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Abstract:We study conformal field theories in two dimensions separated by domain walls,

which preserve at least one Virasoro algebra. We develop tools to study such domain walls,

extending and clarifying the concept of ‘folding’ discussed in the condensed-matter litera-

ture. We analyze the conditions for unbroken supersymmetry, and discuss the holographic

duals in AdS3 when they exist. One of the interesting observables is the Casimir energy be-

tween a wall and an anti-wall. When these separate free scalar field theories with different

target-space radii, the Casimir energy is given by the dilogarithm function of the reflection

probability. The walls with holographic duals in AdS3 separate two sigma models, whose

target spaces are moduli spaces of Yang-Mills instantons on T 4 or K3. In the supergravity

limit, the Casimir energy is computable as classical energy of a brane that connects the

walls through AdS3. We compare this result with expectations from the sigma-model point

of view.
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1. Introduction

Starting with the pioneering work of Cardy [1], boundary conformal field theory (BCFT)

has evolved into a rich subject of great physical interest. The subject is of obvious relevance

to the study of critical phenomena in statistical mechanics. Furthermore, two-dimensional

conformal boundary states have acquired new importance in recent years, as building blocks

for the D(irichlet) branes of string theory [2]. The interplay between the algebraic approach

of Conformal Field Theory, and the complementary geometric viewpoint of D-branes, has

been the theme of many recent investigations (see e.g. [3, 4] and references therein).

The usual setting of BCFT is a space(time) ending on a boundary. In this setting all in-

cident waves are reflected back,1 because there is nothing they can transmit to on the other

side. One may, however, also consider a situation in which two (or more) non-trivial CFT’s

1The language is somewhat loose, because strictly-speaking a CFT has no asymptotic particle states.

A more accurate phrasing, in two dimensions, is that the boundary state maps holomorphic into antiholo-

morphic fields, in a way that commutes with the action of the Virasoro algebra.
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are glued together along a common interface. The interface can be permeable, meaning that

incident waves are partly reflected and partly transmitted. Examples of such boundaries

(mostly between identical CFT’s) have been discussed in the condensed-matter literature,

see for instance [5, 6, 7, 8]. One of our purposes in this work will be to analyze such

permeable interfaces in general, and from a rather different, more geometric perspective.

Our interest in these questions was motivated by an issue in holography. String theory

in AdS3 has static solutions describing infinitely-long (p, q) strings, which stretch between

two points on the AdS3 boundary [9]. In the dual spacetime CFT [10]–[15] the endpoint of

a (p, q) string is, as we will explain, an interface separating regions with different values of

the central charge or different values of the moduli. Similar configurations have been also

discussed in higher dimensions [16, 17]. The force exerted by the stretched string on its

endpoints translates, in the dual interpretation, to the Casimir force between two (or more,

if one considers string networks) permeable interfaces. In this paper we will calculate this

Casimir force, both in the weak- and in the strong-coupling limits. The results we find

are in some ways reminiscent of the heavy quark-antiquark potential in four-dimensional

N = 4 super Yang-Mills [18, 19].

From a technical point of view, an interface between two CFTs is described by a regular

boundary state in the tensor-product theory.2 This is intuitively obvious since one can ‘fold’

space along the interface, so that both CFTs live on the same side [5]. Permeable walls,

in particular, are simply boundary states of the tensor product, that cannot be expressed

in terms of Ishibashi states of the factor theories. Their study does not, therefore, require

drastically-new technology, but it leads to a host of novel questions and observables which

are not usually considered in the standard BCFT setting. One example of such a new

observable is the Casimir energy of a ‘CFT bubble’ which we calculate.

The plan of this paper is as follows. In section 2 we introduce the main ideas of

‘conformal gluing’ in the simplest context of a free scalar field theory, and explain how this

is related to conventional conformal boundary states. We calculate the Casimir energy for

two identical interfaces, separating regions with different target-circle radii, and show that

it is given by the dilogarithm function of the reflection probability. In section 3 we generalize

these considerations in several directions. We show how superconformal invariance of the

walls can be guaranteed by the continuity of appropriately-defined ‘half’ superfields, in a

manifestly supersymmetric formalism. We also calculate the fermionic contribution to the

Casimir energy, and then go on to discuss general properties of permeable interfaces and

some more examples. In section 4 we turn our attention to interfaces of two-dimensional

CFTs which admit holographic AdS3 duals. We calculate the classical energy of a (p, q)

string as a function of its tension, Neveu-Schwarz-charge and of the separation of its two

endpoints. We discuss the validity of this calculation, and interpret it as Casimir energy

in the dual spacetime sigma model. We point out an intriguing analogy with operator

algebras on instanton moduli spaces defined in the mathematics literature [20, 21, 22]. We

conclude, in section 5, with some comments on future directions.

2More precisely, the tensor product of the theory on one side and of the ‘conjugate’ theory, with left-and

right-movers interchanged, on the other side.
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Figure 1: ConformalWard identities are obtained by inserting
∮

C
[Tf(z)dz−T̄f(z̄)dz̄] in correlation

functions. In deforming the contour from C1 to C2 we pick up contributions from the broken-line

segments. These cancel out provided T − T̄ is continuous. The crosses in the figure stand for local

field insertions.

2. Free scalar field

In this section we discuss conformal ‘permeable’ walls for a single free scalar field φ. This

is the simplest setting in which to illustrate the main ideas and calculation tricks, which

we will then apply and extend to other contexts.

2.1 Gluing conditions

Consider a free massless scalar field in 1+1 dimensions, φ(x, t). We are interested in scale-

invariant defects described by the ‘gluing’ conditions:

(

∂xφ

∂tφ

)

x=−0
=M

(

∂xφ

∂tφ

)

x=+0

(2.1)

where ±0 denote points just to the left or right of the wall, which is located at x = 0, and

M is a constant 2× 2 matrix. Energy conservation requires that3

Txt = T++ − T−− = ∂xφ∂tφ (2.2)

be continuous across the defect. Alternatively, notice that the conformal transformations

which leave invariant the x = 0 worldline, are generated by the operators [f(x+)T++ −
f(x−)T−−]. In the Wick-rotated theory, we can obtain the corresponding Ward identities

by inserting a contour integral of these operators in correlation functions. Continuity

of (2.2) ensures that one can deform the contour, so as to only pick contributions from field

insertions. This is illustrated in figure 1.

3The light-cone coordinates are taken to be x± = t± x, so that ∂± = 1
2
(∂t ± ∂x).
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The continuity of Txt implies that M must be an element of O(1, 1). This group has

four disconnected components,

M = ±
(

λ 0

0 λ−1

)

or M ′ = ±
(

0 λ

λ−1 0

)

, (2.3)

with λ a real positive number. We will ‘compactify’ the group by allowing also the singular

values 0 and ±∞, so that λ runs over the entire compactified real line. As a result, the

four disconnected components merge into two, which can be parametrized as follows:

M(ϑ) and M ′(ϑ) , with ϑ ≡ arctan λ ∈
[

−π
2
,
π

2

]

.

We will see in the following subsections that this parametrization is natural.

The singular values of λ correspond to perfectly reflecting defects, for which the fields

on either side don’t communicate. Gluing derivatives with M(0), for example, implies that

∂tφ(+0) = ∂xφ(−0) = 0. This is a standard Neumann condition for the field to the left of

the wall, and a Dirichlet condition for the field on the right. Let us denote it by ‘ND’ (not

to be confused with the mixed boundary conditions one often writes for the annulus). As

can be, likewise, easily checked, M(±π/2), M ′(0) and M ′(±π/2) correspond, respectively,
to DN, NN and DD boundary conditions.

At the opposite extreme of the spectrum one has the four perfectly transmitting cases,

corresponding to the special values |λ| = 1. Clearly, M(π/4) = 1 gives continuous deriva-

tives — there is no defect in this special case. Gluing with M(−π/4) makes φ jump to −φ,
but both left- and right-moving waves are still fully transmitted. The same is true for the

two ‘chiral defects’M ′(±π/4). For one of them left-moving waves are continuous across the

wall, while right-moving waves pick a minus sign. For the other, the roles of left and right

are reversed. If we were to let x be an angle coordinate, the four perfectly-transmitting

walls would give rise to PP, AA, PA and AP boundary conditions for (∂+φ, ∂−φ).

The general defects interpolate between these standard cases. They are ‘permeable’, i.e.

partially-reflecting and partially-transmitting. The two disconnected components of their

moduli space are exhibited as two half-circles in figure 2. Sending λ→ 1/λ exchanges, as

can be easily seen, x- and t-derivatives on both sides. This is, therefore, the action of a

T-duality transformation on the ‘permeable defects.

2.2 S-matrix and Casimir energy

The defects in the first connected component of O(1, 1) have a simple realization as discon-

tinuities in the radius of compactification of the scalar field. Indeed, let the field φ̃ ≡ φ̃+2π

be continuous in the entire plane, but have a discontinuous action

I = 2r21

∫

x<0
∂+φ̃∂−φ̃+ 2r22

∫

x>0
∂+φ̃∂−φ̃ . (2.4)

Varying I gives the boundary conditions at x = 0:

r21∂xφ̃
∣

∣

∣

−0
= r22∂xφ̃

∣

∣

∣

+0
. (2.5)
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Figure 2: The moduli space of gluing matrices, M(ϑ) on the left and M ′(ϑ) on the right, where

ϑ = arctanλ ∈ [−π/2, π/2]. Perfectly-reflecting walls are labeled by the two boundary conditions,

Dirichlet (D) or Neumann (N), on either side of the defect. Totally-transmitting defects are labeled

by the periodicity properties of (∂+φ, ∂−φ) when x is compactified on a circle.

Redefining the scalar field so as to normalize its energy-momentum tensor,

φ ≡
{

r1φ̃ x < 0

r2φ̃ x > 0 ,

leads precisely to the discontinuity equation (2.1), where the argument of the gluing matrix

M(ϑ) obeys

tanϑ = λ =
r2
r1
. (2.6)

Thus, the parameter λ = tanϑ is related to the multiplicative discontinuity of the com-

pactification radius across the wall. We will see the geometric significance of this fact in

the following subsection.

Another useful characterization of the defects

φ

φ φ

φ

1

1

2

2
+

−

−

+

defect

Figure 3: The incoming and outgoing

waves can be related by the matrix S.

is in terms of a ‘scattering matrix’, from which one

can read directly the reflection and transmission co-

efficients. Let us, for ease of notation, call φ1 the

field to the left of the wall, and φ2 the field to the

right. Then ∂−φ1 and ∂+φ
2 can be expanded in

terms of ‘incoming waves’, while ∂+φ
1 and ∂−φ2

can be expanded in terms of ‘outgoing waves’ (as

illustrated in figure 3). Strictly-speaking one can-

not define asymptotic states for a massless 2d field,

but this will not be important for our discussion

here.

With the help of some linear algebra, we can

write the gluing conditions (2.1) in the equivalent

– 5 –
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2d 

r r1 12

Μ(λ) Μ(1/λ)

r

Figure 4: The region of rescaled radius (r2 = λr1) bounded by a defect and an anti-defect. Time

runs in the upward direction. The interfaces feel an attractive Casimir force.

form
(

∂−φ1

∂+φ
2

)

= S

(

∂+φ
1

∂−φ2

)

, (2.7)

where

S =

(

cos 2ϑ sin 2ϑ

sin 2ϑ − cos 2ϑ

)

and S′ =

(

cos 2ϑ − sin 2ϑ

sin 2ϑ cos 2ϑ

)

. (2.8)

The orthogonal matrices S and S ′ relate incoming to outgoing waves at the defect. They

are independent of the wave-frequency, as required by conformal invariance. Furthermore,

they are off-diagonal for ϑ = ±π/4, corresponding to a perfectly-transmitting defect, and

diagonal for ϑ a multiple of π/2, which corresponds to total reflection (see figure 2).

One simple observable, that can be expressed in terms of the scattering matrix, is the

Casimir force between a defect and an anti-defect. Consider, to be specific, an interval

inside which the radius of the scalar field jumps from r1 to r2,

I =

(

2r21

∫ −d

−∞
+2r22

∫ d

−d
+2r21

∫ ∞

d

)

∂−φ̃∂+φ̃ . (2.9)

We assume that φ̃ is continuous in the entire plane. It follows from our previous discussion,

that there is a defect M(ϑ) located at x = −d, and an anti-defect with gluing matrix

M(π/2 − ϑ) at x = d, where ϑ is given by equation (2.6). The setup is illustrated in

figure 4.

In order to calculate the zero-point energy, we put the configuration in a larger box

of size 2L so as to discretize the allowed frequencies. The presence of the defects in the

middle induces a d-dependent shift in these frequencies, thereby modifying the zero-point

sum. Taking L → ∞ removes the dependence on the precise boundary conditions in

the larger box, which can thus be chosen at will for convenience. What is left behind is a

Casimir energy describing the interaction of the wall and antiwall. The calculation is rather

subtle, because of the need to regularize the ultraviolet, and can be found in appendix A.

– 6 –
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The result is

E = − 1

8πd
Li2(R2) , (2.10)

where Li2(x) =
∑∞

1 xn/n2 is the dilogarithm function [23], and R is the reflection ampli-

tude,

R = cos 2ϑ =
1− λ2
1 + λ2

. (2.11)

For weak reflection the energy vanishes (as it should) quadratically:

E ' − R
2

8πd
+ o(R4) . (2.12)

Total reflection, on the other hand, corresponds to R = ±1. Since Li2(1) = π2/6, one

recovers the standard Casimir energy for a massless scalar field in a box in this special

case.

2.3 Folding trick

The permeable defects of the previous sections can be described as regular D-branes, after

‘folding’ the plane along the defect line. This simple but powerful trick is well-known in

the condensed-matter literature, and has been used for instance in the study of fracture

lines for the Ising model [5]. To be more precise, let us define a ‘conjugate’ field in the

left-half plane by mirror reflecting the field on the right,

φ̂2(x, t) ≡ φ2(−x, t) for x ≤ 0 . (2.13)

The gluing conditions (2.1) with gluing matrix M(ϑ) read:

∂t(cosϑφ
1 − sinϑφ̂2)

∣

∣

∣

0
= ∂x(sinϑφ

1 + cosϑφ̂2)
∣

∣

∣

0
= 0 . (2.14)

These are the boundary conditions for a D1-brane stretching along the direction ϑ in the

(φ1, φ̂2) plane. The parametrization of the defects in terms of an angle variable can now

be recognized as most natural. Note that bosonic D-branes are unoriented, which is why

ϑ runs only over half a circle. Note also that the relation (2.6) between ϑ and the radii, in

the case of periodically-identified fields, ensures that the D1-brane is compact. These facts

are illustrated in figure 5.

To see the power of the folding trick, let us now rederive the Casimir energy of the

previous subsection. We will need the conformal boundary state (see [24, 25] for nice

reviews) that describes the D1-brane (2.14) in the closed-string language,

|ϑ 〉〉 = N
∞
∏

n=1

exp

(

− 1

n
ai−nã

j
−nSij

)

|0;ϕ⊥, w‖〉 . (2.15)

Here a1,2n are the canonically-normalized left-moving oscillators for the fields φ1 and φ̂2,

and ã1,2n are the corresponding right-moving oscillators. Note that these are the oscillators

in the closed-string channel, where the roles of space and time are interchanged (we need

of course to Wick rotate the coordinate t and to compactify it on a circle). The matrix

– 7 –
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x<0

x>0

defect

θ

φ2

φ1

^

r

r

2

1

Figure 5: Folding the plane along the defect line leads to a description of the permeable defects

as regular D-branes in a two-dimensional target space.

S is given by equation (2.8), and N is a normalization factor. Finally, |0;ϕ⊥, w‖〉 is the

oscillator ground state, also characterized by the transverse position ϕ⊥ of the D1-brane,

and by the Wilson line w‖ on its worldvolume. To simplify notation, we will suppress the

dependence on these zero modes in what follows. Neither the normalization N nor the

zero modes will, in any case, contribute to the Casimir energy that interests us here. The

reader can verify easily that

(ain + Sijã
j
−n)|ϑ〉〉 = 0 , (2.16)

which are the standard gluing conditions for the diagonal D-brane of figure 5 in the closed-

string channel [24, 25].

In order to calculate the Casimir energy let us periodically identify x ≡ x+ 2L. This

differs from the Dirichlet conditions used in appendix A, but the difference will go away in

the limit of infinite L. We also let the time coordinate have period T . The vacuum energy

for the configuration of figure 4 can be written as follows in the closed-string channel:

E = lim
T→∞

− 1

T
log〈〈ϑ|e−H14π(L−d)/T e−H

24πd/T |ϑ〉〉 , (2.17)

with H1 and H2 the free-field hamiltonians of φ1 and φ̂2. The limit L→∞ projects onto

the ground state of φ1, so that only the φ̂2 oscillators should be kept in the expression

(2.15) for the boundary state. The above matrix element thus becomes

〈0|
∞
∏

n=1

exp

(

− 1

n
a2nã

2
n cos 2ϑ

)

e−H
24πd/T

∞
∏

n=1

exp

(

− 1

n
a2−nã

2
−n cos 2ϑ

)

|0〉 =

= N 2
∞
∏

n=1

(

1− cos2 2ϑ e−n8πd/T
)−1

. (2.18)

– 8 –
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Taking the logarithm converts the product into a sum, which in the limit T →∞ reduces

to a continuous integral,

E =
1

8πd

∫ 1

0

dy

y
log(1− y cos2 2ϑ) . (2.19)

Using, finally, the integral representation of the dilogarithm function [23],
∫ z

O

dw

w
log(1−w) = −Li2(z) , (2.20)

we recover precisely the result (2.10) of appendix A. The dilogarithm function has appeared

before in the CFT literature [26], but the present context is, in our opinion, particularly

simple. The expression (2.18) for the matrix element has also appeared in the literature

before, under the name ‘quantum dilogarithm’ [27, 28].

We can also evaluate (2.17) for L finite. If we denote q1 = exp(−4πd/T ) and q2 =

exp(−4π(L− d)/T ), then the relevant matrix element reads:

N 2
∞
∏

n=1

[

1− (q2n1 + q2n2 ) cos2 2ϑ− 2qn1 q
n
2 sin2 2ϑ+ q2n1 q2n2

]−1
. (2.21)

Sending q2 → 0 gives back the expression (2.18) as expected. When d = L/2, on the other

hand, the matrix element reduces to N 2
∏∞

n=1(1− q2n)−2, where q = q1 = q2. The Casimir

energy is independent of ϑ in this special case. This is consistent with the fact that the

mass subtraction for a closed string (corresponding to ϑ = π/4) is twice the subtraction

for an open string (which corresponds to ϑ = 0 or π/2).

We conclude this section with a brief discussion of other gluing conditions, and in

particular those corresponding to the matrices M ′(ϑ). Let ∗φ2 be the field T-dual to φ̂2,

which obeys ∂ ∗t φ
2 = ∂xφ̂

2 and ∂ ∗x φ
2 = ∂tφ̂

2. It follows from the relation

M ′(ϑ) =M(ϑ)

(

0 1

1 0

)

, (2.22)

that the M ′ gluing condition describes a D1-brane in the direction ϑ on the (φ1, ∗φ2)
plane. The T-duality that takes us back to the (φ1, φ̂2) plane, transforms this D1-brane

into a D2-brane with a non-vanishing worldvolume magnetic flux [29]. In the simplest case

of a compact scalar and a diagonal D1-brane, as in figure 5, the T-dual configuration is

characterized by one unit of magnetic flux. We should stress, however, that the relation

(2.6) between the angle ϑ and the radii is consistent, but by no means unique. It was

derived from the hypothesis that the field φ̃ of section 2.2 should be continuous across the

wall. A more general consistent hypothesis is that φ̃(−0) = nφ̃(+0), leading to the relation

tanϑ = λ =
r2
nr1

. (2.23)

This corresponds (after folding) to a D1-brane that winds n times around dimension 1, but

only a single time around dimension 2. The T-dual configuration is a D2-brane carrying

n units of magnetic flux. As will become in fact clear in the following section, any consis-

tent D-brane configuration on the two-torus can be ‘unfolded’ to a conformally-invariant

interface of the one-scalar theory.

– 9 –
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3. Supersymmetry and generalizations

The analysis of the previous section can be extended in several directions. One may consider

abstract gluings of conformal theories, mutliple interfaces or junctions, Calabi-Yau sigma

models, or orbifold theories. Another important question concerns the supersymmetry

properties of the walls. In this section we will elaborate on some of these various issues.

3.1 Fermions and supersymmetry

The N = (1, 1) supersymmetric extension of the free-scalar model has a pair (ψ+, ψ−) of

Weyl-Majorana fermions, which are the superpartners of the field φ. Conformal invariance

requires continuity of (T++ − T−−) for the fermions. Supersymmetry, on the other hand,

further requires that

(G+ + ηG−)|−0 = ±(G+ ± ηG−)|+0 , (3.1)

where G± are the left and right supercurrents, and η = ±1. For a single wall, the three

sign ambiguities in this condition can be absorbed in redefinitions of the fermion fields.

The signs involving only the fields on the same side of the wall are basically irrelevant

(except possibly if x is compactified) and we will henceforth take them to be positive. The

third sign, η, on the other hand, involves fields on both sides of the wall, and will therefore

be important when two or more interfaces are present. As we will see, η distinguishes an

interface from an anti-interface.

In order to make the supersymmetry manifest, we will show how these boundary

conditions arise directly in superspace. Consider the general N = (1, 1) supersymmetric

sigma model with action

I =

∫

dx dt d2θ [GIJ(Φ) +BIJ(Φ)]D+Φ
ID−Φ

J , (3.2)

where

D± =
∂

∂θ±
+ θ±

(

∂

∂t
± ∂

∂x

)

. (3.3)

If this sigma model is the CFT on the left of the domain wall, we need to find the variation

of the action, and match it to the corresponding variation on the right side of the wall. We

assume here, as we did until now, that the domain wall does not support any independent

degrees of freedom.

The variation of the action (3.2) yields the following boundary term:

δI = −
∫

dt

[

1

2
ΣJδ(D+Φ

J +D−Φ
J) +

1

2
(D+ +D−)Φ

JδΣJ −

− δΦJ(D+ +D−)ΣJ

]

x=−0,θ±=0

, (3.4)

where

ΣJ = [GJK +BJK ]D+Φ
K − [GJK +BJK ]D−Φ

K . (3.5)
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In deriving equation (3.4) we used the equation of motion for the auxiliary field, which is

the top component of the superfield Φ. In addition, we have dropped the variation of a

pure boundary term, −δIb, with

Ib =
1

2

∫

dtBIJ(Φ)
(

D+Φ
ID+Φ

J +D−Φ
ID−Φ

J
)

. (3.6)

This is of course absent for BIJ = 0, and in particular if there is only one superfield. More

generally, we should have included this boundary term in the action (3.2) in order to arrive

at the above variation.

The form of the variation (3.4) suggests that we introduce two ‘half’ superfields [30]

as follows:4

Φ̃J(x, t, θ) = ΦJ
∣

∣

∣

θ+=θ−=θ
and Σ̃J(x, t, θ) = ΣJ

∣

∣

∣

θ+=θ−=θ
. (3.7)

For example, in flat space and for zero BIJ we find:

Φ̃J = φJ + θ(ψJ
+ + ψJ

−) and Σ̃J = (ψJ
+ − ψJ

−) + 2θ∂xφ
J . (3.8)

One can now verify easily that, if these half superfields are continuous across the wall,

then the variations (3.4) of the left and right CFTs will precisely cancel out each other.

In addition, a manifest N = 1 supersymmetry will be preserved, since everything can

be expressed in terms of half superfields. The superderivate in this half superspace is

defined as:

D ≡ D+ +D− = ∂θ + 2θ∂t , (3.9)

and since it does not contain a derivative of x, it acts indeed along the interface. Another

way of arriving at the above conclusion, is by constructing the superfield combination

Θ ≡ 1

8

[

D2Φ̃JΣ̃J +DΦ̃JDΣ̃J

]

= G+ +G− + θ(T++ − T−−) . (3.10)

From this one sees immediately that continuity of the half superfields (3.7) across the wall

implies, indeed, the boundary conditions given in (3.1), with η (and all the other signs)

chosen to be positive.

The choice η = −1 corresponds to another set of half-superfields, which are obtained

by setting θ+ = −θ− = θ. The combination (3.10), with D ≡ D+−D−, has now G+−G−
as its lowest component (and the same upper component as above). Continuity of this new

set of half-superfields respects, therefore, the η = −1 superconformal-invariance conditions.

Two interfaces with opposite values of η break completely all the supersymmetry.

If there are more than one superfield, the vanishing of (3.4) is guaranteed by the more

general boundary conditions

(

Σ̃J

DΦ̃J

)

x=−0
=M

(

Σ̃J

DΦ̃J

)

x=+0

, (3.11)

4See also [31] for a recent detailed analysis of supersymmetry-preserving boundary conditions in general

N = (1, 1) sigma-models.
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with the constant matrix M ∈ O(d, d). Of course, our discussion here is entirely classical,

and superconformal symmetry could be broken by quantum corrections. Furthermore, one

needs to check compatibility of the above conditions with the global structure of the target

space of the sigma model. Thus, in general, only a limited subset of O(d, d) gluings will be

allowed.

The calculation of the Casimir energy of the previous section can be extended easily

to the superconformal case. The gluing conditions for the fermionic fields that supersym-

metrize equation (3.11) are:
(

ψ1
−

ψ2
+

)

= S(η)

(

ψ1
+

ψ2
−

)

, (3.12)

where

S(η) =

(

η cos 2ϑ sin 2ϑ

sin 2ϑ −η cos 2ϑ

)

, (3.13)

with a similar expression for S ′. The factors of η in the gluing matrix follow from the

fact that changing η is the same as flipping the sign of the ψj
−. The fermionic part of the

boundary state that imposes these gluing conditions is

|ϑ, η〉〉F = N ′
∏

r>0

exp
(

iψi
−rψ̃

j
−rSij(η)

)

|0〉 . (3.14)

The factor of i in the exponent arises in going from the open to the closed-string chan-

nel [25], and N ′ is a (irrelevant for us) normalization. The frequencies r can be either

integer or half-integer, depending on whether we are in the Ramond or Neveu-Schwarz

sector of the closed-string.

Proceeding as in section 2.3 we obtain the following expression for the Casimir energy:

E = lim
T→∞

− 1

T
log

∏

r(1− ηLηR cos2 2θe−r8πd/T )
∏

n(1− cos2 2θe−n8πd/T )
. (3.15)

Since T →∞, the result does not depend on the choice of integer or half-integer r. What

does make a difference is whether the left and right interfaces are of the same or of opposite

type: ηLηR = +1 or −1. In the first case supersymmetry is preserved and the Casimir

energy is zero. In the second case one finds that

E = − 1

8πd

[

Li2(R2)− Li2(−R2)
]

= − 1

8πd

[

2Li2(R2)− 1

2
Li2(R4)

]

. (3.16)

The last equality follows from a standard dilogarithmic identity. Writing E in this form

shows that in the case of total reflection (R = ±1) the result is 3/2 times the bosonic

contribution. This is indeed the vacuum energy of a superfield with conventional Neveu-

Schwarz boundary conditions. For weak reflection, on the other hand, the bosonic and

fermionic contributions to the Casimir energy are equal.

Let us finally discuss N = (2, 2) sigma models with a target space that is a Kähler

manifold. In this case, the sigma-model action takes the form

I =

∫

dx dt d4θK(Φi, Φ̄ī) , (3.17)
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where Φ, Φ̄ are (anti)chiral superfields that satisfy D̄±Φi = D±Φ̄ī = 0. The superderivatives

are:

D± =
∂

∂θ±
+ 2θ̄±∂± , D̄± =

∂

∂θ̄±
+ 2θ±∂± . (3.18)

Repeating our previous analysis, we find that the variation of the action can be written

again in terms of half superfields. The relevant half superfields now are:

ϕi(x, t, θ, θ̄) = Φi
∣

∣

∣

θ+=θ−=θ, θ̄+=θ̄−=θ̄
,

ϕ̄ī(x, t, θ, θ̄) = Φ̄ī
∣

∣

∣

θ+=θ−=θ, θ̄+=θ̄−=θ̄
,

Λi(x, t, θ, θ̄) = ∂i∂j̄K(D̄+ − D̄−)Φ̄j̄
∣

∣

∣

θ+=θ−=θ, θ̄+=θ̄−=θ̄
,

Λ̄ī(x, t, θ, θ̄) = ∂i∂j̄K(D+ −D−)Φi
∣

∣

∣

θ+=θ−=θ, θ̄+=θ̄−=θ̄
. (3.19)

The half-superspace coordinates are θ and θ̄, with derivatives D = (∂θ + 2θ̄∂t) and D̄ =

(∂θ̄ + 2θ∂t). By requiring the above half superfields to be continuous accross the domain

wall, we automatically preserve one N = 2 algebra. The generators of this algebra are the

components of the half superfield

(Dϕi)Λi + Λ̄īD̄ϕ̄
ī . (3.20)

These are clearly continuous across the wall, once the fields in (3.19) are themselves continu-

ous. Note that the lowest component of (3.20) is the difference of the left- and right-moving

U(1) currents.

More generally, if the target space is d-complex-dimensional, there is an O(d, d,C)

family of candidate boundary conditions. The subgroup GL(d,C) ⊂ O(d, d,C) has a simple

interpretation in terms of holomorphic branes inML×MR, whereML,R are the two target

manifolds on either side of the interface. Indeed, let v i be complex coordinates forML and

wi complex coordinates forMR. Then v
i = Ai

jw
j defines, in a local patch, a holomorphic

d-complex dimensional brane. When this brane can be defined globally (we will discuss

such an example in the following subsection) then it gives rise to a N = 2 superconformal

interface. Since holomorphic branes are BPS, we expect them to survive in the quantum

theory, at least in the large-volume limit.

3.2 Generalizations

The folding trick allows us to discuss conformal-field-theory gluings more abstractly. Start

with the tensor product of two conformal theories, CFT1⊗CFT2, defined on the euclidean

half plane, Im z ≥ 0. The two theories need not be identical, nor even have equal central

charges. Conformal boundary conditions are described by a boundary state |B〉〉, which
satisfies

(

L(1)
n + L(2)

n − L̄(1)
−n − L̄

(2)
−n

)

|B〉〉 = 0 . (3.21)

Here L
(1)
n and L̄

(1)
n are the left-moving, respectively right-moving Virasoro generators of

CFT1, in the closed-string channel, and similarly for CFT2 (we drop the tildes for ease
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of notation). If we ‘unfold’ CFT2 unto the lower half-plane, Im z ≤ 0, the roles of its

holomorphic and antiholomorphic fields are interchanged. Condition (3.21) then precisely

ensures the continuity of Tzz − T̄z̄z̄ on the real axis. In this way, any conformal boundary

state in the tensor-product theory can be unfolded into a conformal interface, and vice-

versa.

A trivial situation arises whenever the boundary state can be factorized,

|B〉〉reflect = |B1〉〉 ⊗ |B2〉〉 . (3.22)

In this case Ln− L̄−n vanish for each theory separately, so that Txt is zero at the interface.

There can, therefore, be no transfer of energy across the wall, and the two conformal field

theories are decoupled.5 At the opposite end of the spectrum are the perfectly-transmitting

defects, for which

(

L(1)
n − L̄

(2)
−n

)

|B〉〉transmit =
(

L(2)
n − L̄

(1)
−n

)

|B〉〉transmit = 0 . (3.23)

Such states obviously exist when the two CFTs are identical, but not only. For instance,

for the scalar field of section 2 one may consider a D1 brane at 45o, even if the radii on the

two sides of the interface are not the same. Generic permeable defects are those for which

the boundary state |B〉〉 is of neither of the above two special types.

As well-known, the Virasoro gluing equations (3.21) must be supplemented, in general,

by global consistency conditions (for reviews and references see [32, 33, 34]). For instance,

the annulus diagram must be a partition function with integer multiplicities in the open

channel [1]. Such conditions should be obeyed automatically by defects described by a local

action principle, like those we have considered up to now. From a more algebraic point

of view, it should be sufficient to ensure that the state |B〉〉 in the tensor-product theory

is consistent. The consistency of the bulk and boundary operator algebra can be, indeed,

verified before the procedure of ‘unfolding’. The boundary operators, that are consistent

with the sewing constraints in the tensor theory, will ‘unfold’ into local operators that live

on the interface.

These considerations can be generalized easily to any number of adjacent parallel

defects. One must fold along the interfaces repeatedly, as illustrated in figure 6a, so as to

make an annulus with many sheets. The boundary conditions at the folds are boundary

states of the product theory CFT1 ⊗ CFT2 ⊗ · · ·CFTk, where CFTm is the theory on the

mth sheet and for even m the left- and the right-movers must be exchanged. Note that

one can introduce extra folds with purely-transmitting boundary conditions. One can also

consider multiple junctions of CFTs, as illustrated in figure 6b (for an earlier study of field

theories on string junctions see [35]). Extending the calculations of the previous section in

such contexts is a straightforward exercise that we do not pursue.

The construction of permeable interfaces of strongly-interacting CFTs is a very inter-

esting question, to which we hope to return in future work. Here, we want to conclude

5Any linear combination of states of type (3.22) will, likewise, give perfect reflection. By an abuse of

language, we keep refering to such states as ‘factorizable’, since the two conformal theories dont talk, except

possibly via correlated boundary conditions.
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(b)(a)

Figure 6: The folding of (a) two neighbouring interfaces, and (b) a triple junction of conformal

theories.

our discussion with a few more simple examples of domain walls. First, let us consider

the case of several free scalar fields, n1 on the left and n2 on the right of the interface.

The boundary states are (combinations) of planar branes in n1+n2 dimensions, which are

generically at angles and can carry a magnetic flux. If the scalar fields have canonically

normalized stress tensors, the gluing conditions will be of the same form as (2.7), with S

an orthogonal matrix that we write in terms of ni × nj blocks:

S =

(

S11 S12
S21 S22

)

. (3.24)

Repeating the Casimir-energy calculation of section 2 gives:

E = − 1

8πd
Tr

[

Li2(S
2

22)
]

. (3.25)

Notice that the pressure on the walls only depends, as should be expected, on the reflection

amplitudes of the conformal theory CFT2 that lives in the space in between these walls.

For a less trivial example, let us discuss orbifolds. Consider the case where on either

side of the interface lives a c = 1 orbifold theory, so that the tensor product CFT has

target space S1/Z2 × S1/Z2. A D1 brane winding once around each of the two covering

circles has the generic form shown in figure 7. It is an inscribed parallelogram, with sides

parallel to the two diagonals of the target space. There is, furthermore, a four-fold Chan-

Paton multiplicity, corresponding to the four images of the D-brane in the covering torus.

Marginal deformations change the shape of the parallelogram, while keeping its four angles

fixed, and also turn on a Wilson line. At special point(s) of this moduli space, where

the parallelogram collapses along a diagonal of target space, as in figure 7, the D1-brane

decomposes into two, more elementary, fractional D-branes [36, 37, 38]. These are the basic

branes of the tensor-product theory which, in the limit of equal radii (r1 = r2), unfold into

perfectly-transmitting interfaces.
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Figure 7: A regular D1-brane of the S1/Z2 × S1/Z2 orbifold theory that winds once around each

of the covering circles (left). When forced to go through the origin, this D-brane has a single, rather

than three, images under reflections (right). In this case it can decompose (assuming also vanishing

Wilson line) into two, more elementary, fractional branes.

We can extend the above discussion to N = (2, 2) supersymmetric sigma models on

orbifold spaces, like T 4/Z2 or T 6/Z3. Consider the latter example which is a (singular)

Calabi-Yau surface with a unique complex structure and 36 Kähler moduli. Varying the

nine untwisted moduli separately, for the two sigma models of the tensor product, will lead

to diagonal branes that describe permeable interfaces. Vaying the 27 twisted moduli will

blow up some of the orbifold fixed points. Since the complex structure is here unique, we

expect the middle-dimensional holomorphic branes described in section 3.1 to survive.

4. The NS5/F1 system and holography

We will now apply the ideas of CFT domain walls to branes in AdS3. Of special interest

to us are the static one-branes extending all the way to spatial infinity [9]. Since these are

codimension-one in the bulk, they separate two different supergravity vacua, distinguished

by their charges. Correspondingly on the boundary we find 0 + 1 dimensional domain

walls separating two different CFTs, that a priori can have different central charges. Since

the stable one-branes are supersymmetric and have AdS2 geometry [9], the corresponding

domain walls should be superconformal.

One way of trying to test this correspondence is by comparing the Casimir energy

of the walls, both from the supergravity and from the CFT viewpoints. This is the two-

dimensional analogue of the Wilson loop calculation [18, 19] in four dimensions. It is also

one version of the more general Karch-Randall setup [16] in which two n-dimensional CFT’s

are glued together with a (n− 1)-dimensional CFT.

4.1 String theory setup

Our starting point is the type-IIB string compactification on a four-manifold M 4, which is

either a four-torus or a K3 surface. The resulting six-dimensional theory contains a variety
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of strings. Besides the fundamental string and D-string of the uncompactified IIB theory,

there are also D3 branes wrapping the various two cycles of M 4, as well as D5 and NS5

branes wrapping the entire manifold. The strings are labeled by a charge vector ~q in the

lattice Γ5,5+n, where n = 0 for M 4 = T 4 and n = 16 for M 4 = K3. Furthermore, there is

a O(5, 5 + n,Z) duality group which permutes the different charges, keeping the invariant

length ~q 2 fixed. The moduli space of this string compactification is

O(5, 5 + n,Z)\O(5, 5 + n)/O(5)×O(5 + n) . (4.1)

We can distinguish two classes of BPS strings. First, those with a (primitive) charge

vector of zero length, ~q 2 = 0, which lie in the U -duality orbit of the fundamental string.

Such objects are weakly coupled in some corner of the moduli space, and can be chosen as

the fundamental quanta in a perturbative expansion. Secondly, there are strings with ~q 2

positive.6 These can be always mapped, by a U -duality transformation, to a bound state

of Q1 fundamental strings and Q5 NS fivebranes, where

~q2 = 2Q1Q5 . (4.2)

If the charge vector ~q is furthermore primitive, Q1 and Q5 are relatively prime and we have

a well-defined bound state. We want to study the near-horizon decoupling limit for such

a configuration. The relevant geometry is AdS3 × S3 ×M4, and the dual supersymmetric

CFT has total central charge 6N = 6 Q1Q5.

Picking a particular charge vector ~q, reduces the duality group and moduli space. The

remaining U -dualities, that are realized as T -dualities in the CFT, are given by the ‘little

group’ O(4, 5+n,Z) that preserves the charge vector ~q. By the attractor mechanism [39, 40]

some of the scalar fields that parametrize the moduli space take specific fixed values in the

near-horizon region. More explicitly, if we use the Narain decomposition ~q = ~qL + ~qR with

~q2 = ~q2L − ~q2R, the attractor equation gives7 ~qR = 0. The moduli space of the supergravity

solution is then reduced to the homogeneous space

O(4, 5 + n,Z)\O(4, 5 + n)/O(4)×O(5 + n) . (4.3)

Note that |~qL| is the tension of the background string. Note also that the full parameter

space of the dual (spacetime) CFT includes many copies of the ‘fundamental domain’ (4.3),

and has an intricate global structure [41].

This six-dimensional theory contains various string junctions where a string with charge

~q1 absorbs a string with charge ~q2 to form a string with charge ~q1+~q2. The superconformal

walls are holographic duals of such junctions. We will choose a duality frame where the

background ~q1 is built out of only fundamental strings and NS fivebranes. Its near-horizon

6For M4 = T 4 the negative ~q 2 strings are also supersymmetric.
7There are two natural bases for the charge vector: one with integer entries (counting different branes),

and one giving the couplings to normalized 6d gauge fields. Our left-right decomposition uses the latter

basis, which depends on the asymptotic values of the moduli in flat space. In a string junction the charge

vector is of course conserved in either basis, but not after one imposes the attractor conditions ~qR = 0,

since these may fix the moduli differently near the horizon of the individual strings.
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(p,q) string

x=0 x=2R

AdS  boundary

u

Figure 8: Stretched string between a wall and an antiwall.

geometry carries, therefore, Neveu-Schwarz fluxes only. The full type-IIB string theory can

be described in this case by a Wess-Zumino-Witten model on the group manifold SL(2,R)×
SU(2), together with a sigma model with M 4 target space. The Q1-dependence appears

through the six-dimensional string coupling, which is fixed by the attractor mechanism

to be
1

g26
=
Q1

Q5
. (4.4)

For a reliable supergravity approximation one needs therefore Q1 À Q5 À 1.

Let us consider now a second string with charge vector ~q2, stretching between two

points, x = 0 and x = 2R, on the AdS3 boundary as in figure 8. In the dual holographic

field theory the string endpoints are a wall and an antiwall, separating two different CFTs.

With the use of T -dualities we can map this second string to a configuration that does

not contain D3-branes. Although we will mostly work with (p, q) strings below, the most

general configuration can also involve D5- and NS5-branes. The U -dualities that preserve

the vector ~q1 are, in general, insufficient to always map ~q2 to only fundamental strings and

D-strings.

A (p, q) string like the one of figure 8 will only equilibrate if one applies a force to keep

its two endpoints from collapsing. From the holographic point of view, this force is the

Casimir attraction of the walls. We will now compute it in the supergravity approximation.

In order to do a reliable calculation we assume that the tension T(p,q) of the probe string

is much smaller than the tension T (~q1) of the background string, so that backreaction can

be consistently neglected.

The calculation is similar in spirit to the Wilson-loop calculation in the supergravity

limit of N = 4 super-Yang-Mills [18, 19]. The string coupling to the background B-field

introduces, however, a new parameter at the technical level.

4.2 Supergravity calculation

The metric and B-field backgrounds of the SL(2,R) WZW model in Poincaré coordi-

nates are

ds2 = L2

[

du2

u2
+ u2(dx2 − dt2)

]

and B = L2u2 dx ∧ dt . (4.5)
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We denote, for short, by T and ρ the tension and NS charge density of the (p, q) string.

Its energy, as measured by an observer sitting at radial position u = 1, takes the form [9]

E = 2L

∫ R

0
dx

[

T
√

u4 + u′ 2 − ρu2
]

, (4.6)

with u′ = du/dx. Extremizing leads to the constant of motion

[

Tu4√
u4 + u′ 2

− ρu2
]

≡ ρC . (4.7)

Setting C = 0 corresponds to free boundary conditions at the endpoints. The string falls,

in this case, towards the Poincaré horizon and never comes back. Its worldsheet has AdS2

geometry. More generally, C and R are related implicitely by

R =

∫ R

0
dx =

∫ u0

∞

du

u′
, (4.8)

where u0 is the minimum value of u, corresponding to u′ = 0. Solving (4.7) for u′, and
making the change of variables w ≡ 1/u2, gives

R =
1

2

∫ w0

0

dw√
w

Cw + ρ
√

(T + ρ+ Cw)(T − ρ− Cw)
, (4.9)

with w0 =
T−ρ
C . Performing the integrations we find

√
C =

√
2T

R

(

E(k)− 1

2
K(k)

)

, (4.10)

where E and K are the complete elliptic integrals,

E(k) =

∫ π
2

0
da

√

1− k2 sin2 a , and K(k) =

∫ π
2

0

da
√

1− k2 sin2 a
. (4.11)

The argument of these integrals is a function of the tension and the NS-charge density of

the probe string,

k2 =
T − ρ
2T

. (4.12)

Equation (4.10) expresses the integration constant C in terms of the separation of the

string endpoints.

Let us next evaluate the energy. Substituting u′ in equation (4.6) and changing again

variables to w = 1/u2, leads to the expression:

E = L

∫ w0

ε2

dw

w
√
w

T 2 − ρ2 − Cρw
√

(T + ρ+Cw)(T − ρ− Cw)
. (4.13)

The integral diverges in the w→ 0 limit (near the boundary of AdS) and has been therefore

cutoff at u = 1/ε. Performing the integration gives the following result for the energy:

E = −L
√
2TC

[

2E(k)−K(k)
]

+
2L

ε

√

T 2 − ρ2 . (4.14)
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The divergent second term is independent of the distance between the string endpoints.

It could be removed by adding a boundary term to the DBI action, and can be anyway

considered as a renormalization of the ‘mass’ of the domain wall. Removing this divergent

term, and plugging in the expression (4.10) for the integration constant, leads to the final

expression for the renormalized energy:

Eren = −LT
R

[

2E(k)−K(k)
]2
. (4.15)

Notice that it has the correct 1/R scaling behaviour of a Casimir energy. This is reassuring,

though hardly surprising.

The really interesting story in the above expression is its non-trivial dependence on p

and q. This is due to the fact that the brane has non-trivial coupling to the background

flux. In the standard conventions in which the ratio of the F-string to the D-string tension

is the string coupling, gs, one finds for the argument of the elliptic integrals:

2k2 = 1− qgs
√

p2 + g2sq
2
. (4.16)

There are two instructive limits one can consider. First, the limit q →∞ (or equivalently

p→ 0) where the brane is basically a collection of q pure fundamental strings, and k → 0.

In this limit, the Casimir energy reads

Eren = − π

8LR
qQ5 , (4.17)

where we have used the relation between the background radius and the number of NS

fivebranes, L2 = Q5α
′. This is the Casimir energy of a CFT with central charge 6qQ5,

confined to an interval of size LR. We will explain in the following subsection why this

agrees with the naive sigma-model expectation.

The second interesting limit, that of pure D-strings, is the natural starting point of a

perturbative expansion at weak string coupling. From equation (4.16) we get:

k =
1√
2

[

1− qgs
2|p| + o(g3s)

]

. (4.18)

Expanding out the expression for the Casimir energy, and using the special values of the

complete elliptic integrals at k = 1√
2
, one finds:

Eren = − 2π2

Γ(14)
4LR

pQ5

gs
− qQ5

4LR
+ o(gs) . (4.19)

The leading term should be compared to the holographic Wilson loop computation in

four-dimensional Yang-Mills theory. With our conventions of measuring the energy, the

result for the quark/antiquark potential is [18, 19]

Eqq̄ = −
2π2

√

4πg2YMN

Γ(14 )
4LR

. (4.20)
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The two results are identical if one notes that the radius of AdS5 is given (in string units)

by L4 = 4πg2YMN , whereas for AdS3 it is determined by L2 = Q5. This is no surprise since

both calculations minimize a pure tensive energy, which is proportional to the geometric

length of the string. From the sigma-model point of view this Casimir energy is harder to

understand, as we will explain in the next subsection. Note, finally, that the second term

in the expansion (4.19) looks like a renormalized contribution to the central charge.

4.3 Symmetric product orbifolds and moduli flows

We will now consider this computation from the point of view of the space-time CFT. We

will here make a series of remarks, leaving the more detailed comparison for future work.

Before taking the near-horizon limit, the configuration is described by a string junction

built out of the strings with charges ~q1, ~q2 and ~q3 = ~q1 + ~q2. We assume that the string ~q1,

and therefore also the string ~q3, are much heavier than the string ~q2. Geometrically this

implies that the “probe string” ~q2 is perpendicular to both ~q1 and ~q3, which are parallel.

We now take the usual AdS/CFT decoupling limit. From the bulk point of view we

obtain the supergravity configuration of the previous section, where the light string ~q2 is

treated as a probe brane. From the boundary point of view the two heavy strings ~q1 and

~q3 each flow to a conformal field theory in the infrared. The two conformal field theories

are glued together along the string junction.

What is the fate of the string ~q2? Since we take the near-horizon limit in the direction

perpendicular to the heavy strings, in this approximation there is no non-trivial decoupling

limit of the light string ~q2. Its worldsheet excitations are in the perpendicular direction.

Therefore in the IR limit holography dictates that the zero modes of the ~q2 string survive

as moduli of the space-time CFT. There are no separate degrees of freedom living at the

intersection point of the string junction. The junction is basically a junction of (p, q) strings

in the background of fivebranes. A junction of (p, q) strings can be thought of as a single

M-theory M2 brane wrapping a suitable one cycle of a two-torus. Since this is a smooth

membrane configuration there should be no localized degrees of freedom at the intersection.

Thus the final space-time theory consists of two CFT’s on a half cylinder, separated by

domain walls of the type we have been discussing so far.

It remains to discuss the way in which the two CFTs are glued together along the

defect line. By general principle the CFT labeled by the charge ~q can be identified with

a N = (4, 4) sigma model with target space MN . Here MN is a hyper-Kähler manifold

that is a deformation of the symmetric product SNM = MN/SN with N = ~q2/2 for

M = T 4 and N = ~q2/2 + 1 for M = K3. In general this deformation is determined by the

charge vector ~q and the original moduli of the string theory background. It will include

both metric deformations and sigma model B-fields. The metric deformations will include

turning on twist fields in the orbifold description of the symmetric product. The CFT

B-fields correspond to space-time RR backgrounds.

The naive supergravity dual will have B = 0 and will be strongly coupled, in the

sense of both small target space volume and large twist field hyper-Kähler deformations.

T -dualities do not in general suffice to relate small volume to large volume sigma models.

The weakly coupled space-time CFT — the analogue of perturbative Yang-Mills theory in
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four dimension — is given by the orbifold CFT on SNM at large volume. In this regime

the supergravity becomes a string theory with large RR fields (since BCFT = 1/2) and

large (ten-dimensional) string coupling constant.

Therefore, as always, the supergravity and weak-coupling CFT computations are in

disjunct regimes. We will see that they indeed give qualitatively different behaviour for the

domain walls. This is to be expected in view of the four-dimensional Wilson loop computa-

tions, where one observes a similar discrepancy. Alternatively, notice that a weakly-coupled

CFT should have operators of arbitrary spin in its spectrum, and hence cannot be described

by pure supergravity.

In the case of general charge vectors ~q1 and ~q3 = ~q1+~q2 the two CFTs will have differ-

ent central charges and will be described by sigma models with target spaces of different

topology MN1
and MN3

. In a semi-classical regime the gluing of the two sigma models will

be given by a D-brane Y ⊂MN1
×MN3

. (Locally such a brane can be given by the graph

of a function ϕ : MN1
×MN3

. Globally, we are dealing with a generalized function, know

mathematically as a correspondence.)

We will simplify now the discussion to the case where the emitted string is either a

pure fundamental string or a pure D-string. In both cases we will compare the CFT with

the supergravity computation.

4.3.1 Fundamental strings

Let us start with the case where the string ~q2 is a fundamental string. In this case we are

always dealing with a bound state of Q5 NS 5-branes and Q1 fundamental strings. This

system is dual to the famous D1-D5 system that has been studied extensively. In this

case the space-time CFT is well-known. It is given by a sigma model on the target space

MQ5,Q1
— the moduli space of charge Q1 instantons in a U(Q5) Yang-Mills theory on the

four-manifold M 4 = T 4,K3. For relative prime (Q1, Q5) this moduli space is indeed a

hyper-Kähler deformation of the symmetric product SNM with N = Q1Q5.

We will be considering a string junction with ~q1 = (Q1, Q5), ~q2 = (q, 0) and ~q3 = (Q1+

q,Q5). Physically the process whereby q fundamental strings are absorbed corresponds to

addition of q extra pointlike instantons in the Yang-Mills theory. The gluing map

ϕ : MQ5,Q1
→MQ5,Q1+q (4.21)

can be described informally as follows. Place q coincident pointlike instantons at a point

x in the four-manifold M and add this solution to the smooth Q1-instanton. This map

depends on the choice of point x ∈M . The map ϕ gives an isometric embedding ofMQ5,Q1

intoMQ5,Q1+q. This can be easily seen in a local computation of instantons on R4 where

the ADHM construction can be used. We will give a more precise analysis of the geometry

in section 4.3.3.

The corresponding D-brane that describes the gluing with the use of the folding con-

struction is now given geometrically by the graph of the map ϕ in the product of the two

instanton moduli spaces. It has dimension 4Q1Q5.

Let us sketch now an argument why the Casimir energy of two such domain walls should

be straightforward to compute in this regime. We have Neumann boundary conditions for
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4Q1Q5 bosons and fermions. The remaining 4qQ5 bosons and fermions that describe the

normal directions to MQ5,Q1
will have Dirichlet boundary conditions. Because of the

isometric embedding there will be no jump in the CFT moduli, once we have canonically

normalized the kinetic terms in the sigma models. So in this case the sole contribution to

the Casimir energy will be the jump in the central charge

∆c = 6qQ5 . (4.22)

If we separate the two domain walls over a distance 2`, this gives a Casimir energy

E = − π

48`
∆c = − π

8`
qQ5 . (4.23)

This answer coincides with the supergravity computation (4.17) if we use ` = LR for the

domain size.

4.3.2 D-strings

Let us now concentrate on the other limit where the absorbed string is a pure D-string

with charge p. In this case the interpretation in terms of instanton moduli spaces is less

clear. If we dualize the NS 5-brane to a D5-brane to obtain a gauge theory formulation,

the addition of a D-string is equivalent to adding a fundamental string. This is represented

by an electric flux tube in the gauge-theory instanton background. From the gauge-theory

point of view this description of the CFT limit is not well understood.

In this case the string charge vectors ~q1 and ~q3 will satisfy

~q1
2 = ~q3

2 . (4.24)

Therefore the two sigma models have equal central charge and are in fact topologically

isomorphic. Both are given by a deformation of the symmetric product SNM . They only

differ in the value of the deformation moduli. One way to understand this is that there is

a U-duality transformation U ∈ O(5, 5 + n;Z) that maps ~q1 to ~q3

U(~q1) = ~q3 . (4.25)

By definition the transformation U does not leave the charge vector ~q1 invariant. Therefore

it does not descend to a T-duality of the sigma model.

We can understand this change in the moduli as follows. We start with a string with

charge ~q1. In the IR limit the moduli of the CFT are obtained from the moduli of the string

theory background through the attractor formalism. That is, the scalars flow towards their

fixed values at the horizon where they satisfy ~q1,R = 0.

Abstractly, if N represents the full string theory moduli space, then N contains a

sublocus N~q1 that represent the fixed scalars for the charge vector ~q1. The moment we

absorb the D-string, the charge vector changes to ~q3 = ~q1 + ~q2, and no longer satisfies the

fixed scalar condition. The moduli will now start to run along the attractor flow lines to

the new fixed point locus N~q3 where ~q3,R = 0.
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Note that the U-duality transformation U will map the fixed point locus N~q1 to the

fixed point locus N~q3 . We can therefore globally compare the values of the moduli of the

two spacetime CFTs.

The flow in the moduli can be computed exactly using for instance the formalism

developed by Mikhailov [42]. Here we just mention the first order effect in the D-brane

charge p. The leading flow in the moduli is a contribution to the RR 0-form and 4-form

fields.which are of the form

δ(RR-moduli) ∼ p

gsQ1
. (4.26)

At the symmetric product point we would expect that we can use a free field theory

computation with order Q1Q5 free fields. To get an idea what the answer will look like we

can first do the calculation in case the target space is an n-dimensional torus with constant

metric Gµν and B-field Bµν . If we normalize B in such a way that it has integral periods,

and assume that the domain wall separates two CFT’s with equal metric, but with B-fields

B and B + δB, the Casimir energy is proportional to

E ∼ − 1

L
GαβGγδδBαγδBβδ . (4.27)

If we apply the same equation to the symmetric product CFT, we obtain qualitatively the

following result. Since the volume of SNM is of the form f(Q1, Q5)V
N , the Casimir energy

must be of the form

E ∼ − 1

L

g(Q1, Q5)

V

(

p

gsQ1

)2

. (4.28)

The fact that the B-field in question is dual to a two-cycle with self-intersection Q1Q5

suggests that g(Q1, Q5) is proportional to Q1Q5 up to a factor of order unity, but a more

careful analysis is required to make this precise. In any case, there will never be a precise

agreement between the supergravity answer and the CFT calculation, because the first one

is proportional to p, and the second one is proportional to p2. This mismatch is similar to

the disagreement found in N = 4 SYM, where the supergravity answer is proportional to
√

g2YMN , whereas the answer at weak coupling obtained in the gauge theory is proportional

to g2YMN .

4.3.3 Domain walls and Nakajima algebras

Let us first make a mathematical remark. If we have a map f : X1 → X2 then there is

of course the induced pull-back map f ∗ : H∗(X2) → H∗(X1) on the level of cohomology.

Now the graph of the map f gives a subspace Y in the product space X1 ×X2 of points

(x1, x2) that are related by x2 = f(x1). In general if we just have a subspace Y in X1×X2

we speak of a correspondence instead of a map. Such a correspondence also gives rise to

natural linear maps on the level of cohomology. More precisely, if π1, π2 are the projections

of the product space on the two factors X1, X2, and if δY denotes the cohomology class

Poincaré dual to Y , then the maps are defined as

fY : H∗(X2)→ H∗(X1) , fY (α) = π1,∗(π
∗
2α ∧ δY ) (4.29)
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and the adjoint map is

f †Y : H∗(X1)→ H∗(X2) , f †Y (β) = π2,∗(π
∗
1β ∧ δY ) . (4.30)

Here πi,∗ denotes the push-forward which is essentially integration over the fiber. The

wedging with δY restricts the differential form to the submanifold Y . In words what we

do is lift the differential form to the product, restric to the subspace Y and subsequently

project down to the other factor. One easily checks that the map fY reduces to f ∗ in the

case that Y is the graph of a map f .

In the language of branes we can summarize this physically by saying that a D-brane

Y in the supersymmetric sigma model on X1 × X2 gives rise to a natural map between

the Ramond ground states of the sigma models on X1 and X2. This can be interpretated

in terms of domain walls if we represent them in the closed string channel. That is, if we

think of the domain wall as an instantaneous brane on the worldsheet. In the closed string

channel the domain wall becomes an operator, mapping incoming states in the sigam model

on X1 to outgoing states in the sigma model on X2. We claim that at the level of ground

states it represents exactly the induced map given by the correspondence Y .

These ideas can be applied in the case of where the AdS string is a pure fundamental

string. In this case the string junctions made completey out of fivebranes and strings have

an elegant interpretation in terms of the algebras studied in [20, 21, 22]. In fact we can even

consider a more general situation where three strings join with charges ~q1, ~q2, ~q3 = ~q1 + ~q2,

and where each string is built out of fivebranes and fundamental strings, i.e. the charge

vectors are of the form ~qi = (Q5, Q1). The folding construction that we have used previously

to describe the junction of two CFTs can easily be extended to describe a junction of more

than two CFTs. In that case the junction conditions are given in terms of a boundary state

in the multiple tensor product of the corresponding Hilbert spaces. For sigma models that

translates into a D-brane in the cartesian product of the target spaces.

For example, in the case of a three-string junction the domain wall will correpond to

a boundary state in

|B〉〉 ∈ H1 ⊗H2 ⊗H3 . (4.31)

Each of the three world-sheet theories will flow in the IR to a sigma model with as target

the instanton moduli spaceMi, i = 1, 2, 3. The junction is therefore geometrically, at large

volume, given by a brane Y in the direct product

Y ⊂M1 ×M2 ×M∗3 . (4.32)

Here the asterix onM3 indicates that we choose minus the holomorphic symplectic form.

The “correspondence” Y has a mathematical interpretation when we represent the

instanton parametrized by Mi in terms of a holomorphic vector bundle or more general

a coherent torsion free sheaf Ei. The locus Y is then given by triples (E1, E2, E3) that are

related by an exact sequence

0→ E2 → E3 → E1 → 0 . (4.33)
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That is, the sheaf E3 can be obtained by an extension of E1 by E2 (or vice versa taking duals).
The locus Y is a complex lagrangian submanifold in the given complex symplectic form.

It therefore corresponds to a D-brane that preserves the diagonal N = 4 superconformal

algebra in the tensor product CFT.

Note that more generally the D-brane Y is classified by an element of the K-theory

group associated to the product M1 ×M2 ×M∗3. Domain walls in the 1-brane/5-brane

system are therefore a natural place where the K-theory of instanton moduli spaces occurs

within string theory.

As we explained, a correspondence of the form (4.32) naturally leads to linear maps

on the level of the cohomology of the moduli spaces Mi. More precisely in this case we

get a map

ϕ : H∗(M1)×H∗(M2)→ H∗(M3) . (4.34)

This map given again by pull-back of a differential form onM1×M2 to the triple product,

followed by restriction to the D-brane locus Y and push-forward (integrating over the fiber)

toM3. In a formula

ϕ(α, β) = π3,∗ (π
∗
1α ∧ π∗2β · δY ) . (4.35)

The adjoint is given by following this series of maps in the other direction.

If ~q2 = (0, n) is built only out of strings and no fivebranes, the moduli space M2

parametrizes skyscraper sheaves that have there support at one point of the four-manifold

M , so the moduli space is simply given byM itself. Therefore for every element α ∈ H ∗(M)

the map ϕ defined above reduces to a map

αn : H∗(M1)→ H∗(M3) (4.36)

with

M1 =MQ5,Q1
, M3 =MQ5,Q1+n . (4.37)

Its adjoint α−n = α†n is defined similarly. These maps have been studied extensively in the

mathematical literature. In particular for the case M = C2 Nakajima [22] has shown that

the operators αn give rise to a Heisenberg algebra

[αn, βm] = nδn+m,0

∫

M
α ∧ β . (4.38)

We already remarked that these maps get a natural interpretation in the context of

CFT domain walls that are the subject of this paper. Consider such a domain wall on

the cylinder in the closed string channel labeled by some index I. That is, consider the

domain wall along a space-like slice where it is interpreted as a euclidean instantaneous

brane. Since this brane connects CFT1 and CFT3, it gives rise to a map on the level of

Hilbert spaces

ϕI : H1 → H3 . (4.39)

(This map will strictly speaking not exist at the level of proper Hilbert spaces since it will

map normalizable states to unnormalizable states.) If we restrict the map ϕI to ground

states we expect to find a generalization of Nakajima’s map. This suggest that there is an
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interesting exchange algebra of such domain walls that should give rise to the commutation

relations (4.38) in the quantum mechanics approximation. These relations have also been

studied by Harvey and Moore in the context of the algebra of BPS states in [43]. It would

be very interesting to connect these two points of view more directly.

To be concrete, we give the expression in the much simpler case of the free-field domain

wall that we studied in section 2. For a given ϑ the corresponding operator

Sϑ : H → H , (4.40)

with H the free-boson Fock space, is given by (in the same canonical normalization as in

section 2)

Sϑ =
∏

n>0

exp

(

− 1

n
cos 2ϑ anān

)

∏

n>0

(sin 2ϑ)ana−n+ānā−n
∏

n>0

exp

(

− 1

n
cos 2ϑ a−nā−n

)

.

(4.41)

One easily verifies that for ϑ = π
4 ,

π
2 (that is λ = 1,∞) this gives the correct expresion for

a completely permeable, or completely reflective wall

Sπ
4
= 1 , Sπ

2
= |0〉〈0| . (4.42)

5. Outlook

An interesting problem for future work is to construct explicit models of permeable inter-

faces between strongly-coupled conformal field theories. As explained in section 3.2, one

needs to find boundary states of tensor-product theories, which cannot be expressed in

terms of Ishibashi states of the individual factors. One could try, for example, to embed

WZW D-branes as ‘non-factorizable’ states in the G/H ⊗H theory. Another place where

to look for such defects is in the product of two WZW models with different Kac-Moody

levels, for which K-theoretic arguments predict more charges than those that can be ac-

counted for by elementary WZW D-branes.8 Besides their intrinsic mathematical interest,

such examples, if they exist, could find applications in condensed-matter physics.

Another natural question raised by our work is whether one can construct a string

theory whose worldsheet contains permeable defects. One immediate difficulty with this

idea is that if both CFT1 and CFT2 contain time coordinates in their target spaces, we need

two Virasoro symmetries in order to remove all the negative-norm states from the spectrum.

But the generic permeable walls only preserve one symmetry, as we have explained. One

can try to circumvent this problem by asking, say, that CFT2 have a euclidean target

space. The no-ghost theorem requires, however, in this case that the total central charge

of CFT1 ⊗ CFT2 be 26. Thus, in the product theory one has a single time coordinate, a

central charge 26, and a conventional conformal boundary state. This looks like a standard

open-string theory on a regular D-brane! Whether there could be loopholes in the above

argument is a question that deserves further thought.

8We thank Volker Schomerus for pointing out these arguments.
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A. Calculation of Casimir energy

In this appendix we calculate the Casimir energy for the set up described in section 2.2.

We consider a real, massless scalar field φ̃ in the interval [−L,L], with Dirichlet boundary

conditions at the endpoints. This is a choice of convenience that does not affect our final

result. The action of φ̃ is rescaled inside the subinterval [−d, d], where d < L. This

rescaling amounts to a change in radius, as discussed in the main text. The general plane-

wave solution is of the form:

φ(x, t) = eiωt ×











A1 sin(ωx+ δ1) for x ∈ [−L,−d]
A2 sin(ωx+ δ2) for x ∈ [−d, d]
A3 sin(ωx+ δ3) for x ∈ [d, L] .

(A.1)

The Dirichlet boundary conditions at x = ±L imply:

δ1 = ωL (mod π) and δ3 = −ωL (mod π) . (A.2)

The gluing conditions (2.1) at the two domain walls, on the other hand, read:

tan(−ωd+ δ1) = λ2 tan(−ωd+ δ2) , (A.3)

and

tan(ωd+ δ3) = λ2 tan(ωd+ δ2) . (A.4)

Putting together (A.2), (A.3) and (A.4) leads to a transcendental equation for the allowed

frequencies,

tan [ω(d− L)] = λ2 tan(ωd+ δ2) with δ2 = 0
(

mod
π

2

)

. (A.5)

We can solve this equation analytically in the limit L →∞ with d held fixed. Let us

write

ωn ≡
π

2L
(n− εn) .
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The ‘unperturbed’ spectrum, in the absence of walls, has εn = 0. Assuming that εn stays

bounded, so that we can neglect terms of o(εn/L) in the equation, we find:

εn =















(

2

π

)

arctan

[

λ2 tan

(

nπd

2L

)]

− nd

L
(mod 2) for n even ,

(

2

π

)

arctan

[

λ−2 tan

(

nπd

2L

)]

− nd

L
(mod 2) for n odd .

(A.6)

We have chosen δ2 = 0 for even n, and δ2 = π/2 for odd n, so that εn vanishes when λ = 1

(no walls). We will also choose the branch of the arctangent such that −1 ≤ εn ≤ 1. This

ensures that ωn is closest to its ‘unperturbed’ value (and is consistent with our assumption

of bounded εn).

Since ωn and ω−n correspond to the same wavefunction, the Casimir energy reads:

E =
∞
∑

n=1

1

2
ωn . (A.7)

The result is of course UV divergent, so we must perform the summation with great care.

We will use the standard regularized formula (see for example [44]):

∞
∑

n=1

(n− α) = − 1

12
+

1

2
α(1− α) . (A.8)

The trick is to pick L = Nd/2 for integer N (which we will send eventually to infinity).

If the limit L → ∞ exists it should not matter how we approach it. With this choice the

frequency shifts are periodic:

εn = εn+N , (A.9)

Expressing the arbitrary positive integer n as follows: n = lN − k with l = 1, . . . ,∞ and

k = 0, 1, . . . , N − 1, we decompose the Casimir energy into N sums regularized separately

as in (A.8).9 The result after some algebraic rearrangements is

E = − π

48L
− π

4d

N−1
∑

k=0

εk
N

(

1− 2k

N
− εk
N

)

. (A.10)

The first term is the ‘unperturbed’ Casimir energy, which vanishes in the L ∼ N →∞
limit. The term quadratic in εn is also subleading, so we may drop it in this limit, as well.

For 0 ≤ k < N/2, the shift εk is in the desired range (between −1 and 1) and we can perform

the remaining sum in (A.10) as it stands. The other half-range, N/2 ≤ k < N , contributes

an equal amount to the energy, as can be seen by changing variable to k̃ = N − k, and
using the fact that εN−k̃ = −εk̃.

Defining finally the continuous variable 2y = π(1−2k/N), and using standard trigono-

metric identities, leads to the integral expression for the Casimir energy:

E =
1

π2d

∫ π/2

0
dy y

[

2y − arctan(λ2 tan y)− arctan(λ−2 tan y)
]

. (A.11)

9The reader can be reassured about this manipulation of divergent sums by checking, for instance, that

the formal identity
∑∞

1
n =

∑N−1

k=0

∑∞
l=1

N(l − k
N
) stays valid after regularization of the n- and l-sums as

in (A.8).
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This formula passes several consistency checks: it vanishes for λ = 1, it has manifest

symmetry under inversion of λ (which is equivalent to a T-duality transformation), and it

gives the expected Casimir energy, E = −π/48d, in the case of perfectly-reflecting walls

(λ = 0).

We can perform the integral (A.11) explicitly by using the dilogarithm function Li2(z).

This has the series and integral representations (for z < 1)

Li2(z) =

∞
∑

1

zm

m2
= −

∫ z

0

log(1−w)
w

dw . (A.12)

Many of its properties can be found in ref. [23]. It obeys, in particular, the identity

Li2(z) + Li2(−z) =
1

2
Li2(z

2) . (A.13)

We also need the integration formula [23]

∫ π/2

0

y2dy

1− P cos(2y)
=

1 + p2

1− p2
[

π3

24
+
π

2
Li2(−p)

]

(A.14)

where

P =
2p

1 + p2
, with p2 < 1 . (A.15)

Integrating the right-hand-side of (A.11) by parts, and using the above equations, puts the

Casimir energy in the compact form quoted in the main text:

E = − 1

8πd
Li2(R2) with R =

1− λ2
1 + λ2

. (A.16)

Here R is the reflection coefficient. For total reflection R = ±1, and since Li2(1) = π2/6,

we find indeed the standard Casimir energy of a scalar field. For weak reflection, the energy

vanishes quadratically: E ' −R2/8πd.

The dilogarithm function has appeared in CFT and integrable models, in various con-

texts (see for example [26]). The above interpretation as free-field Casimir energy is, to

the best of our knowledge, new.
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