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What is the communication cost of simulating the correlations produced by quantum theory? We
generalize Bell inequalities to the setting of local realistic theories augmented by a fixed amount of
classical communication. Suppose two parties choose one of M two-outcome measurements and
exchange 1 bit of information. We present the complete set of inequalities for M = 2, and the complete
set of inequalities for the joint correlation observable for M = 3. We find that correlations produced by
quantum theory satisfy both of these sets of inequalities. One bit of communication is therefore
sufficient to simulate quantum correlations in both of these scenarios.
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What are the differences between a quantum informa-
tion processing device and its classical counterpart? The
discovery that quantum computers can outperform clas-
sical computers [1] has made answering this question a
central goal for the field of quantum information. Nearly
40 years ago, Bell [2] pointed out that the correlations
resulting from quantum theory cannot be reproduced by
any classical local realistic theory. It follows that quan-
tum correlations on spacelike separated systems cannot
be reproduced classically. If, however, the systems are
timelike separated, then classical simulation is possible,
albeit at the expense of some communication, but how
much is required? In particular, suppose a number of
spatially separate parties share an entangled quantum
state, and each makes a local measurement on their com-
ponent. Then quantum correlations are manifest in the
Jjoint probability distribution of the parties’ outcomes,
dependent on each party’s choice of measurement. If
this probability distribution cannot be reproduced by a
classical local realistic theory, then it violates some gen-
eralized Bell inequality [3]. This means some communi-
cation between the parties is required to reproduce the
probability distribution, but Bell inequality violation
does nothing to quantify how much. More generally,
entanglement is a resource for performing informa-
tion processing tasks, and an important goal of quantum
information theory is to demarcate it from classical re-
sources, such as shared randomness and classical com-
munication channels. What classical resources are
required to reproduce the joint probability distributions
arising from local measurement on shared quantum
states?

We address the above question in this Letter. Within the
setting of local realistic theories augmented by a fixed
amount of two-way classical communication [4], we in-
troduce the notion of Bell inequalities with auxiliary
communication. These inequalities provide conditions
on the joint probability distribution, which must be sat-
isfied if such correlations can be simulated with shared
randomness and a fixed amount of communication. Of
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particular significance are complete sets of such inequali-
ties, which provide necessary and sufficient conditions. In
the scenario where two parties choose one of M two-
outcome measurements and exchange 1 bit of informa-
tion, we present the complete set of inequalities for
M = 2, and the complete set of inequalities for the joint
correlation observable for M = 3. We find that quantum
correlations satisfy all of these inequalities, irrespective
of the particular quantum state or the specific measure-
ments, and can therefore be explained in these settings by
augmenting a local realistic theory with a single bit of
communication. This is particularly remarkable for the
M = 3 case, where one would naively expect a trit of
auxiliary communication is required to simulate quan-
tum correlations.

The model. —We restrict attention to scenarios with
two parties, A and B. In a measurement scenario for
this bipartite case, each party selects one of M different
measurements and then—possibly after some delay, dur-
ing which we might allow the parties to communicate —
outputs one of K different outcomes. (Note that A and B
may choose measurements from different M-element
sets.) Such a measurement scenario results in a set of
probabilities 0 = p,|; ; = 1, where p,;; ; is the proba-
bility that A outputs a and B outputs b, given that A
selects measurement { and B selects measurement j.
Discounting null outcomes (which can be incorporated
as a separate outcome if desired), it follows that
S S K Paplij =1, where 0 =i, j = M — 1. Avalid
measurement scenario is any set of probabilities which
satisfies these normalization constraints.

Given a particular measurement scenario, we investi-
gate all protocols which the two parties might perform to
produce the correct probabilities. A protocol consists of
three stages: (i) preparation via the distribution of shared
randomness, (ii) communication via the exchange of mes-
sages between the parties, and (iii) output of outcomes by
each party as determined by information accessible to
each party. A and B select their measurements after step
(i) but before step (ii). If a protocol produces identical
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probabilities to the measurement scenario, then we say
that the protocol has simulated the scenario.

Two informational resources are of interest: the quan-
tity of shared randomness and the amount of communi-
cation between the parties. We focus on the amount of
communication and define the cost of a protocol to be the
maximum amount of communication required (as op-
posed to the average amount of communication, see
[5]). In the preparation phase of a protocol, we allow A
and B to share an infinite amount of classical information
and, in particular, continuous variables. In the parlance of
foundational studies of quantum theory, these are known
as local hidden variables (LHVs) [6]. A protocol with no
communication [step (ii) missing] is usually called a LHV
theory. In such a theory, each party’s output depends on
the shared randomness and on which measurement the
particular party has locally selected, but not on the
measurement choice of the other party.

The protocols we investigate are therefore an exten-
sion of LHV theories, where we allow the parties to
communicate after selecting measurements [4]. This al-
lows some “which measurement” information to propa-
gate between the parties. We emphasize that a protocol
of this form simulates the joint probability distribution
resulting from a set of quantum measurements, but not
the quantum measurements themselves: it is not pos-
sible to replace local measurements made by two space-
like separated parties on an entangled quantum state by
classical communication. Even in this case, however,
the amount of two-way communication required to re-
produce the joint probability distribution provides a
measure of the nonlocality of the correlations. From
an information processing perspective, this model pro-
vides a fair setting for the comparison of quantum
correlations and classical resources required to repro-
duce them.

Of particular significance in this respect is the result of
Brassard, Cleve, and Tapp [4], who demonstrated that the
correlations produced by two-outcome projective mea-
surements on an EPR pair can be simulated by a local
realistic theory augmented by 8 bits of communication.
Surprisingly, we have recently shown that a single bit of
communication is sufficient [7].

Little, however, is known for more general states and
more general measurements. The goal of this paper is to
illuminate how such bounds can be achieved by general-
izing Bell inequalities to what we term, Bell inequalities
with auxiliary communication.

Bell polytopes.—Bell inequalities [2] describe neces-
sary conditions on the probabilities p,, »|; j, Which must be
satisfied if these probabilities are to be produced by a
local realistic theory. When a set of these conditions is
also sufficient, we say that we have a complete set of Bell
inequalities. The construction of complete sets of Bell
inequalities is an exercise in convex geometry [8]. In this
section, we briefly sketch the construction for Bell in-
equalities without auxiliary communication.
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Consider a deterministic protocol, i.e., one in which no
randomness, shared or otherwise, is used. [This corre-
sponds to a protocol consisting only of step (iii) above,
with the additional requirement that this step is deter-
ministic.] Each party’s output can depend only on their
local which measurement information, so that all such
protocols can be completely characterized by two func-
tions «, B:Z,; — Z, which describe the outcomes of the
two parties’ measurements: if A selects measurement i,
she outputs a(i) and if B selects measurement j, he out-
puts B(j). The probabilities for the scenario are then
Pablij = 5”(')517 0.

a(i) ™ B(j)

By listing the components, we may view the probabili-
ties p,pi; as vectors p in R with D = M*(K* — 1)
(recall the constraint D, p,p;; = 1). To each pair of
functions {a, B}, there corresponds a deterministic pro-
tocol, so the set of all deterministic protocols is a finite
collection of such vectors {ZI;I{ =1,..., K*M}.

Now consider the effect of allowing randomness. Any
unshared randomness can always be replaced by shared
randomness on which the other party does not act [9], so
we may continue to assume step (iii) is deterministic. But
then every set of random variables in step (i) corresponds
to a particular deterministic protocol. Therefore the set of
all possible protocols which use randomness and no com-
munication is described by a convex sum of the determin-
istic protocols without communication,

P=>Nd; DA =1,
{ {

The set of all protocols therefore corresponds to a region
Ok in RP, which is a polytope because there are a finite
number of extreme vectors d [10]. This permits an alter-
native description: instead of describing the polytope
QO as the convex combination of a finite set of extreme
points, we can instead describe it by specifying a com-
plete (finite) set of facet inequalities. A facet inequality is
a pair {;‘, c_} which defines a half-space of R” via the
inequality f - p = c. Complete sets of facet inequalities

, ¢, are satisfied if and only if p is in Qyk:
 Cn
ﬁ EQMK lff}‘n’ﬁ SCT], UT] (2)

Each facet is therefore a Bell inequality and complete sets
of facet inequalities are complete sets of Bell inequalities.
Complete sets are known in the two party case when
M=2 K=2][11], M=3, K=2[12], and also when
extra symmetry constraints are imposed [13].

Bell inequalities with auxiliary communication.— We
now turn to the main focus of our Letter: extending the
formalism of Bell inequalities to protocols which per-
mit communication after the parties have chosen their
measurements. Again consider a deterministic protocol,
but now allow for the communication (possibly two-way)
of at most r bits of information between the parties after
selection of measurements. Such a protocol is com-
pletely characterized by two functions «, B:Z,, ® 7, —
Zg, which describe the outcomes of the two parties’
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measurements, but now each party’s output can also de-
pend on which measurement the other party selects: if A
selects measurement { and B measurement j, A outputs
a(i, j) and B outputs B(i, j). The probabilities for such a
deterministic protocol are then p,;; = 65 j)é Bli))
While @ and 8 can now depend on which measurement
the other party selects, not all functions (i, j), 8(i, j) are
necessarily accessible, if the parties exchange at most r
bits of communication. The set of possible functions
a(i, j), B(i, j) for protocols which use at most r bits of
communication is the subject of the field of communica-
tion complexity [9,14]. For example, with a single bit of
communication from A to B, «(i, j) is independent of B’s
measurement j and B(i, j) can depend only on a partition
of the set of possible i’s into two sets. Despite this
complication, deterministic protocols still correspond to
a finite set of vectors of probabilities d\" in R,

If we now allow randomness, the set of accessible
probabilities Q(r Mk 1S given by the convex combina-
tion of the deterministic probab111t1es P=2y )\gd(’),
D Ar =1, A, = 0. Again, QW is a convex combination
of a finite number of extreme points—a polytope—and
can be described by a finite set of facet inequalities: p €
Q”K ifff(r) P = c, V7. The complete set of facet
inequalities for Q( vk 1s a complete set of Bell inequali-
ties with r bits of communication. An important limit
arises when r = 2log, M because then each party can
tell the other exactly which measurement they have se-
lected. In this setting, all deterministic protocols can be
executed by the two parties: the probability distribu-
tion p,p);; is unrestricted. This implies that Bell in-
equalities with auxiliary communication are trivial
when M = 1.

Additionally, for r =log,M, Bell inequalities with
auxiliary communication, although not necessarily triv-
ial, are never violated by probability distributions arising
from local measurements on a shared quantum state. In
fact this is true for any probability distribution satisfying
the no-one-way-signaling conditions [3], pg; =
> K20 Paplij = Pali» 1s independent of j for all a and i
A’s marginal probability distribution is independent of
B’s choice of measurement. In such cases, it is sufficient
that only A communicate her measurement choice. The
simulation procedure is as follows: for each of A’s mea-
surements I, the parties share a random variable &; drawn
from the probability distribution {a, p,;} (e., @; =a
with probability p,;). Suppose A chooses measurement
i and B chooses measurement j. A outputs @; and sends
her measurement choice i to B. B then outputs ba ijo
where bul ; 1s drawn from the probability distribution
{b, pa,plij}- (The roles of A and B in the no—one-way—
signaling conditions and protocol may be reversed.)

A complete set of Bell inequalities with auxiliary com-
munication.—Consider the simplest case M = K =2
and r = 1 bit. The polytope 9(21% is 12 dimensional and
has 112 extreme vectors. Using both the primal-dual
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algorithm and the double description method [15] for
facet enumeration, we find that this polytope has 48
facets. 16 facets describe trivial inequalities, p,;);; = 0
(0 =14, j,a, b =1). Another 16 facets are of the form

Payb,100 T Paybylon T Paybs0 T Pagbii =2, (3)

with (a,aaza,s) € {(0101), (1010), (0110), (1001)} and
(bybybs3by) € {(0011), (1100), (0110), (1001)}. The re-
maining 16 facets are given by

Paolij t Patlij T Poslry + Pioliy — Pasli; =0 (4)

O=4ijab=1) where 0=1 and 1 = 0. The above
inequalities completely describe the region of probability
distributions that can be created with 1 bit of communi-
cation. There are probability distributions which violate
these inequalities: for example, if p, ,|; ; = 0 8%, Eq. 3)
with (a;a,aza,) = (0101) and (b, b2b3b4) = (0011) is
maximally violated: substitution gives 4=2.

It is straightforward to check that any probability
distribution satisfying the no-signaling conditions satis-
fies inequalities Eqgs. (3) and (4). Finally, consider the
probability distribution p,,|;; = 5 (8§87 + 648§). This
probability distribution violates the no-signaling condi-
tions (in both directions), but satisfies Eqs. (3) and (4),
thus indicating that these inequalities are strictly stronger
than no-signaling.

A complete set of Bell inequalities with auxiliary com-
munication for the joint observable—The above com-
plete Bell inequalities with auxiliary communication
were used to bound the allowed probabilities p, ,; ; for
protocols using a specified amount of communication. In
quantum theory we are often interested not in all of the
probabilities for a measurement scenario, but only on the
value of a particular joint observable. This simplifies our
computational task, because we may project the polytope
Q(r ux onto a lower-dimensional subspace and only enu-
merate the facets of the projected polytope, as we shall
explain in the following. We term a complete set of facet
inequalities for this convex set a complete set of Bell joint
observable inequalities with auxiliary communication.

Consider a measurement scenario with probabilities
Pabli,j and identify measurement outcomes with values
of local observables. The joint observable for the ith and
Jjth measurements of A and B is then defined as

K-1K-1

Z Z A Bbpa bli, j» (5)

a=0 b=

where A, and B, are the values of the local observable
corresponding to measurement outcomes a and b, respec-
tively. As for the full measurement scenario, we may list
the components of the joint observable to form a vector ¢
in RP with D = M? [compare D = M?*(K? — 1) for the
full probability distribution]. For deterministic proto-
cols with at most r bits of communication, the allowed
functions « and B are the same as in the previous sec-
tion, but now correspond to vectors with components

157904-3



VOLUME 90, NUMBER 15

PHYSICAL REVIEW LETTERS

week ending
18 APRIL 2003

¢ij = AaGi,jyBp( j- Since the map given by Eq. (5) is
linear, the vectors corresponding to joint observables
accessible using randomness remain convex combinations
of the vectors accessible via deterministic protocols.

We now specialize to the scenario where each party has
local *=1-valued observables (K = 2) and they exchange
r = 1 bit of communication. The joint correlation observ-
able then has components ¢; ; = pooi; + P1,11i,j — Po1lij —
Piojij- If M=2, we obtain only trivial inequali-
ties —1=¢;;=1.

If M = 3, the polytope has 320 extreme vectors. Using
both the primal-dual algorithm and double description
method for facet enumeration [15] we find that this poly-
tope has 498 facets. 18 of these describe the trivial in-
equalities —1 = ¢;; = 1. The remaining 480 facets can
be described by the inequalities

2

Z Mi,jci,j = l, (6)
i,j=0
where M, ; is either
1 0 —-11 1 1 2 =2
M1 = 6 _1 1 1 , M2 = 1— 2 1 2 y (7)
1 1 1 -2 2 1

or any matrix obtained from these two matrices by (i) per-
muting the rows and/or columns of the matrix and/or
(i1) multiplying any subset of the rows and columns of
the matrix by —1. The full set of inequalities is a com-
plete set of Bell joint observable inequalities for M = 3.

Let us show that quantum theory satisfies all of the
above Bell joint observable inequalities with auxiliary
communication. We do this for a single one of the in-
equalities and the other inequalities all follow by a simi-
lar argument. For =1 valued observables A; and B; and
the joint quantum state p, a particular inequality looks
like Tr[pT;] = 1, where T, is the operator corresponding
to matrix M;, eg., T; =[A; (=B, + B3) + A,(—B, +
B, + B;) + A5(B; + B, + B;3)]/6. Tr[pT] is bounded
by the sup norm of T, |T| = supy,, [[TIgIl/Ill#)|l and
further Tr[pT] < |T*|'/*. Calculation of T* yields a poly-
nomial in A;, B;, and I. Since |X + Y| = |X]| + |Y| and
|P| < 1 for any product P of A;, B, and I, it follows that
|T#] is less than or equal to the sum of the absolute value
of the coefficients in the polynomial expansion of T*. By
computer calculation we find that the sum of the absolute
value of the coefficients of T} is 123 so that |T,| =
\J155/162. Thus this Bell inequality with auxiliary com-
munication is satisfied. Similar arguments using T} or T3
show that all of the inequalities Eq. (6) are satisfied.
Therefore in the scenario where each party chooses one
of three two-outcome measurements, a single bit of com-
munication is sufficient to simulate the joint correlation
observable in quantum theory for all quantum states and
all quantum observables.
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Conclusion.— Bell inequalities with auxiliary commu-
nication are a powerful new tool for understanding the
cost of producing quantum correlations. Surprisingly, in
all the cases we considered, it was sufficient to augment
local realistic theories with a single bit of communication
to simulate the quantum correlations. It remains a chal-
lenge to find a Bell inequality with auxiliary communi-
cation that is violated by a quantum state and set of
quantum measurements [16].
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