: To exhibit the
effect of the colored interference, we choose a relatively large

as . In this case, we find that the proportional power
allocation is the same as the proposed power allocation. We thus
only compare different schemes under the proposed power allo-
cation. The MSEs are shown in Fig. 8. It is seen that the orthog-
onal training incurs a 2-dB loss over the optimal training, while
the random training suffers from a significant loss.

From simulations in the MMSE case, we find that: 1) the
proposed training sequence always performs better than other
training sequences with the same power allocation and 2) the

6The same phenomenon has been observed in [14].
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Fig. 6. Comparison between different training and power allocation for
MMSE-based channel estimation, with � � ���, � � �, under� � � � �.

Fig. 7. Comparison between different training and power allocation for
MMSE-based channel estimation, with � � �, � � �, under � � � � �.

proposed power allocation always performs better than the pro-
portional power allocation under the same training sequence.

C. ML Channel Estimation Versus MMSE Channel Estimation
Finally, we compare the ML channel estimation and the

MMSE channel estimation with . We consider
two cases: , (case 1 in Section IV) and

, (case 3 in Section IV). The MSEs of different
algorithms as a function of SNR are shown in Fig. 9. In both
cases, the MMSE estimator outperforms the ML estimator in
lower SNR, while the two estimators have nearly the same
performance at higher SNR. This agrees with the phenomenon
in the traditional SISO or MISO channel estimation [17].

VI. CONCLUSION

In this paper, we studied the training based channel estima-
tion in relay networks using DF strategy. The major challenge
is that there exists an individual power constraint for each relay
node as well as a total power constraint over the whole network.

Fig. 8. Comparison between different training and power allocation for
MMSE-based channel estimation, with � � �, � � ���, under� � � � �.

Fig. 9. Comparison between ML channel estimation and MMSE channel esti-
mation for case 1 and case 3, respectively, under � � � � �.

Both ML and MMSE estimators have been investigated. The
ML-based channel estimation was solved thoroughly by using a
multilevel waterfilling algorithm. For MMSE estimation, how-
ever, the general problem turns out to be nonconvex and is dif-
ficult to solve. We instead consider three special yet reasonable
scenarios, all of which can be converted to convex optimiza-
tion problems, and the last two scenarios have the waterfilling
type solutions. Meanwhile, we name a new type of waterfilling
structure as cave-filling where there are both grounds and ceil-
ings for water patches. Numerical examples have been provided
from which we find that the proposed training and the proposed
power allocation are both important to achieve the best channel
estimation.

APPENDIX I
MAJORIZATION THEORY

Majorization theory has been used to convert some matrix-
valued nonconvex problems into scalar-valued convex ones in
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[26]. Here, we briefly introduce some basic results on majoriza-
tion theory [20].

Lemma 1 [20, 9.B.1]: For any Hermitian matrix ,
there is .

Lemma 2 [20, 9.B.1]: For any satisfying ,
there exists a real symmetric matrix whose eigenvalues are
and diagonal elements are .

The matrix can be eigendecomposed as diag .
A practical algorithm to find was proposed in [21, Sec.
IV-A].

Lemma 3 [20, 5.A.9.a]: For any , there must exist an
such that .

Corollary 1: For any satisfying , there
exists a real symmetric matrix whose eigenvalues are and
diagonal elements .

Proof: Straightforwardly from Lemma 2 and Lemma 3.

APPENDIX II
PROOF OF THEOREM 1

We need to first proof the equivalence between P1 and P2. It
suffices to show that for any feasible point in P1, there is a
corresponding feasible point in P2 which gives the same ob-
jective value, and vice versa. The proof needs some basic knowl-
edge of majorization theory, which has been briefly introduced
in Appendix I.

1) : Let be any matrix in the space re-
stricted by the constraints in P1, and the corresponding
objective value is . From the constraints
of P1, we get and therefore
by definition. From Lemma 1 in the Appendix, we know

so . Suppose the
eigendecomposition of is and
define . Then, we have

. Since is a diagonal matrix,
there is . Moreover,

. Therefore, for any feasible
solution to P1, is always a feasible point in P2
with the same objective value.

2) : Let be any feasible solution to P2. Since
is diagonal, then . From

Corollary 1 in Appendix I, we know there exists a real sym-
metric matrix such that and .
Therefore, is positive semidefinite and can be expressed as

for some unitary matrix . Define .
Note that ,

, and . Therefore,
for any in P2, there is also a corresponding feasible point in
P1 with the same objective value.

Theorem 1 is implicitly proved from the above proof.

APPENDIX III
PROOF OF THEOREM 2

We first prove that the optimal must be
a diagonal matrix. Note that the optimization can be separately

conducted for and . The objective function can be equiv-
alently written as

(33)
Suppose the eigenvalues of are , ,
which are arranged in nondecreasing order. From [27, Eq. (4)],
we know

(34)
where the second inequality comes from [28, Th. 10, pp. 209]
and the property that s are arranged in nondecreasing order
is also utilized here. The first equality holds when the eigenma-
trix of is an appropriate permutation matrix. Clearly
the lower bound of the objective function is
and is achieved when . Note that this

is derived when we assume that and are arranged
in nondecreasing orders. Otherwise, should be left-mul-
tiplied by some appropriate permutation matrix.

Remark: This structure of tells that the optimal training
should apply all energy on the eigenmodes that correspond to
the smallest interference levels, i.e., the smallest .

APPENDIX IV
PROOF OF ALGORITHM 1

First, it is observed that must hold at the
optimal point. Otherwise, and
cannot hold for . Without loss of generality,
suppose that at the optimal point, only out of s are
nonzero, or the equality of the corresponding constraint holds.
Denote these s as , with

. The assumption indicates for . Then,

(35)

(36)

Define ; we have for
. This is exactly the weighted waterfilling by considering
as the water level and as weight for patch ,

. Note that the waterfilling here is different from
the traditional one [26] in that the water patches here have zero
bottom level for all . Therefore, the water level can
be explicitly calculated as . In fact, when
we pour the water into different patches, the water quantity for
patch increases while the ratio

(37)

is kept until the overall water quantity reaches . Obvi-
ously, this ratio indicates that .
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Next, we consider in a similar way. When
it comes to , , we need to solve

(38)

(39)

As (39) holds for all , (39) is equivalent to

(40)

Define ; there is
for and the corresponding water level is

. At this point, we see that multiple water levels coexist
for the proposed algorithm. For the same reason, is in
nondecreasing order for . Moreover, since

, the water level is also
arranged in nondecreasing order. Considering the fact that

is arranged in nondecreasing order, we know that the
optimal is greater than or equal to . There-
fore, , , should be in nondecreasing order.
Meanwhile, the water level can be explicitly calculated
as .

Lastly, we have

(41)

(42)

The corresponding water level is
and for

. Similarly, should be in nondecreasing
order for and .

The above discussion not only provides the way to design
the algorithm but also confirms the validity of omitting the con-
straints and in the first place. The so-
lution structure follows a weighted multilevel waterfilling with
multiple water levels at and
the weight for the th patch is . The illustration of the pro-
posed weighted multilevel waterfilling is given in Fig. 2, where
it is seen that different patches may have different water level
and different weight. The area of the cross-section, which is
weight water-level, will be the power that is poured into this
specific patch. The cutting point , , can be ob-
tained from the testing, which is given by step 2) in Algorithm 1.

APPENDIX V
PROOF OF ALGORITHM 2

1) Proof of : From the initialization, we
know for all . From the algorithm, the

excessive part will be included in . This does not
change the equality . Meanwhile, since
more value are included into , the inequality

for will hold.
2) Proof of and :

From the algorithm, we know and is already in
nondecreasing order after the initialization. If at the current step

is smaller than , then will be kept unchanged and
still holds (remember will not be decreased in

all previous steps). If on the other side is greater than or
equal to , then is updated to and is updated to

. However, at the next step, this will
be upper bounded by and the excessive part
will be added to . Bearing in mind that s are arranged in
nondecreasing order, we know that still holds. This
process continues until .

The speciality happens for since there is no behavior re-
garding whether is greater or less than . Therefore, we only
need to prove that the final satisfy and . These
two things can be proved together. If still holds after
getting the increment, then there will be no increment for .
In this case, the final is the same as the initial , which is
exactly , and the proof is completed. Otherwise,
and the excessive part will be added to . Bearing in mind that

may also receive the increment from the previous steps, we
suppose a maximal integer , such that is
equal to for when the algorithm goes to the last
step. Then, the final is . From the
optimization process, we know

(43)

Then

(44)

can be derived. Since the final value of is in this case, we
arrive at .

APPENDIX VI
PROOF OF (24)

Multiplying both side of (23) by eliminates , and the
following equation results:

(45)

If , then . In this case,
is not possible since if , then

and (45) cannot hold. Therefore,
if . Similarly, multiplying both sides of
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Fig. 10. Illustration on the practical cave-filling algorithm.

(23) by eliminates , and the following equation
results:

(46)

If , then
. In this case, is

not possible since if , then
and (46) does not hold. Therefore,

if .
Now let us prove that when

, both and must be zero. From (46), we know
. If

, then cannot be zero, which gives . From
(45), we know .
If , then cannot be ,
which gives . So, for

, (23) becomes

(47)

and is calculated as .
Finally, let us prove that . If , then from the

previous discussion, must be zero. From (23), we know
for any , which indicates that

for all . This forms contradiction since we assume
. Therefore, cannot be zero, and

can be drawn from KKT.
APPENDIX VII

PROOF OF ALGORITHM 3

According to the physical waterfilling, the patch with
the lowest ceiling level will saturate first.
Without loss of generality, we assume the ceiling levels are

originally ordered as7

, as shown in Fig. 10. We also sort
the ground level according to another index set such that

. We first need to
find all the saturated patch , and this process is called outer
iteration. Obviously, when pouring the water, the saturation
gradually happens from the smallest index to the largest.

We first assume that patch 1 saturates exactly; then, there is
a maximal integer such that
and water will only be poured into patches with index set

. We then calculate the required total power
. If this is greater

than , then we conclude that is not large enough for any
patch to saturate so that the traditional waterfilling could be ap-
plied directly on all patches. If is equal to , then the water
level is . However, if is less than , we need
to go ahead and assume that patch 2 saturates exactly. Then,
there is a number such that .
The required total power is

, where
is the power that should

not be counted due to the saturation of the patch 1. If is
greater than , we can apply the traditional waterfilling over
patches to with a total amount power (since patch
1 must be saturated from the previous step). If is equal to

, then is the water level. If is less than ,
we need to go ahead and assume that patch 3 saturates exactly.
This process should go on until we find the true water level.
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