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SUMMARY

We present a derivation of the equations describing wave propagation in porous media based
upon an averaging technique which accommodates the transition from the microscopic to
the macroscopic scale. We demonstrate that the governing macroscopic equations determined
by Biot remain valid for media with gradients in porosity. In such media, the well-known
expression for the change in porosity, or the change in the fluid content of the pores, acquires
two extra terms involving the porosity gradient. One fundamental result of Biot’s theory is the
prediction of a second compressional wave, often referred to as ‘type II” or ‘Biot’s slow com-
pressional wave’, in addition to the classical fast compressional and shear waves. We present
a numerical implementation of the Biot equations for 2-D problems based upon the spectral-
element method (SEM) that clearly illustrates the existence of these three types of waves as
well as their interactions at discontinuities. As in the elastic and acoustic cases, poroelastic
wave propagation based upon the SEM involves a diagonal mass matrix, which leads to explicit
time integration schemes that are well suited to simulations on parallel computers. Effects as-
sociated with physical dispersion and attenuation and frequency-dependent viscous resistance
are accommodated based upon a memory variable approach. We perform various benchmarks
involving poroelastic wave propagation and acoustic—poroelastic and poroelastic—poroelastic
discontinuities, and we discuss the boundary conditions used to deal with these discontinuities
based upon domain decomposition. We show potential applications of the method related to
wave propagation in compacted sediments, as one encounters in the petroleum industry, and
to detect the seismic signature of buried landmines and unexploded ordnance.
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1 INTRODUCTION

Poromechanics was born in the 1920s with Terzaghi (1923, 1943), a civil engineer, whose concept of effective stress for 1-D porous
deformation and its influence on settlement analysis, strength, permeability and erosion of soils, marks the beginning of the engineering
branch of Soil Mechanics. Terzaghi’s effective stress principle mathematically articulates that the pore fluid bears part of the load applied to
a column. The effective stress acting on the soil-solid skeleton is the difference between the total stress and the pore fluid pressure. But it is
Biot (1941) who formulated the 3-D theory of soil consolidation, which is nowadays known as the Biot theory of poroelasticity. Subsequently,
Biot incorporated inertial terms into the analysis to develop the theory of wave propagation in a fluid-saturated porous medium (Biot 1956a,b,
1962a,b). Biot theory has been extensively used in the petroleum industry, where seismic surveys are performed to determine the physical
properties of reservoir rocks. The theory is of broad, general interest when a physical understanding of the coupling between solid and fluid
phases is desired.

One fundamental result of Biot theory is the prediction of a second compressional wave, which may attenuate rapidly due to viscous
damping, generally referred to as ‘type II” or ‘Biot’s slow compressional wave’, in addition to the classical fast compressional and shear
waves, confirming the results of Frenkel (1944). Indeed, Frenkel was actually the first to investigate wave propagation in fluid saturated porous
media in his study of seismoelectric waves, and to demonstrate the existence of two compressional waves, one characterized by in-phase
movement between the solid and the fluid (fast), and the other one by out-of-phase movement (slow). However, Frenkel neglected some
aspects compared to the more accepted theory developed by Biot (see Pride 2003; Smeulders 2005, for a more in-depth discussion).
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It was only in the 1980s that Biot and Frenkel’s prediction of the existence of a slow compressional wave was clearly observed
experimentally by Plona (1980) for water-saturated sintered glass beads at ultrasonic frequencies (500 kHz to 2.25 MHz). Experiments at low
frequencies (e.g. Van der Grinten et al. 1985, for both air and water as pore constituents) and in the limit of zero frequency (e.g. Chandler
1981; Chandler & Johnson 1981) followed. At high frequencies, the first report of a slow compressional wave in water-saturated natural rock
is due to Kelder & Smeulders (1997). All these experiments are in good agreement with the theory.

The behaviour of the slow compressional wave is highly frequency-dependent. At low frequencies, the fluid flow in the pores is of
Poiseuille type, where viscous forces dominate the flow. In this case, the slow compressional wave behaves like a diffusion phenomenon and
is highly attenuated (Biot 1956a). At high frequencies, inertial forces dominate the flow and the slow compressional wave propagates, still
exhibiting high attenuation (Biot 1956b). Wave attenuation mechanisms originate from the motion of pore fluid relative to the solid skeleton
in the form of viscous and inertial dissipation (Biot 1962b). Geertsma & Smit (1961) also point out the attenuation of the fast compressional
wave at low frequencies through mode conversion at discontinuities.

Biot developed his theory based upon the principle of virtual work, ignoring processes at the microscopic level. Moreover, even
if the Biot (1962a,b) formulations are claimed to be valid for non-uniform porosity, gradients in porosity are not explicitly incorpo-
rated in the original theory. More recent studies focused on averaging techniques (e.g. Whitaker 1999) to derive the macroscopic porous
medium equations from the microscale, and made an attempt to derive an expression for the change in porosity (e.g. Pride et al. 1992;
Sahay et al. 2001), but there is still room for clarification of such an expression, and to properly integrate the effects of porosity
gradients.

Throughout this paper we aim to present a straightforward derivation of the main equations describing wave propagation in poroelastic
media, with a particular emphasis on the effects of gradients in porosity. To that end, we will work with the linearized equations of motion,
both at the microscopic and the macroscopic scale. In Section 2, we recall the microscale equations in the solid and the fluid. The macroscopic
equations for porous media are derived in Section 4 using the averaging principle described in Section 3. Section 5 is dedicated to two simple
cases, the static problem and Darcy flow, to develop some intuition for the form of the ‘drag force” arising from porosity gradients. In Section 6,
we determine a macroscopic expression for the ‘interfacial strain’ and present a complete expression for the change in porosity. In Section 7,
we use a Gedanken experiment to constrain the remaining unknowns present in the interfacial strain formulation, thus obtaining the complete
poroelastic constitutive relationships. The macroscopic equations of motion are presented in Section 8, where we consider implementations
with and without frequency-dependent dissipation. In particular, we consider the effects of physical dispersion and attenuation, as well as
frequency-dependent viscous resistance. Finally, we summarize the full set of macroscopic equations for the problem of wave propagation in
porous media and express the various wave speeds in such complex media in Sections 9 and 10.

In Section 11, we describe a numerical implementation of wave propagation in porous media. First, we establish the weak form of
the governing equations. Next, we determine the spatial discretization of this variational problem using a spectral-element method (SEM)
(Komatitsch 1997; Komatitsch & Tromp 1999). As in a finite-element method (FEM), the mesh represents a subdivision of the model volume
in terms of a number of finite elements, at which level the problem is approximated. The difference between a FEM and a SEM lies in the use
of higher-degree Lagrange polynomials to interpolate functions on the elements. As a result, the SEM retains the ability of a FEM to handle
complex geometries while keeping the strength of exponential convergence and accuracy resulting from the use of high-degree polynomials
(e.g. Chaljub et al. 2007; De Basabe & Sen 2007). We will see that, as for acoustic and elastic problems, the combination of Lagrange
interpolation with Gauss—Lobatto—Legendre (GLL) quadrature leads to a diagonal mass matrix, and thus to fully explicit time integration
schemes.

In Section 13, we present 2-D benchmarks to support our implementation. The first benchmark is a simple test of wave propagation
in a homogeneous porous medium, using an explosive source. As expected by the theory, we observe two types of compressional waves.
The numerical solution is compared to an analytical solution derived by Dai ef al. (1995) and shows excellent agreement. For subsequent
benchmarks we focus on more complex media and discuss the boundary conditions at acoustic—poroelastic and poroelastic—poroelastic
discontinuities. In each case, we use a domain decomposition technique to ensure the continuity of traction and displacement at an interface
involving only (poro)elastic media, and the continuity of traction and the normal component of displacement at an interface involving a
fluid. Finally, in Section 14 we present sample applications of potential interest for modelling wave propagation in compacted sediments, for
example, in petroleum industry settings or for the detection of buried landmines and unexploded ordnance.

2 MICROSCOPIC EQUATIONS OF MOTION

We begin by summarizing the microscopic equations of motion in the solid and the fluid. The reader is referred to Aki & Richards (1980) and
Carcione (2007) for a detailed introduction to seismic wave propagation. In subsequent sections we will average these microscopic equations
to obtain a macroscopic description of wave propagation in porous media.

2.1 Solid
Microscopic conservation of mass in the solid is governed by the continuity equation

arpx +V. (IOSVS) =0, (1)
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where p, denotes the density of the solid, and v, = 9,u; its velocity. Linearized microscopic conservation of momentum in the solid is

determined by
Ps atvx =V. Tx- (2)
The microscopic solid stress tensor T is related to the microscopic solid strain tensor €, through the fourth-order elastic tensor ¢, via Hooke’s
law
Ts = C; 1€, (3)
The solid strain tensor may be expressed in terms of its isotropic and deviatoric parts as

1 1
€=3 [Vu, + (Vu)'] = g(V ~uy)I + dg, 4)
where I denotes the identity tensor and d; the solid strain deviator

1 1
d, = 5 [Vux + (Vus)T] - g(v “uy)l, (5)

and a superscript 7" denotes the transpose.
In an isotropic solid characterized by a bulk modulus « ; and a shear modulus i, the components of the elastic tensor ¢, may be expressed

as
i = (s = 2/3185)8: 801 + 1 (8ix8j1 + 88 1), (6)
and the constitutive relationship (3) becomes

T, = KA'(V . ux)I + 2pd;. (7)
2.2 Fluid

Microscopic conservation of mass in the fluid is governed by the continuity equation
dpr+V-(osvy)=0, (®)

where p r denotes the density of the fluid, and v, = 9,u its velocity. Linearized microscopic conservation of momentum in the fluid is

determined by
p_,-a,v/» =V. T‘/'. (9)
The microscopic fluid constitutive relationship is determined by linearized compressible Navier—Stokes theory:
T, =x,(V-up)l+2n,9d,, (10)
where « s denotes the bulk modulus of the fluid, 7 f its viscosity, and d,d ; its deviatoric strain rate
1 r 1
dds = [Vv,+(Vvp)'] - g(V V)L (11)
It will sometimes be convenient to introduce the fourth-order operator ¢ , with components
g = (kr = 2/3m79,) 884 + 170, (8ixd 1 + 880, (12)
such that we can write (10) in a form similar to (3):
Tf = Cf I€f, (13)
where
1 r 1
€r=5[Vur+Vup']=2(V-upl+d,. (14)

2.3 Boundary conditions

The fluid and solid are in contact at a fluid—solid interface X. Let fi denote the unit outward normal to the fluid—solid interface X, pointing
from the solid to the fluid. At this interface both the microscopic tractions and displacements need to be continuous:

A-T,=/-T, onX, (15)
and
u =u; onx. (16)
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Figure 1. Schematic representation of the waves generated in a poroelastic material: FP denotes the fast compressional wave, S the shear wave and SP the
slow compressional wave. Also shown is a schematic close-up of the porous medium with volume €2, which may be subdivided in terms of its solid and fluid
parts Q4 and € 7, respectively. The microscopic fluid-solid boundary is denoted by X, and the unit normal to this boundary, pointing from the solid to the
fluid, is denoted by f.

3 AVERAGING

Our next goal is to average the microscopic equations of motion discussed in the previous section to obtain the macroscopic equations of
motion. To this end, we introduce formulae to average gradients and rates, which are operators appearing in the microscopic equations.
Following Pride & Berryman (1998), we introduce a generic weight function W (x —x’), where x and x’ denote position vectors in the porous
medium. The function ¥ has a value of one in the vicinity of x = x’ and monotonically decreases to zero at distances x’ far from x. The
model volume 2 may be subdivided in terms of its solid and fluid parts €2, and 2 /, respectively, such that Q = Q, U Q s (Fig. 1). As already
mentioned, the interface between the solid and fluid is denoted by X.

We now define the following volume measures of 7:

V= /Q W(x —x)d’x, (17)

V,x)= | W(kx—x)dx, (18)
Qs

Vi(x) = i w(x —x)dx. (19)
f

Note that V' is independent of x because W depends on the difference x — x'. Thus, the volume over which we average is fixed. Note also
that

V="Vx)+ V(). (20)

3.1 Porosity
The porosity ¢ of the macroscopic medium is defined by
Vix) =)V or Vix)=[l—-ox]V. 21

Throughout this paper we will accommodate gradients in porosity, that is, we will not assume that the porosity is constant.
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3.2 Volume average

Consider arbitrary microscopic tensor fields W and W , defined in the solid or the fluid, respectively. Their volume averages are defined by

)0 =4 / Wx — X0 (x) X, 22)
1
Wm =5 [ W= xw e, 23)
/

3.3 Phase average

Alternatively, the phase averages of the fields W and W ; are defined by
1

W (x) = W(x — x )W, (x)d*x, (24)
Vs(x) Q

U (x) = —— W(x —x )W, (x")d’x. (25)

Using the definition of porosity (21), the phase averages (24) and (25) may be related to the volume averages (22) and (23):

(W) = (1 - 9)¥,, (W) =W, (26)

3.4 Averaging gradients
The gradient of the volume averages (22) and (23) is determined by

1 [V (x — x)]¥,(x) X

V¥, =4 .

1
—— | [VWx-x)¥,x)dEx
Ve,

% ., W(x —x)[V'W,(x)]dx — % /Qp VW (x — x)W,(x)]d*x, 27)

where V' denotes the gradient with respect to the X’ coordinates. Thus, using (22) or (23) for the first term and the divergence theorem on the

second term, we find

1 -
V(V,) = (V¥,) — 7 /E Wi, v d*x, (28)
where a subscript p can denote either s (solid) or /' (fluid), a prime denotes evaluation at X', and fi; = h = —h denotes the unit normal to the
fluid—solid interface X, pointing from the solid to the fluid. (28) relates the gradient of the average, V(W ), to the average of the gradient, (V
W), B B
In terms of the phase averages W, and W ;, invoking (26), we have alternatively
— 1
(V) = VI - 6T+ g, [ Wi, 29)
z
— 1
(V) =V(¥)) - / Wil d*x, (30)
b

similar to results obtained by Pride & Berryman (1998).

3.5 Averaging rates

For temporally and spatially variable fields W ,(x, ¢), by analogy with the average of a gradient, (VW ,), we may obtain the average of a rate,
(9, W ), as follows (Whitaker 1999):

1 A/ / ’ ’
at<\l}p> = <8tlIlp) + ?-/; Wnp . Vplyp dZX s (31)

where the second term accommodates advection of the fluid—solid interface X. Thus we obtain in terms of the phase averages W, and
v,

(0,9,) = 3,[(1 — $)¥,] — iV f WiV dY (32)
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57 1 A/ / !’ ’
(3,V,) =8,V ,) + ;/ WR v, v, &X', (33)
x

where we have recognized that for time-dependent problems the porosity may vary as a function of time due to relative changes in the solid
and fluid volumes 2, and ;.

We will use the averaging rules (29) and (30) and (32) and (33) to obtain the macroscopic equations of motion. Terms of the form
0,V , + V. (¥,v,) frequently appear in the microscopic equations of continuum mechanics. Note that (29) and (32) imply that

(0, W) + (V- (W,ve)) = 3 [(1 — )W, 1+ V - [(1 — ¢) W], (34)
and that (30) and (33) imply that
QW) + (V- (V) = 0@V )+ V- (@W,v)), 35)

because the interfacial integrals cancel.

3.6 Spatial and temporal derivatives of porosity

The spatial and temporal averages (29) and (32) or (30) and (33) have immediate consequences for porosity. Upon taking the fields W or ¥ ,
to be constants, we find that the gradient of porosity is determined by

1
Vo(x,t) = 7 / W(x —x )i, t)d*x, (36)
%
whereas its temporal derivative is given by
1
dPp(x, 1) = ~7 / W(x —x)aX, 1) - vp(x, 1) d*x’. 37
%

Strictly speaking, as the wavefield moves through the porous material the solid and fluid measures Vi and V' ; vary with time, and so does the
fluid—solid boundary X. So just for clarity, the subscript ¢ on the surface ¥ recognizes its temporal variation, as does the explicit dependence
of the normal i on ¢.

4 MACROSCOPIC EQUATIONS
To obtain the macroscopic equations of motion we will make two key assumptions.

(i) The microscopic material properties p;, o 7, €5, k y and 7 s are constant on the scale of the averaging volume V" defined by (17), but
these parameters may vary at the macroscale.

(i) The wavelengths of the waves of interest are large compared to the averaging volume V. For example, for grain sizes on the order
of 100 pum, the characteristic diameter of the averaging volume should be larger than 1000 pm, and the minimum wavelength of the waves
should be on the order of 1 cm (Pride et al. 1992).

4.1 Conservation of mass

Upon applying the averaging rules (29) and (32) to the microscopic continuity equation (1), we obtain the macroscopic equation for the
conservation of mass:

[ = P)os] + V- [(1 = p)pVs] = 0. (38)

This implies that

OInp,+v,-ViInp, +9,In(1 —¢)+V,-VIn(l —¢)+V -v, =0. 39)
Similarly, upon averaging the microscopic fluid continuity equation (8) based upon (30) and (33) we obtain

3(¢o) +V - (¢p,7,) = 0, (40)

which implies

OInp;+vVy - Vinpr+9,Ingp+vV,-VIngp+V.v, =0. (41)

4.2 Constitutive relationships

Next, we need to average the constitutive relationships. Upon averaging the solid constitutive relation (3) based upon (29) we obtain
(Ty) = (1 = 9T, = ¢ (e,), (42)

where the averaged solid strain tensor is determined by

1 1
(e,) = S[(Vu)) + (Vu)")] = F[Viw) + (V(u,))" 1+ E. (43)
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We have introduced the ‘interfacial strain’ tensor

1 1
E= 7 /2 Wi(ﬁ’u; +u i) d*x. (44)
Note from (37) that
1
tr(E) = — / WR -u, &X' = —A¢ (45)
Vs
is the change in porosity. We may write the interfacial strain in terms of its isotropic and deviatoric parts as
1
E=—2A¢I+T, (46)
where I is the ‘deviatoric interfacial strain’
1 1 1
r= ;/E W [E(ﬁ/ug +uli) — g(ﬁ’ . u_;)l] d’x’. 47)
We thus have
(1 _¢)Ts = CSZV[(I — ¢ ]+ ¢ E. (48)

In a later section we will seek to find an explicit expression for the interfacial strain E in terms of the macroscopic parameters.
Similarly, upon averaging the fluid constitutive relation (13) we obtain

(T;)=¢T, =cp: {€/). (49)

Using the definition (30), the averaged fluid strain tensor is determined by

1
(€)= S[V@uy) + (Viup)']1—E, (50)
where the interfacial strain tensor E is defined by (44), and where we have used the microscopic boundary condition (16). We thus have
d)Tf = C_/'IV(d)ﬁf) — Cf’iE. (51)

4.3 Momentum equations

Averaging the solid conservation of momentum equation (2) and neglecting non-linear terms yields

(1= $)osd ¥ =V - [(1 - 9T ] +d, (52)
where we have defined the ‘drag’
1
a=~ / WA T dX. (53)
Vs

We will seek to find an explicit macroscopic expression for this drag force.
Similarly, averaging the fluid conservation of momentum equation (9) yields

o3V, =V - (¢T)) —d, (54)
where, invoking the microscopic continuity of traction (15), the drag term d is defined by (53).

It is interesting to note that most derivations of the macroscopic equations of motion for porous media agree up to this point. The
challenge now lies in finding macroscopic expressions for the interfacial strain tensor E and the drag force d.

5 DRAG FORCE

The drag force defined in (53) needs to be expressed in terms of macroscopic quantities. In the following two subsections we will examine
simple cases in order to assess the form of this drag force. We will come back to its full expression in subsequent sections.

5.1 Static problem

For the equilibrium configuration, that is, when u, = 0 and u; = 0, we have microscopic equilibrium in the solid

V-T'+pg=0, (55)
where g denotes the gravitational acceleration. In the fluid we have
—Vp+prg=0, (56)
where T} = —pY1. Averaging (55) based upon (29) and (56) based upon (30) we find

—0
(V-T) + (0s8) = V- [(1 = $)T, ]+’ + (1 — ¢)n,g = 0, (57)
—(Vp)) + (psg) = =V(¢p)) —d’ + dpsg =0, (58)
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where we have used the microscopic boundary condition (15) to define the ‘static drag force’, that is, the force exerted by the pore fluid on
the solid matrix,

1 , 1 ’
0 __ A/ 0" 12/ __ A7 07 427
d_;[ZWn~Txdx_—;/;Wnpfdx. (59)
Upon adding (57) and (58) we find that
V.T +pg=0, (60)

where we have introduced the ‘average static stress’

=0 —0

T =(1-¢)T, - ¢p)L, (61)
and the average density

5=(1— )+ dpy. (62)

Since the fluid density p ; and gravity g vary only on the macroscopic scale, we deduce from (56) that the hydrostatic fluid pressure p"/
also varies only on the macroscopic scale as well, that is, p(}» = ﬁ(} Consequently we may write

1 / 1
0 _ nr 00 207 =0 62! — 570
d’ = —VLWn py dx = pf—V/ZWn &X' =-p,Vo, (63)

where we have used (36). The hydrostatic pore fluid thus exerts a force —ﬁ‘;-Vz;S in the direction of decreasing porosity. Note that when the
pore space is empty, that is, consists of vacuum, or when the porosity is constant, this force vanishes.

5.2 Darcy flow

According to Darcy’s law, the rate of fluid flow in a rigid porous material is governed by (e.g. Bear 1972; Dahlen 1990)
+ror8 (64)

where p[;my denotes the macroscopic fluid pressure, k the permeability tensor and 7 , the viscosity.

Darcy

onk -V, =-Vp;

Under quasistatic conditions, when inertial forces may be ignored, the microscopic equilibrium condition for the fluid is

—VpP 4 prg =0, (65)
where p?my denotes the microscopic fluid pressure. The corresponding macroscopic condition obtained by averaging (65) is
—V(¢P;"™) —d™ + ¢prg =0, (66)
where we have defined the quasi-static drag force

1
Py = — f WR' - T, d*x. (67)

Vs
Upon using Darcy’s law (64) in (66), we find an explicit expression for the drag force:
dqParey — _ﬁ.[/)_afc}’v(ﬁ 4 ¢277fk71 . Vf- (68)
Note that in the absence of flow the Darcy drag (68) reduces to the hydrostatic drag (63).

6 INTERFACIAL STRAIN

In this section, we will express the interfacial strain E defined by (44) in terms of macroscopic quantities.

6.1 Variational principle

Based upon our experiences with the hydrostatic drag force (63) and the drag force for Darcy flow (68), we anticipate a contribution to the
drag force d defined by (53) of the form T, - V. Thus, the solid macroscopic momentum equation (52) contains the right-hand side terms

V- [(1-¢)T,] —|—Tf - Vo, (69)
and the macroscopic fluid momentum equation (54) contains the right-hand side terms
V. (¢T;)— T, Vé. (70)

Note again that when there are no gradients in porosity or when the pore space is empty the drag force T, - V¢ vanishes. Based upon these
considerations, we seek to find a functional F = F(u,, uy, Vuy, Vu,) with the following attributes:

aF —_
ave. ~ 1~ T (71)
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4T (72)
ovu, "

oF 0 %, vy (73)
om, ou, T

subject to the Maxwell relations
’F *F

— T  ave ave .’ (74)
oVurovVu,  oVu,0Vuy
°F ?F
o= T A= a— (75)
Juou; Jugou,
0°F *F
—— = o (76)
oVu,ou; Ju,d0Vu,
0°F °F
—— o = To= = (77)
JusovVuy,  oVu,ou,
such that
oF oF — — _ _
V. — ) ===V [0 =]+ T, - Vo=(1-¢)V-T, + (T, =T)- Vo, (78)
avuy ouy
\% oF oF =V.(@T;)—T,; - Vp=¢V-T (79)
avu,)  ou, S B "

The existence and form of this functional may also be established by invoking the principle of virtual work, as we show in Appendix A.
By assuming a quadratic form for the functional F* involving all possible tensor products between u,, uy, Vuy, and Vu, and enforcing the
constraints (71)—(77), it may be shown that this leads to the following expression for the interfacial strain (44):

E=—¢ua:Vu; + cs"l (e —cria):u, Vo + cS_l iepia: V(guy), (80)

and the explicit form of the quadratic functional is
1 1

F = E(VE): [(1—¢)es — pe,:a]:(Vu,) + E(Vﬁf):[(b(c_f - c_,-:c;1 iepia)]:(Vuy)
+ (Vuy):(¢cs:a):(Vuy)
+ (Vuy):(cr:a):(uy —ug)Ve + (Vuy):(cy — cf:c;1 iepia):(Uy —u)Vo

+ %¢*1(V¢)(ﬁf —u):(e; —cpiclie @) (U — W)V, (81)
The dimensionless fourth-order tensor o exhibits the symmetries a;;; = i = a ;i = ay, that is, in its most general form there are 21
independent parameters. Note that at this stage this tensor remains to be determined. Expressions of the form ¢;! : ¢/ in (80) and (81) should
be interpreted in terms of Voigt’s notation with contracted indices. In this notation, the solid or fluid fourth-order elastic tensor is written as
Cy,I,J =1,...,6,such that an expression of the form ¢;! : ¢  becomes a regular (6 x 6) matrix expression in Voigt notation: c'.c 2
Thus, if ¢ denotes an elastic tensor, ¢~! denotes the corresponding compliance tensor.

The macroscopic stresses T, and T, are now completely defined in terms of macroscopic quantities by
oF

v = (1 =T, =[(1 — ¢)e; — pe,:a]: VU, + (pcr:a):Vu, + (cr:a): (U, —u,) Vo, (82)

v, = ¢T; = [¢p(c, — cf:c;1 iepa)]:Vuy + (pe i) VU, + (ef — cf:c;1 iepta):(Uy —u,)Vo. (83)
A

In an isotropic material, the tensor & may be written in terms of two scalar parameters « and § as

Qi = (a0 — 2/35)5ij5k1 + B(Sikd,1 + Sudji). (34)

The change in porosity A¢ defined in (45) may then be obtained by taking the trace of (80):

Ap = —u; - Vo +ad(cs/k)(ks/kp)V -8 =V Uy — (U — ;) - Ving], (85)

where the scalar o remains to be determined. Note that (85) equivalently refers to the change in ‘fluid content’ of the pore space, since we are

interested in fully saturated pores. In the case of constant porosity (85) reduces to the well-known result

Ap =ad[V -uy — (ks /k5)V - Us], (86)

where one may regard the difference V - u; — (ks /k)V - U as a measure of the ‘effective deformation’ of the frame (in the sense of Terzaghi).
For the deviatoric part of E, I' defined in (47), let us define the symmetric, traceless strain deviator tensors

@, = JIVE +(VE)] - 3(V WL (87)
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— 1 1

d; = SV, +(Vi)] = (VL (88)
and the symmetric, traceless tensors

_ 1 _ 1 _

Vs = 5[(VOU + W V] — 2 (U - V)L, (89)
_ 1 o 1 _

V= (V)u; + U, V] — s (U, - VOL (90)
The deviatoric part of (80) may now be expressed as

T =7, +B(ns/1)d(7 = 7,) — Bolds — (ny/1s)d,ds], on

where the scalar 8 remains to be determined.

6.2 From (u,,uy) to (u,,w)
Following Biot, using the definition of the displacement of the fluid relative to the solid weighted by the porosity,
W =¢1, —uy), 92)

which may be seen as a volumetric fluid flow per unit surface area, (81) may be rewritten in terms of the variables u; and w as
| _ _
F = E(Vus): [(1—¢)e, —ples —cp) i +desia+d(e, —epie; iepia)]: (V)

+ %(VW):[zﬁ’l(cf —crieilies )] 1 (VW) + (VHy):(ef —epie ieia + e :0): (VW) (93)

This is a remarkable result, because all the terms in (81) involving gradients in porosity, V¢, are naturally accommodated by gradients
involving w. The constitutive relationships (82) and (83) become

(1 =¢)Ts =[(1 — d)es — Pp(cs — cr):al:Vu, + (cr:a): VW, (94)

OT;=(c;—cpic e 0): VWH ey —cpic e+ ¢p00): V. 93)

Again we see that gradients in porosity are naturally absorbed by the definition (92).
Upon defining the average macroscopic stress

T=(1-¢T,+¢Ty, (96)

and using the constitutive relationships (94) and (95), we discover that the quadratic functional (93) can also be established by using the
principle of virtual work in terms of u; and w:

1 — _
F = S(T:V, +T;:VW). 97)

We can identify the different elements of (97) as (1) the virtual work done by the average solid displacement u;, against the average stress
T, and (2) the virtual work done by the porosity-weighted relative displacement W against the average fluid stress T . Note that (97) may be
rewritten in terms of u; and Uy as

F= % [(1—¢)T,:Vu, +¢T,:Vu, +T,:Vpu, —uy)], (98)

where the different terms may be interpreted as (1) the averaged virtual work related to the solid phase, (2) the averaged virtual work
related to the fluid phase and (3) the virtual work done by the relative displacement of the fluid and solid against the drag force T, - V¢. In
Appendix A, we provide an alternative derivation of the macroscopic expression for the interfacial strain based upon the principle of virtual
work. In effect, the quadratic forms (93), (97) and (98) are different representations of the ‘potential energy density’ associated with poroelastic
wave propagation.

7 ‘DRAINED’ PARAMETERS

In this section, we are going to identify the remaining unknown fourth-order tensor & introduced in (81), or, in the isotropic case (84),
the scalars « and 8. This will uniquely specify the macroscopic constitutive relationships (94) and (95) in terms of macroscopic material
parameters. Our strategy will be to refer to a Gedanken experiment in order to identify o, and thus to obtain expressions for A¢ and I' and
thereby fully constrain T and T ;. This approach is similar to that of Pride ef al. (1992) and Carcione (2007), but contrary to these authors,
who used the well-known ‘jacketed” and ‘unjacketed’ experiments, we rely on the definition of the effective stress (Terzaghi 1923, 1943).
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- -

Dry frame
{=empty pores)

Kfr ’ l'll'r

Figure 2. Three types of bulk moduli define the incompressible behaviour of a porous medium: the frame modulus, « g, the solid modulus, « 4, and the fluid
modulus, « 7. Similarly, two types of shear moduli need to be considered: the shear modulus of the frame, 1, and the shear modulus of the solid, 14. These
five moduli combined with the solid density o, the fluid density p 7, the fluid viscosity 7 , and the permeability & define the nine microscopic parameters that
describe a viscous, isotropic, porous medium.

7.1 Gedanken experiment

Let us imagine a dry porous medium, that is, the pore space is empty. We aim to describe the deformation of the skeleton part of such a
medium, that is, the frame (Fig. 2). The elastic frame is characterized by a fourth-order tensor ¢y, or, in the isotropic case, by a bulk modulus
K and a shear modulus pg.

The constitutive equation we are looking for links the effective stress, T, perceived by the frame, and its effective deformation:

Teff = Cf ! €cff- (99)

By defining these effective fields, we isolate the behaviour of the frame by suppressing the effects of the pore fluid on the stress and on the
deformation of the frame. This approach is thus equivalent to looking at the system in the absence of pore fluid.

The effective stress is defined as the difference between the total stress, T, and the part of the stress exerted by the fluid, T /, (Terzaghi
1923, 1943):

Ter =T —Ty. (100)
Upon using the definition (96) of T, (100) may also be expressed as
Terr = (1 — ¢)(T, = T)). (101)

We define the effective deformation of the frame as the total deformation of the solid skeleton minus the deformation of the solid phase due
to the stress exerted by the fluid:

— [y — —\T —1.7

€or = 5 [VU, + (Vi) | — ¢ :T,. (102)
We thus can rewrite the constitutive equation for the frame, (99), in the form

(1 —¢)(Ts —Ty) = e:(VH, —¢;':T)). (103)

The trace of (103) is equivalent to the form given by Pride et al. (1992), when the authors look for a closure relationship to constrain the
isotropic part of E, that is, the change in porosity A¢. In our approach, the isotropic and the deviatoric parts of E are both determined at the
same time.

Upon using (48) and (51), (103) may be expressed as

¢:V[(1—p)u]+¢:E—¢7'(1 —p)[c/:V(puy) — ¢ :E] = cq: { VU, — ¢ "¢ " :[c/: V(u,) — cf:E]}. (104)
This yields the following expression for E:

E = [¢¢, + (1 — ey — ci:c;! ;cf]’1 [plex — (1 — @)eg]: VU, + peg U,V + [(1 — dp)ey — eqie; ' ier]: V(gu,)]. (105)
Upon comparing (80) and (105), we deduce that

o =[¢e, + (1 —p)e, —eqie e ] [(1 — @)es — eq. (106)

Thus, the complete constitutive equations (94) and (95) become
(1-¢)T, = {(1 —d)e. — ple, — ¢ p):[pec + (1 — p)es —exie; rey] T (1 — p)e, — cfr]} LV

+ {cf: [pe, + (1 — d)es — eqierre,] ™ 111 — d)e, — cf,]} VW, (107)
and
¢T; = {ey —cpie;tiepi[pe, + (1 — ey — ey e )7 [(1 — @)es — ex]}: VW
+ofe, —cpie; e e, + (1 — ey —epiey ie ] [(1 — P)eg — e
+epifpe, + (1 — ey —egieylie 17 [(1 — P)es — eq]): V. (108)

© 2008 The Authors, GJI, 175, 301-345
Journal compilation © 2008 RAS




312 C. Morency and J. Tromp

At this stage, let us consider various limiting cases. First, let us assume that ¢ ; — 0, then (107) and (108) simplify to
(1 - ¢)Tv = Cf: Vﬁv
¢T, = 0. (109)

In the absence of fluid, the porous medium deforms according to the elastic frame tensor ¢y, as expected.
Second, suppose that ¢ ; — ¢, and u; = Uy, then (107) and (108) simplify to

(1 =9)T, = (1 — ¢)e,: Vi, (110)
¢T, = ¢c,: Vu,, (111)
which yields

T=(-¢T,+¢T,;=c,:Vu,. (112)

(112) shows that the total deformation of the porous medium (solid skeleton and pore fluid) is solely governed by the solid elastic tensor c;.
Third, let us consider the limiting case where ¢ — 0, then the total stress T simplifies to

T=T, =c:Vu,, (113)

showing that the medium deforms according to the solid elastic tensor ¢, and the total stress is the solid stress, as expected.
Finally, suppose that ¢ — 1, then the total stress T becomes

T=T;=c;:Vu,. (114)

The medium now deforms according to the fluid tensor ¢ r, and the total stress is simply the fluid stress, as expected.

7.2 Isotropic media

In isotropic media, the tensor « is defined in terms of the two scalar fields « and S by (84). The scalar « is obtained by taking the trace of
(106):

1- s Rfr
PV Gl i ek S (115)
o + (1 — Py — kk p /Ky
and the deviatoric part of (106) gives the scalar §:
1- s T
= ( P M (116)

bris + (1 — P 0 — (taee/ )N 3,
Note that, strictly speaking, the quantity g, like ¢, is an operator, because it contains partial derivatives with respect to time. The application
of this operator is in practice most easily accomplished in the frequency domain. We will continue to use the notation (116) with this
understanding.

We can now express the change in porosity, A¢ defined by (85), as

(1 = Py — K rkp /K
¢Ks + (1 - ¢)Kf - Kerf/Ks
and the deviatoric interfacial strain I" (91) is given by

Ap=—u;-Vop+¢ [ } [(ks/kp)V - U =V Uy — (uy — ) - VIng], (117)

r—7 + [ (1 — I sd — pgn s/ s
dus + (1 —P)nsd, — (/)N 10,

¢(1 - ¢):us - ¢Mfr ] —~ bt
- d, — $)o:dr].
[d)m U= 0,0, — (unfmony, | & T /0] (113)

We can further simplify (118) when the pore fluid does not bear any shear stress, that is, 9, = 0, or when n ; < p;:
T =7, —[(1 =) — pe/m)d;. (119)

In the case of constant porosity (V ¢ = 0), (117) and (119) are in agreement with Pride ez al. (1992).
For an isotropic medium, the constitutive eqs (107) and (108) become

(1 _ ¢)TA — {Ks[(l — ¢)Kf + ¢Kfr] — KKy V.1, (1 — ¢)K3Kf — KKy V. W} I
dreg + (1 — ¢)Kf - Kerf/K.v ors + (1 — ¢)Kf - Kerf/Ks
{ (1 — P)s — ped(L — PIn 0, + Ppagpis } d
s + (1 — o — (e /its)n 79, ’
(I — d)sn 0 — e 10y ] 2 odr -7 — 7 120
[d% U= ms8 —Gufny 3, ) O 7). (120)
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and

¢T/=|:

Prsky Vow+ Py (s — ku) v. ﬁs] I
¢rs + (1 — Py — kg p /1 s + (1 = Py — ki p /i
{ [(1 = P)us — pilnso; } 2
bras + (1 =PI sd — (ue/ps)nsd |~
. [ Puesn o,
s + (1= sdr — (ks / 1as)n 19,
The constitutive equations (120) and (121) may be further simplified when the pore fluid does not bear any shear stress:

}2(@/ +V =7, (121)

o el =@y + i) — Kk o (I — PIery — ks - 5
(1-¢)T, = { Py R v———s V.u, + Py s v— v w}l+ 2ppds, (122)
and
_ KsK W K(/’(K‘S - Kfr) L
$lr=9¢ [czm: gy ey P v s Py P “‘} t (123)

Note that in this approximation the solid phase shear modulus p disappears. Shear stress is thus entirely supported by the frame.

7.3 Comparison with the Biot coefficients

The original Biot constitutive equations (Biot 1956ab, 1962a,b) may be written in the form

_ 4 =

T= [(H— 5%) V.4, +CV 'W:|I+2Mfrdm (29
and

T,=-pJd=(CV-u+MV -WL (129

The moduli H, C and M are defined in terms of material (solid, fluid and frame) properties as follows (Geertsma & Smit 1961; Stoll & Bryan
1970):

(Kr Kfr)2 4
H= ———-— v+ = U, 126
D—rp +Kf+3Mf (126)
C ks (K65 — Kir) (127)
D — Kfr
2
K
M=— 128
D (128)
where
D = k,[1+ i, Jic; — DI. (129)
Upon substituting (127), (128) and (129) in (125), we obtain
o — Kf(Ks - Kfr) — KKy 7i|
T, =-p,A= : V.u + . V. .-wl|l 130
/ Py |:¢KX +(1 - d))Kf - Ker/’/K.v ors + (1 — ¢)K[ - Kerf’/Kx ( )

We thus find that (125) is in exact agreement with (123). We can similarly show the equivalence between (124) and the sum of (122) and
(123). This establishes the equivalence between our derivation and Biot’s results, and confirms again the validity of the Biot equations for
media with gradients in porosity.

8 EQUATIONS OF MOTION

In the two sections that follow, the equations of motion are derived both without and with taking into account dissipation processes generated
by viscous Poiseuille (laminar) flow. A third section is dedicated to the frequency-dependence of fluid flow, which allows us to derive the
equations of motion at high frequencies. We also discuss and introduce a viscoelastic rheology to account for non-Biot attenuation mechanisms
related to the anelasticity of the frame (Stoll & Bryan 1970; Stoll 1977).

8.1 No dissipation
Following Biot (1956a), we write the ‘kinetic energy density’ in the form
1 L L 1 _ _
K = Epllatu.v - 0/ug + 120,y - d Uy + Epzzazllf - 0uy, (131)

where the coefficients p;1, p2, and p;,, may be interpreted as the total effective mass density of the moving solid, the total effective mass
density of the fluid moving within the skeleton and a coupling coefficient, respectively.
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In order to derive the equations of motion, we consider the Euler—Lagrange equations associated with the variational principle defined
by the Lagrangian density

L=K-F, (132)
that is

d dL aL aL

——+V-|\—=—)—-—=0 (133)
ot dq aVq aq

Here g refers to the generalized coordinates u; and u . Contributions due to dissipative processes have been neglected and will be considered
in the next section. Written out in full, the Euler—Lagrange equations (133) are

P10 4 p120/ U, =V - [(1 = 9T, ] —T;- Vo =0, (134)
012070, + p0d%U; —V - (¢T;)+ T, - V¢ =0, (135)
for the solid and the fluid, respectively. These equations may be rewritten in the form

(1= ¢)psd/u, =V -[(1 =TI+ T;- Vo — [on — (1 — §)p, 1078, — pr2d T, (136)
bprofuy =V - (¢Ty) =T, -V — pd]u, — (p2 — Ppps)d; ;. (137)
Upon comparing (136) and (137) with (52) and (54) we can identify the drag terms as

d=T, V¢ —[pn — (1 — )0, 1078, — 2971, (138)
d=T; V¢ + pd]T + (022 — dp,)du;. (139)
Since (138) and (139) need to be equal, we deduce that

pi1 = (1 = @)ps — pi2, 02 =¢pr — P12, (140)

and we can interpret p; and p,; as the ‘effective mass densities’ of the solid and fluid, respectively.

At this point, let us assume that the fluid is restrained from moving, that is, u; = 0. Then, according to (137), we see that in order to
prevent any fluid displacement, we need to apply a force in the opposite direction to the solid acceleration. Thus, we must have p;, < 0. The
drag term may be written in terms of p, as

d=T; V¢ — pp (/u; — 9u,), (141)

where the last term may be interpreted as the inertial drag that the fluid exerts on the solid, when there is a relative acceleration between the
two phases. Note that if we rewrite the kinetic energy density in terms of p, we find

1 1 _ 1 _ _ _ _
K = 5(1 — ¢)ps 0/, - 0, + §¢>pf8zuf - Ouy — iplz(f%uf — 3uy) - (3,uy — 0,y). (142)

The kinetic energy density is now expressed as the sum of (1) the average of the kinetic energy density of the solid, (2) the average of the
kinetic energy density of the fluid and (3) the kinetic energy density due to the relative motion of an additional apparent fluid mass arising
from the inertial drag of the fluid.

The coefficient py,, the effective density of the fluid, is determined in Biot (1962a) and Leclaire et al. (1994) by introducing a linear
relationship between the relative macroscopic fluid flow, w, and the relative microvelocities within the pores in order to take into account the
fact that not all the pore fluid moves in the direction of the macroscopic pore fluid stress gradient because of the geometry of the pore space.
A recent paper derives this coefficient based on a more general concept of dispersion of velocities in the fluid (Molotkov 2002). However, in
the case of isotropy of the microvelocity field, those different studies propose the same expression:

P = me?, (143)
where m = cp y/¢. The parameter c corresponds to the ‘tortuosity’, which is an experimental quantity often defined as the ratio between the

actual flow path and the straight line distance between the ends of the flow path. Using (140) it follows that
—p=md’ —dps=(c—Dpps.  pu=~1=d)p, +m¢’> —¢p; = (1= )p, +(c — )gp;. (144)

8.2 Dissipation

Next, dissipation generated by viscous flow of the fluid phase is taken into account, and it is assumed to depend only on the relative motion
between the fluid and the solid. The Euler-Lagrange equations (133) are therefore appended as follows:

9 oL aL aL 3D
DL g (BL) 9L 9Dy (145)
ot dq aVg dq aq

where D, is the dissipation potential directly connected to Darcy’s law (Biot 1956a, 1962a):

1
Dy = 5¢(@l; = 3,1,) - b $(3 1, — 41,). (146)
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The second-order, symmetric tensor b is a function of the fluid properties:
b=nk", (147)

and is valid for Poiseuille (laminar) pore fluid flow (see Section 8.3 for a discussion), where 7 ; is the fluid viscosity and k the porous medium
permeability tensor. Written out in full the Euler—Lagrange equations (145) are

(1= ¢)psd/8, =V -[(1 =T ]+ T - Vo + (c — Dgps (378, — 878,) +¢°n k™" - (9,8, — 8,1,), (148)
dprofuy =V - (¢T;) =T, Vo — (c — Dp,(37u, — 0]u,) — ¢*n,/k ™" - (3,0, — ,1,). (149)
The drag term is thus

d=T, V¢ +¢™n/k " (31U, — d0) + (c — Dgp,(d]u, — 37u,), (150)

where the first term on the right-hand side represents the force due to gradients in porosity (which we also encountered for media in hydrostatic
equilibrium and for Darcy flow), the second term is a viscous term that captures drag on the pore walls associated with relative motion between
the fluid and the solid (which we also encountered in Darcy flow), and the final term represents a dissipative force associated with inertial
drag due to the relative acceleration between the fluid and the solid.

8.3 Frequency dependence

For oscillatory motion, the tensor b defined in (147), expressing the viscous resistance to fluid flow, becomes frequency dependent (Biot
1956a). At low frequencies, the fluid flow is laminar (Poiseuille flow), meaning that inertial forces are negligible compared to viscous forces,
which control the flow regime. In this case, the flow regime may be expressed in terms of a classical diffusion equation, and b is given by
(147). At high frequencies, when the fluid flow is no longer laminar, the fluid velocity distribution within the pores is more complex, and the
effects of viscosity are felt only in a thin boundary layer. In this case, inertial forces dominate the flow regime. Biot’s characteristic frequency
defining the limit between the two flow regimes is given by (Biot 1956b; Auriault ef al. 1985; Carcione 2007)

£, = min (%> (151)

2mwep ki

where k;; denotes the components of the permeability tensor.

In order to accommodate the change in flow regime at high frequencies, Biot (1956b) uses a frequency-dependent correction factor in
the term involving b. In later work, Biot (1962b) introduces the notion of a viscodynamic operator to account for viscous flow over the full
frequency range. Comparisons of the predicted attenuation to experimental measurements at low frequencies (Mochizuki 1982) and high
frequencies (Arntsen & Carcione 2001) show that the dissipation predicted by a theory involving only viscous resistance is smaller than
observed in laboratory experiments. Thus, viscous resistance to fluid flow accounts only for a part of the attenuation and dissipation processes
in a porous medium over the full frequency range (Stoll & Bryan 1970; Stoll 1977). Other dissipation phenomena of a mechanical, chemical
or thermoelastic nature may also play a role, and these are often referred to as ‘non-Biot’ attenuation mechanisms. They are associated with
the anelasticity of the frame, and are usually taken into account by introducing a viscoelastic rheology (Biot 1962a,b; Carcione 1993).

In the following, we present the implementation of both corrections in the time domain. This will allow us to numerically address
attenuation and viscous damping over the full frequency range, and thus to accurately model such processes.

8.3.1 Anelastic response of the frame

In previous studies, anelasticity of the frame has been accommodated by regarding the coefficients H, M, C and g as complex, frequency-
dependent moduli (Stoll & Bryan 1970; Stoll 1977). Typically, the moduli are separated in terms of real solid and fluid properties and complex
frame properties.

Following Carcione (1993, 2007), we describe attenuation controlled by the anelasticity of the frame by introducing a viscoelastic
rheology. The basic hypothesis is that the current stress depends upon the strain history, such that (124) and (125) may be rewritten as

t
T(t) = / [0 B(t — )V - U (1) I+ 0,C(t — ')V - W(t') I + 20, pue(t — 1')ds(¢))] dF', (152)
and

t
T,(t) = f [BtC(t — YWV u, (I 4+ 9, Mt — )V -W(') I] dr, (153)
where we have introduced the compressional modulus

4 (K.v - Kfr)2
B=H—--uy=——"""— - 154

T D (1>4)

Similar to viscoelastic single-phase media, a series of L standard linear solids may be introduced to capture dissipation in poroelastic media
(Liu et al. 1976; Carcione et al. 1988b; Robertsson ef al. 1994). Such an approach results in an almost constant quality factor Q over a selected
frequency range, thus modelling an absorption-band poroelastic medium (Carcione 1993).
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At this point we make the same assumption as Stoll & Bryan (1970), Stoll (1977), which is that only the time-dependence of the bulk
and shear moduli of the frame, « ¢ and g, that is, the assemblage of particles, needs to be considered, accommodating the fact that various
forms of energy dissipation may occur at grain contacts. Moreover, considering the fact that the bulk quality factor is generally observed to be
several orders of magnitude larger than the shear quality factor, dissipation is mainly controlled by shear attenuation, and thus only the time
dependence of the isotropic frame shear modulus 14 needs to be accommodated (Komatitsch & Tromp 1999). Modelling an absorption-band
poroelastic medium by a series of L standard-linear solids, we express the frame shear modulus as

L
pa(t) = pif {1 ->a- r“/r“)exp(—z/r“)} H), (155)

=1
where uf denotes the relaxed frame shear modulus, H(f) is the Heaviside function and ¢ and t°¢ are strain and stress relaxation times,
respectively. Using the anelastic frame shear modulus (155), the constitutive relationships (152) and (153) may be rewritten as

L
T=(BV U +CV -WI+2ufd, - ) R (156)
=1
and
Ty=-pJA=(CV-u,+MV WL (157)
Note that in this approximation only the total stress T is affected. The unrelaxed frame shear modulus, 11, is defined by
L
i = u [1 —> (1= r“/f’%} , (158)
=1
and the symmetric, traceless tensors R®, £ =1, ..., L, represent a series of (tensor) memory variables which are governed by
R = —R*/77 4 sutd, /T, (159)

where the modulus defect ., is given by

Sub = —ul — /o, (160)

8.3.2 Viscous resistance

As already mentioned, the notion of a viscodynamic operator was introduced by Biot to cope with the change in fluid flow regime at high
frequencies. Unfortunately, this factor is highly sensitive to the pore network structure, meaning that an analysis of the frequency dependence
should be performed for each specific material (Biot 1962b). For example, Biot (1962b) derived frequency-domain expressions for cylindrical
silt, which have been widely used (e.g. Auriault e al. 1985; Carcione & Quiroga-Goode 1996). An alternative strategy would be to regard 7 ,
and k as empirical parameters, and to assume no particular pore geometry.

In this section we present another alternative, which involves redefining b, given by (147), as a relaxation function, thus treating viscous
resistance similar to attenuation processes related to the anelasticity of the frame. Using this approach, the components of the relaxation
function b(#) may be described in terms of L’ viscous relaxation mechanisms as (Carcione 2007; de la Puente 2008)

L/
bi;(t) = nsk;' [1 — Z (1—65/67") exp(—t/@”e)i| H(1), (161)

=1
where ij‘ and 6°¢ are strain and stress relaxation times, respectively. Note that at low frequency (f — o0), we recover (147). Using this
expression, the drag term (150) may be rewritten as

P
d=T, V¢ +¢’b" 3,10, — 30) + (c — Dop, (370, — 87u,) — Y ', (162)
=1

where bV is the unrelaxed viscous term defined by

v
b = nsk;;' [1 -y (1- 9;,‘/9“‘)} , (163)

=1

andr®, £ =1, ..., L, represent series of (vector) memory variables which satisfy

dr' = —r'/0°" + ¢?sb" - (du, — d,u,)/0°". (164)
The viscous defect §b? is determined by

8bf; = —nsk;' (1—65/6°"). (165)
In practice, it often suffices to use a single mechanism (L' = 1).
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8.4 Biot’s equations of motion

By adding equations (148) and (149) and keeping the second equation (149), we obtain an alternative set of equations, incorporating the
frequency-dependent viscosity introduced in the previous section,

pOju, + pri W=V T, (160

ProfwW+ p iU, =V - (9T )) =T - Ve — (¢ — Do} W — ¢pb(1)(x)0, W, (167)

where we have used the definitions (92) for W, (96) for the average macroscopic stress T and (62) for the average density p. The symbol (x -)
denotes time convolution combined with the dot product. (167) may finally be rearranged as

MW + p MU, + b(t)(*)dW =V - Ty, (168)

where m = p yc/¢. We thus recover the original Biot equations of motion (Biot 1956a, 1962a). Note that we have demonstrated that the Biot
equations of motion in terms of U, and W ‘remain valid for media with gradients in porosity’.

9 SUMMARY OF THE MAIN EQUATIONS
In summary, wave propagation in poroelastic media is governed by the macroscopic equations of motion
(1 =)0, =V - [(1 = )T ]+ T, - Vo + (¢ — Doy (970, — 07,) + ¢*b(t)(x-) (3,1, — 0,1,) , (169)

dp,0u; =@V - Ty — (¢ — Do (371, — 871) — °b(1)(+ )3/, — 3,W,). (170)
The most general anisotropic constitutive relationships are (107) and (108) in terms of the anisotropic frame, solid and fluid tensors ¢y, ¢,
and ¢/, respectively. The much simpler isotropic constitutive relationships for a porous isotropic medium are

_ (1 — X — Kekr 1 — )iy — B _
(1 _¢)T$ _ |:K [( ¢)Kj +¢Kfr] KKy L4 ( ¢)K Kr KK g \v4 W] I+2Mfr(t)*dx, (171)
d)Ks + (1 - ¢)Kf - Kerf/Ks ¢Ks + (1 - d))’{f - Kerf/Ks
and
_ KK ¢ _ K (ks — Kft) _

¢T~=¢[ : V.-w+ : V-u.]l. 172

/ Qi + (1 — @)y — Kk f /K o + (1 — Py — kk p /K * (172)
Alternatively, we may use the macroscopic equations of motion in terms of u, and w (the Biot formulation)

PO+ prW=V_T, (173)

moTW + projus + b)) W=V - T, (174)

where m = p rc/¢, ¢ denotes the tortuosity. In this case the isotropic constitutive relationships are

T=(BV U, +CV -W) I+ 2ug(t) * dy, (175)

and

Tf:—ﬁfI:(CV-ﬁs-f—MV~W)I, (176)

with B = H — % wug and where the coefficients H, C and M are defined in (126)—(128).
Finally, we add to this set of equations the expression for the relative change in porosity:
(I =)k p — Kk pics /K
oy + (1 — Py — ki p /i
Given the explicit expression for the change in porosity (177), we may now use (39) and (41) to obtain the corresponding changes in the solid
and fluid densities induced by the motions:

Aln¢:—ﬁS~Vln¢+|: ][(KS/Kf)V.ﬁS—V.ﬁf—(ﬁf—m).vmm. (177)

Alnps = —A]Il(] _¢) —u - Vln(l - ¢) -V U TR Vlnva (178)
Alnp;=—-Aln¢g —uy-ViIng —V-uy—u,-Vinp,. (179)
If the background density and porosity are constant, the changes in porosity (177), solid density (178) and fluid density (179) reduce to
1 - - Kfr ) Ks — —
Alng = [ (L= s = i/ ] LG /i)Y - — V-], (180)
Gis + (1 — @iy — Kk /K '
_ ¢ _
Alnps_ﬁAlndb—VmS, (181)
Alnp; =—Aln¢ —V -uy. (182)
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10 DILATATIONAL AND ROTATIONAL WAVE SPEEDS

In this section, we determine the dilatational and rotational wave speeds in terms of the properties of a homogeneous porous medium. The
results in this section demonstrate the existence of two compressional waves, a fast and a slow P wave, plus a shear wave. In subsequent
benchmarks against semi-analytical reference solutions, we will see numerous examples of the propagation and interaction of all three types
of waves.

In the system (u;, W), we recall that the equations of motion for the solid and for the fluid relative to the solid are

B — ¢, /)00, =V -T—2v. T, + Loy« oW, (183)
: C C
C —
waZ*_V T, - fv-T—b(z)*a,W, (184)
¢p
with
T = (BVU, +CV - W) + 2uz(t) * d;, (185)
T, =(CV U, + MV -WL (186)

Note that since we are considering homogeneous, isotropic properties, the permeability is a simple scalar, k = & I, and thus we only need to
consider a scalar viscous relaxation function

L
bty = nek™ [1 - (1 -6 /9”[)exp(—t/9”[)i| H(?). (187)

=1
We now introduce the classic decomposition of the displacements in terms of their dilatational and rotational components by using the
operations div and curl, such that

V.u=e, (188)

V xu, =, (189)

V.w=c¢ (190)

and

Vxw=1y. 191
v (191)

The equations governing the propagation of dilatational and rotational waves are obtained by applying the divergence and curl operations,
respectively, to (183) and (184).

10.1 Dilatational wave propagation

Applying the divergence operation to (183) and (184), using the definitions (185) and (186), and assuming constant material properties yields

4
(5 — dpy/ce = V2 {[B + guﬁ(z)] e+ Cg} 2w et Moy + Loy e, (192)
Prep — ¢'Of 2 2 Pr o2 4
Assuming plane wave propagation in the x direction, the solutions to these equations are written as
e = A, expli(lx + wt)], (194)
and
¢ = Ay expli(lx + wt)], (195)

where @ denotes the real angular frequency, / the complex wavenumber and z, = w// the complex speed. The frequency-domain viscous
operator b(w) has the form (Carcione 2007)

o 1+ iwoe
b(w) = n/k { L+Z<1+lw9”>i| (196)

and the frequency domain shear modulus has the form (Carcione et al. 1988a)
1+ iote
_ R
m(w)—uﬁ[ L+§ (Hmd)} (197)
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Upon substituting (194) and (195) in (192) and (193), we obtain

4
® — pos/c) A 10* = [3 + guﬁ(w)] A2+ CAP — ?(CAIF + M A, — ifb(w)Azw (198)
X C C
and
cp — ¢pp>
W’;&Az =CA\* + MA? - ”B + uf,(w)] A%+ CAzlz} +ib(w)Ayo. (199)
o P
Eliminating 4, and 4, gives an equation for the speed, z ,:
b 7 4 2 4
[ﬁ— gos +f(—‘”¢—p}z; {[3 4 mr(w)] IV s R L [B + —ufr(w)“zf,
c w cpy cor w cpy 3
¢ 4 2
+— | B+ sus(w)|M—C*} =0. (200)
cor 3

This equation has two complex roots:

[B+ (o) + MEZ — 2041292 [B 1 duy(w)]]

cpf o cpf
= ¢vr - b() ¢p
—_— w
2[p- i o]

2
i\/{B+§uﬁ(w)+M"” — 2042 L (Bt dug)]| — 4[5 M2 L[+ )] M - C?)

cof ® cpy ® cpy
= ¢P/ i b) ¢p
27— i ]

(201)
We denote these two roots z,; and z ,y;, with z,; > z ;1. They correspond to the complex wave speeds associated with a fast dilatational P
wave when the solid and the fluid move in-phase, and a slow dilatation P wave when the solid and the fluid move out-of-phase (Biot 1956a;
Carcione 2007).
The phase speeds of the fast and slow dilatational P waves are defined as the angular frequency, w, divided by the real part of the complex
wavenumber, /, that is,

17! -1
e =[Re0] e =[Re(zn)] (202)
The corresponding inverse quality factors are defined as
o Im(Z2) o Im(Z3p)
Qpl1 = ;I ’ Qplll = ‘;H . (203)
Re(ZpI) Re(ZpII)

At this point we compare our expressions for the dilatational phase speeds and quality factors with those derived by Carcione &
Quiroga-Goode (1996) in the case of a poroacoustic medium (i.e. j15 = 0), considering a porosity ¢ = 0.3, a viscosity n ; = 0.001 Pa s, and a
homogeneous permeability k = 1 x 107! m? (f, = 452 kHz). The remaining properties are summarized in Table 2. Figs 3(1) and (2) show
the phase speeds and inverse quality factors, respectively, of the fast P and slow P waves as a function of frequency using the low-frequency
theory, that is, b is defined by (147). We find good agreement between our formulation and that of Carcione & Quiroga-Goode (1996). Note
the diffusive behaviour and quasi-static character of the slow P wave at low-frequencies, when the wave is highly attenuated due to viscous
damping.

Finally, note that in the absence of viscosity, that is, when 1 ; = 0, the fast and slow dilatational wave speeds are determined by

[B + A up(@) + M2 — %‘"C]

o
:I:\/[B+3Mfr(w)+M¢” %c}2—4(ﬁ ¢ff)cp {[B + 4 un(@)] M — C?)

o — 5 : (204)
=)

10.2 Rotational wave propagation

Applying the curl operation to (183) and (184) and assuming constant material properties yields

(P — ¢os/)0; R = pg(t) * VR + %b(t) o N
wazw = LI () % VPR — b(t) x 8,9 .
bp »
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Figure 3. (1) Dilatational phase speeds and (2) inverse quality factors of the fast and slow P waves as a function of frequency using the low-frequency theory
(i.e. b is defined by 147). The vertical dashed line is the characteristic frequency, f'., which indicates the upper limit for the validity of the low-frequency
theory. Our formulation is in good agreement with that of Carcione & Quiroga-Goode (1996). Note the diffusive behaviour and quasi-static character of the
slow P wave at low-frequencies, when the wave is highly attenuated due to viscous damping.

Without loss of generality, we write the solutions of these equations for plane wave propagation in the x direction as

Q = By expli(lx + wt)], (207)
and
¥ = Byexpli(lx + wt)], (208)

where the complex speed of these waves is z;, = w/I.
Upon substituting (207) and (208) in (205) and (206), we obtain

(0~ 001/810" = (@B, — i 2 i) B (209)
and

prep —¢p7 or 2 .

TBza) = —%uf,(a))l By 4+ ib(w)Bw. (210)

Eliminating B, and B, gives an equation for the complex speed, z, which after simplification may be expressed as:

. PfeP—907]
901 by [,m + @] (@)

7w op
2= 7““(‘;;) + . : @11)
p — Tf p‘/é‘ﬁ*d)ﬁ% + I:M:Iz
# »
We thus note the presence of only one type of shear wave, with phase speed
¢ =[Re(z")] ", (212)
and inverse quality factor
Im(z?)
-1 s
.= . 213
0" = e @13)
In the absence of viscosity, when 1 ; = 0, we have
? - ui(w) ) (214)
p—dpr/c
Finally, note also the relation between the solid rotation, €2, and the fluid rotation relative to the solid, ¥:
¥ = —? Q. (215)
c
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10.3 Practical considerations

In practice, one may have experimental data that determine the wave speeds c 1, ¢ pir and ¢, and the inverse quality factors Q;Il, Q;III and Q!
as a function of frequency. From a numerical perspective, this frequency dependence may be captured by prescribing the appropriate stress
and strain relaxation times 6¢¢ and 67¢ for the viscous operator b(w) in (196), and the stress and strain relaxation times t¢¢ and t7¢ for the
frame shear modulus in (197). This is similar to the determination of the stress and strain relaxation times needed to fit an absorption band
solid for anelastic problems (see e.g. Komatitsch & Tromp 1999).

11 DISCRETIZATION

In the following, we first seek to establish the weak form of the governing equations. Subsequently, we determine the spatial discretization
of this variational problem using a SEM (Komatitsch 1997; Komatitsch & Tromp 1999). Finally, we discuss the assembly stage and time
marching. We will see that we obtain a diagonal mass matrix, which implies that the SEM provides the same numerical benefits for simulations
of poroelastic wave propagation as it does for acoustic and elastic problems.

To avoid mathematical complications, we do not incorporate attenuation and frequency-dependent viscous processes in the discretization
that follows. But as discussed in previous sections, these effects may be readily accommodated based upon a simple memory variable approach
(see e.g. Komatitsch & Tromp 1999, 2002; Carcione 1993, 2007).

11.1 Weak form

We consider the set of equations in terms of u; and W, which naturally takes into account gradients in porosity, with an explicit source term:

POU + oW =V -T+f, (216)
mo;wW+ p,o7u +n koW =V T, +f, (217)
where we have introduced the following constitutive relationships for an isotropic medium

T=G:Vu, +CV-WI, (218)
and

T,»:—ﬁflz(CV«ﬁs—i—MV-W)l. (219)

For convenience we have defined a tensor G whose elements are

Gijn = (H — 2800 + ps(8id 1 + 818 1) (220)
This choice allows us to avoid cumbersome notation and has the additional benefit of naturally extending the theory to more general anisotropic
problems.

The macroscopic source term f excites the wave motion and is linearly partitioned between the solid and the fluid phase assuming a
uniform distribution of the force within the porous medium. In the context of an earthquake, it is written in terms of a moment tensor M, as
(e.g. Dahlen & Tromp 1998)
f=-M-Vix—x,)S©), (221)

where x; refers to the point source location, §(x —X;) is the Dirac delta distribution located at x; and S(¢) is the source time function.
We write (216) and (217) in a weak form by dotting each equation with arbitrary test vectors i and W, respectively, and integrating over
the model volume :

fﬁﬁw‘)fﬁs d3x+/ pfﬁ~8,2Wd3x:/ﬁ:VTd3x+/ﬁ-fd3x, (222)
Q Q Q Q

/mv*v-aEWd3x+/ oW - 37U d3x+/ new- (k™! -8,W)d3x=/W:VT_fd3x+/ w-fdx. (223)
Q Q Q Q Q

Integrating by parts and replacing the source by its explicit expression (221) yields

/ﬁﬁ-atzﬁsd3x+/ pfﬁ-aEWon:—/ Vﬁ:Td3x+/ﬁ-T-ﬁd2x+M:Vﬁ(xs)S(t), (224)
Q Q Q

r
fmw-ade3x+ / oW - 37 d3x+/ new- (k! ~8,W)d3x=—/ VW:T,dx
Q Q Q Q

+ / fi-T, - Wdx + M: VW(x,)S(), (225)
r

where I is comprised of the free surface, the interfaces between acoustic—poroelastic, elastic-poroelastic and poroelastic—poroelastic domains,
and the absorbing boundaries. Note that this definition of the surface I" explicitly allows for first-order discontinuities in the model parameters,
including the porosity. (224) and (225) represent the basis for the discretization of our problem developed in the following sections.
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11.2 Assembly and temporal discretization

Details of the SEM discretization may be found in Komatitsch & Vilotte (1998), Komatitsch & Tromp (1999) and Komatitsch et al. (2005).
Integration at the elemental level of (224) and (225) leads to a set of mass and stiffness matrices and source vectors similar to the elastic case.
In addition, we define a damping matrix which involves the viscous damping force present in (225). Detailed expressions for the mass and
damping matrices may be found in Appendix B. One should note that, similar to the elastic case, the mass matrices are diagonal.

We need to distinguish between the ‘local mesh’ of GLL integration and interpolation points defining one element (using as four indices
the three GLL labels «, 8 and y plus an element label €2,), and the ‘global mesh’ of all the gridpoints of the system (using a single index 7).
We also need to take into account the fact that integration points which lie on the sides, edges, or corners of an element are shared amongst
neighbouring elements. Let us denote the mapping between the local mesh and the global mesh as

(o, B, v, Q2) = (). (226)

The contributions from all elements which share a global gridpoint need to be summed. This process is referred to as the ‘assembly’ of the
system, and routines used to perform this task are available from FEM modelling. If we use U to denote the solid displacement vector of the
global system and W to denote the relative fluid displacement vector of the global system (i.e. U and W contain the displacement vectors at
all the gridpoints in the global mesh), the discretized set of equations may be written in the form

MU+ MW+ K U+K,W=F (227)
for the solid, and
M;W + MU+ DW + K; W+ K,U=F (228)

for the fluid, where M, M,, M3 and M, are the global diagonal mass matrices; K, K,, K; and K, are the global stiffness matrices; D is the
global damping matrix and F is the global source vector. Note that, because we choose the same test vectors, @i and W, for the solid part and
for the fluid part, respectively, My = M, and K4 = K. Using basic matrix algebra, (227) and (228) may be further rewritten as

M 0 U+0DS U+K§KS, ul [P -
oM || W oD/ || W K/ K, ||W]| [F]| 229

where

M =M, — M,;M;'M;, M/ =M; — MMM, (230)
D' = -M;M;'D, D’/ =D, (231)
K =K —MM;'K;, K, =K,-MM;'K;, K/=K,-MM'K;, K}=K;—MM 'K, (232)
FF=F-MM;'F, F/ =F-MM;'F. (233)

Detailed expressions for the corresponding matrix elements at the global level may be found in Appendix C. The critical observation is that
the global mass matrices M* and M/ are diagonal.

Because the system (229) is diagonal, it may be solved based upon a simple explicit time marching scheme. We use a Newmark
scheme (e.g. Hughes 1987) implemented using a predictor/multicorrection technique. (C17) and (C18) provide the formulae to compute the
acceleration at any given time. The predictor phase at the beginning of each time step At is given by

1
A" =d" +v"Ar + 5a"(Az)Z, (234)
n+1 n 1 n
VT =" 4+ Ea At, (235)
a™ =0, (236)
where d is the displacement, v the velocity and a the acceleration. The corrector phase at the end of each time step is given by
a"™ = M"'RHS, (237)
1
vn+1 — vn+l + 5an+lAt, (238)
dnJrl — dnJrl. (239)

12 BOUNDARY CONDITIONS

The top surface of our model is a free surface, such that in the weak formulation the integral of the traction along this boundary vanishes.
We need to absorb the outgoing waves at the edges of our computational domain in order to avoid artificial reflections and to simulate an
unbounded medium. To that end, we use classical first-order absorbing boundary conditions based upon a paraxial approximation (Clayton &
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Figure 4. 2-D spectral-element simulation of wave propagation in a homogeneous porous medium whose properties are summarized in Table 1. The domain
dimensions are 1000 m x 1000 m, the explosive source with a dominant frequency of 30 Hz (yellow cross) is located at x; = (500, 300) and the receiver (yellow
circle) at x,- = (600, 400). The top boundary is a free surface and the remaining three edges are absorbing boundaries. (1) Snapshot of the vertical-component
macroscopic solid displacement ug at # = 0.12 s. The fast P (a) and slow P (b) waves may be observed. (2) Comparison of the vertical-component velocity
synthetic seismograms (solid black line) to the Dai et al. (1995) analytical solution (dashed red line), and their difference multiplied by a factor of 5 (dashed
black line). We have also noted the RMS misfit between the analytical solution and the SEM simulation, as we will do for all such comparisons in this paper.

Table 1. Poroelastic medium properties.

Variable name Symbol Unit Value
Solid density Ps kgm™3 2650
Fluid density Y kgm™3 880
Porosity ¢ - 0.1
Tortuosity c - 2
Solid bulk modulus Ky GPa 12.2
Fluid bulk modulus Ky GPa 1.985
Frame bulk modulus Kt GPa 9.6
Fluid viscosity nr Pas 0
Frame shear modulus I GPa 5.1
Fast P wave Cpl ms~! 2639
Slow P wave cpll ms~! 961
S wave cs ms~! 1449

Engquist 1977; Engquist & Majda 1977). The associated conditions for the tractions are

t = pc,i(0,u, - )i+ prcpu(d,W - W) + (p — pro/c)e, (I — fin) - 9,1y, (240)
and
ty = prc/gcou(3,W - B)h + prc,i(0:U; - A)A. (241)

Note that recent studies have started to adopt the perfectly matched layer (PML) methodology, first introduced for electromagnetic waves
(Berenger 1994), to problems of poroelastic wave propagation (Zeng & Liu 2001b; Zeng et al. 2001; Martin et al. 2007). The PML
implementation is not included in this paper but will be addressed in the near future. The boundary conditions related to domain heterogeneity
(acoustic—poroelastic, poroelastic—elastic and poroelastic—poroelastic) are dealt with based upon domain decomposition, and are further
discussed as they arise in subsequent sections.

13 2-D BENCHMARKS

In the following sections, we validate our implementation of poroelastic wave propagation for various 2-D models. Wave speeds in the models
may be calculated based upon the results presented in Section 10. In Section 13.1, we perform a series of tests involving wave propagation
in a simple homogeneous poroelastic medium. Section 13.1.1 treats propagation in the high-frequency regime for an inviscid fluid. Our SEM
solution is compared to an analytical solution derived by Dai et al. (1995). The stability and accuracy of the implementation are further
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Figure 5. 2-D spectral-element simulation of wave propagation in a homogeneous porous medium whose properties are summarized in Table 1. The domain
dimensions are 1000 m x 1000 m, the explosive source with a dominant frequency of 30 Hz (yellow cross) is located at x; = (500, 300) and the receiver (yellow
circle) at x,, = (600, 400). The top boundary is a free surface and the remaining three edges are absorbing boundaries. Snapshot of the vertical-component
displacement at + = 0.12 s for (1) a reference model using a regular mesh, and (2) the same model with a randomly perturbed mesh (Courtesy of Dimitri
Komatitsch). The fast P (a) and slow P (b) waves may be observed. (3) Comparison of the vertical- and horizontal-component velocity synthetic seismograms
(regular mesh: solid black line, perturbed mesh: dashed red line).

illustrated in Section 13.1.2, where we present results for the same problem using a randomly deformed mesh. Sections 13.1.3 and 13.1.4
highlight viscous damping phenomena in the low- and high-frequency regimes, where we compare our SEM solutions to analytical solutions
derived by Carcione & Quiroga-Goode (1996). In Section 13.2, we focus on coupling between acoustic and poroelastic waves. Finally, in
Section 13.3 we deal with porosity discontinuities, and in Section 13.4 we discuss the coupling between poroelastic and elastic waves.

All of the numerical experiments are performed using Lagrange polynomials of degree 4, resulting in 25 GLL points in each element.
In order to maintain stability and accuracy, we prescribe a minimum of 5 gridpoints per shortest wavelength and a Courant stability number
less than 0.4.

13.1 Homogeneous porous media

13.1.1 Analytical solution: high-frequency, inviscid fluid

In order to validate our formulation, we consider a homogeneous poroelastic medium subjected to an explosion with a Gaussian source time
function with a dominant frequency of 30 Hz. For an inviscid fluid ( = 0), we compare the numerical solution obtained based upon our
SEM to the analytical solution derived by Dai et al. (1995). The model setup is displayed in Fig. 4(1). The poroelastic medium properties are
summarized in Table 1. The vertical-component velocity seismograms obtained with the SEM and the analytical solution are compared in
Fig. 4(2). The difference between the two results enhanced by a factor of 5 is also plotted, which illustrates the excellent agreement between
the SEM and the analytical solution for both the fast and the slow P waves. This is further confirmed by the RMS misfit between the SEM
solution and the analytical solution, as indicated in Fig. 4(2). In what follows, we will indicate this misfit for all benchmarks against analytical
solutions.
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Table 2. Poroacoustic medium properties.

Variable name Symbol Unit Value

Solid density Ps kgm™3 2650

Fluid density or kgm™3 880

Porosity ¢ - 0.3
Tortuosity c - 1.2

Solid bulk modulus Kg GPa 12.2

Fluid bulk modulus Kf GPa 1.985

Frame bulk modulus Kfr GPa 9.6

Fluid viscosity ny Pas 0(0.001)
Permeability k m? 10-10

Fast P wave cpl ms~! 2250 (2163)% (2250)"¢
Slow P wave cpi ms~! 1403 (476) (1403)>

Note: For further details see the text in Sections 13.1.3 and 13.1.4.

“Viscous model in the low-frequency regime.

bViscous model in the high-frequency regime using a frequency-dependent
viscous correction.

“Viscous model in the high-frequency regime using low-frequency Biot theory.

13.1.2 Randomly perturbed mesh

In this Section we show that our implementation remains accurate even when using deformed meshes. To that end, we consider the same
problem as in Section 13.1.1, but this time we employ a randomly perturbed mesh (regular mesh: Fig. 5(1), perturbed mesh: Fig. 5(2)).
The perturbed mesh is obtained by randomly stretching the position of the mesh points compared to their origin (i.e. the regular mesh)
from 0 = 1.1 m (which corresponds to 20 per cent of the element length) in the x and z directions. Comparison of the vertical- and
horizontal-component velocity synthetic seismograms confirms the accuracy and stability of our implementation. Note that the RMS misfit
for the randomly perturbed mesh is only slightly larger than for the regular mesh.

13.1.3 Analytical solution: low-frequency, viscous fluid

To investigate low-frequency poroelastic wave propagation involving a viscous fluid, we use a model setup similar to that in Section 13.1.1
(Fig. 4(1)). In this case, however, the source—receiver distance is 666 m, and we use a Ricker wavelet source time function with a dominant
frequency of 30 Hz. First, we compare wave propagation two models (Model A is viscous and Model B is inviscid) to illustrate the effects
of viscous damping as discussed in Section 8.3. Next, we compare our viscous simulation to an analytical solution derived by Carcione
& Quiroga-Goode (1996) for a poroacoustic problem, which implies that there is no shear deformation (i.e. wy is taken to be zero). The
properties of the poroacoustic medium are summarized in Table 2.

Model A is viscous with a viscosity 7 ; = 0.001 Pa s and an isotropic permeability £ = 10~1%m? (f.. = 452 Hz (151)), whereas the fluid
in Model B is inviscid. Results for the two models are displayed in Figs 6(1) and (2), where we plot the solid and fluid pressures, respectively.
The slow P wave is highly attenuated in Model A and exhibits diffusive behaviour, in agreement with the theory (Biot 1956a; Carcione &
Quiroga-Goode 1996). In inviscid Model B the slow P wave is observed. Note the difference in the fast P wave traveltimes, as predicted by
the analytical solution for the dilatational wave speeds in Section 10.1.

Figs 6(3) and (4) show a comparison between SEM synthetics for viscous Model A and the analytical solution derived by Carcione &
Quiroga-Goode (1996), which are in good agreement. The spectral-element mesh consists of 300 x 260 elements, the time step is 1.25 x
10~ s, and the total number of time steps is 6000. A challenge when dealing with wave propagation in a porous medium in the low-frequency
regime is to find a stable numerical scheme that captures the diffusive behaviour of the slow P wave. Frequently, explicit time schemes
encounter numerical stability issues, which has led to the development of alternative techniques (e.g. Discontinuous Galerking Methods, see
de la Puente et al. 2007). The good agreement between the SEM solution for viscous Model A and the analytical solution demonstrates the
stability and accuracy of our approach, which is based upon a predictor/corrector explicit time scheme and classical SEM stability criteria
(Komatitsch & Vilotte 1998).

13.1.4 Analytical solution: high-frequency, viscous fluid

To address high-frequency poroelastic wave propagation involving a viscous fluid, we use a similar setup as in the previous section. The
properties of the poroacoustic medium are similar to viscous Model A used in Section 13.1.3 (see Table 2). However in this case, in order to
shift the simulation to the high-frequency regime, we use a Ricker wavelet source time function with a dominant frequency of 10° Hz and a
source-receiver distance of 0.21 m. To address the change in fluid flow regime at high frequencies as described by Biot (1956b), we use the
frequency-dependent correction discussed in Section 8.3.2

First, we show solid and fluid pressure seismograms in Figs 7(1) and (2), respectively, comparing results obtained using frequency-
dependent viscous resistance with low-frequency Biot theory (i.e. b is still given by (147), the appropriate expression for Poiseuille flow). In
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Figure 6. (1) Solid pressure and (2) fluid pressure seismograms obtained for viscous Model A in the low-frequency regime (black line; using a viscosity
1y = 0.001 Pa s and an isotropic permeability k = 10719 m?, see Table 2) and inviscid Model B (red line; see Table 2). The explosive source has a dominant
frequency of 30 Hz and the source—receiver distance is 666 m. The slow P wave (b) is highly attenuated due to viscous damping in Model A. Comparison of (3)
solid pressure and (4) fluid pressure obtained for Model A (black line) with an analytical solution derived by Carcione & Quiroga-Goode (1996) (red dashed
line).

the high-frequency domain, the slow P wave exhibits propagative behaviour. Frequency-dependent viscous resistance leads to attenuation of
both the fast and slow P waves compared to low-frequency Biot theory. The attenuation is stronger for the slow P wave in the fluid. Note that
the fast P wave in the solid is in-phase with respect to the fast P wave in the fluid, whereas the slow P waves are out-of-phase, as predicted by
the theory. Finally, Figs 7(3) and (4) demonstrate good agreement between the frequency-dependent viscous SEM simulation and an analytical
solution derived by Carcione & Quiroga-Goode (1996) using the frequency-domain viscous operator b(w) defined in (196).

13.2 Coupling between acoustic and poroelastic waves

In this section we recall the equation of motion for acoustic waves and discuss coupling between an acoustic and a poroelastic medium, before
presenting an application.

13.2.1 Acoustic wave equation

To describe wave propagation in an inviscid fluid, we use the formulation introduced by Chaljub & Valette (2004) and Komatitsch et al.
(2005):

Pad; Xa = KV Xas (242)

where the acoustic fluid displacement, u,, is expressed in terms of a scalar potential, x ,, as u, = V x,, and the acoustic pressure p,, is defined
by p. = —pa9%x .. Multiplying (242) with an arbitrary test vector ¥, and integrating by parts yields

/&xa afx,,d&:—/ ViV d3x+/zaﬁ-m dx. (243)
Q K Q r
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Figure 7. Pressure seismograms obtained using a viscosity 1 = 0.001 Pa s and an isotropic permeability k = 10719 m? (Table 2). The explosive source has a
dominant frequency of 10® Hz, thus shifting the experiment to the high frequency regime (f. = 452 Hz). The source—receiver distance is 0.21 m. Comparison
of (1) the solid pressure and (2) the fluid pressure using the frequency-dependent viscous resistance described in Section 8.3.2 (black line; 6¢ = 3.84 x 107*
sand 87 = 6.59 x 1073 s) and Biot low-frequency theory (red line; b is given by (147)). Compared to Biot low-frequency theory, the frequency-dependent
viscous resistance leads to attenuation of both the fast P (a) and slow P (b) waves. Note that the effect is more significant for the slow P wave in the fluid phase.
Comparison of (3) the solid pressure and (4) the fluid pressure using frequency-dependent viscous resistance (black line) to the analytical solution derived by
Carcione & Quiroga-Goode (1996) (red dashed line).

The kinematic boundary condition at the acoustic—poroelastic interface involves free slip, so only the normal component of displacement,
n-u, = h- Vy,, needs to be continuous across the interface. Thus, the second integral on the right-hand side in (224) is replaced by

/ﬁ~T~ﬁd2x=—/paﬁ~ﬁd2x, (244)

r r

and the second integral on the right hand side in (225) by

/ AT, Wwdx = —/ pait - Wdx, (245)
r r

that is, we exchange the tractions between the fluid and the poroelastic medium at their common interface. Finally, feedback from the
poroelastic medium to the fluid is accommodated by replacing the second integral on the right hand side of (243) by

/ Fuh- Vo dx = / Fudh- [(1 — ), + g1,] dx = / R~ @, + W) dx, (246)
r r r

thus exchanging the normal component of displacement between the fluid and the poroelastic medium.

13.2.2 Coupled acoustic and poroelastic waves

In this section, we consider a model with an acoustic layer (inviscid fluid, 7 ; = 0) on top of a homogeneous poroelastic layer. The model
domain is 4800 m x 4800 m. The porous medium properties are summarized in Table 3. We use a Ricker wavelet source time function (i.e.
the derivative of a Gaussian) with a dominant frequency of 15 Hz. The source is located in the acoustic domain at x; = (1600, 2900). We place
one receiver at x,; = (2000, 2934) in the acoustic domain and a second receiver at x,, = (2000, 1867) in the poroelastic domain (Fig. 8(1)).
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Table 3. Acoustic—poroelastic model properties.

Variable name Symbol Unit Value

Acoustic layer

Density o kgm™3 1020
Bulk modulus K GPa 2.295
P wave cpl ms~! 1500
S wave Cs ms~! 0

Poroelastic layer

Solid density Ps kgm™3 2500
Fluid density of kgm™3 1020
Porosity ¢ - 0.4
Tortuosity c - 2
Solid bulk modulus Ks GPa 16.0554
Fluid bulk modulus Kf GPa 2.295
Frame bulk modulus Kfr GPa 10.0
Fluid viscosity nr Pas 0
Frame shear modulus I GPa 9.63342
Fast P wave cpl ms~! 3677
Slow P wave Cpll ms! 1060
S wave Cy ms~! 2378

Table 4. Poroelastic—poroelastic model properties—homogeneous case.

Variable name Symbol Unit Value
Upper layer

Solid density Ds kgm™3 2200
Fluid density s kgm™3 950
Porosity ¢ - 0.4
Tortuosity c - 2
Solid bulk modulus Ks GPa 6.9
Fluid bulk modulus Kr GPa 2.0
Frame bulk modulus Kfr GPa 6.7
Fluid viscosity nr Pas 0
Frame shear modulus g GPa 3.0
Fast P wave Cpl ms~! 2693
Slow P wave cpu ms~! 1186
S wave Cs ms™! 1410

Lower layer

Solid density Ps kg m™3 2650
Fluid density oy kgm™3 750
Porosity ¢ - 0.2
Tortuosity c - 2
Solid bulk modulus Ks GPa 6.9
Fluid bulk modulus Kr GPa 2.0
Frame bulk modulus Kfr GPa 6.7
Fluid viscosity ny Pas 0
Frame shear modulus e GPa 3.0
Fast P wave Cpl ms~! 2219
Slow P wave Cpll ms~! 1169
S wave cs ms~! 1325

Fig. 8(2) displays SEM synthetic seismograms at the two receivers, which are compared to the analytical solution provided by Dr Julien Diaz
(University of Pau, France) (Diaz & Ezziani 2007). The RMS misfit values demonstrate that the results are in good agreement.

13.3 Heterogeneous poroelastic media

In this section we investigate wave propagation in layered porous media. First, in Section 13.3.1, we specify the boundary conditions used
to deal with porosity discontinuities. Next, in Sections 13.3.2 and 13.3.3 we present two applications. Finally, in Section 13.3.4 we discuss
differences between gradients and discontinuities in porosity.
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Figure 8. Acoustic—poroelastic simulation of wave propagation in a water layer over a homogeneous poroelastic half-space, as tabulated in Table 3. The model
dimensions are 4800 m x 4800 m, the source (yellow cross) is located at x; = (1600, 2900) and the receivers (yellow circles) at x,,; = (2000, 2934) and at
X,2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The explosive source has a Ricker wavelet source time
function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component of displacement at # = 1.00 s. We can observe the direct P (a) and the
reflected P (b) waves in the acoustic domain, while the transmitted fast P (c), the P-to-S converted (d), and the P-to-slow P converted (e) waves are clearly
visible in the poroelastic domain. (2) Vertical-component velocity seismograms at receivers 1 and 2 (SEM: solid black line, analytical solution: dashed red
line). We use domain decomposition between the fluid and the poroelastic solid as described in Section 13.2.1

13.3.1 Boundary conditions

One needs to realize that any discontinuity in porosity results in a discontinuous relative fluid displacement W = ¢(u, — uy). In the SEM
discretization, the assembly stage forces W to be continuous across an element boundary. Thus, simulations involving gradients in porosity
are accommodated, but discontinuities in porosity are not. In order to account for discontinuities in porosity, we use the concept of domain
decomposition in a similar manner as used for coupling acoustic and elastic domains (Chaljub & Valette 2004; Komatitsch ef al. 2005). Thus,
each poroelastic domain is treated independently. Coupling is achieved by applying the principle of continuity of traction and displacement
across the interface between the two poroelastic domains. Practically, if we denote the two domains by subscripts 1 and 2, the boundary

conditions are
=1

T a=T-i T, -i=T, d u=u, W=w. (247)
13.3.2 Continuous bulk and shear moduli and a jump in porosity
We consider a two-layer poroelastic model. The properties of the two layers are summarized in Table 4. Note that the bulk and shear moduli

of the two layers are identical, whereas the porosities and densities are different. The dimensions of the domain are 4800 m x 4800 m. The
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Figure 9. Simulation of wave propagation in a model consisting of two homogeneous poroelastic layers with continuous bulk and shear moduli and
discontinuous porosities, as tabulated in Table 4. The model dimensions are 4800 m x 4800 m, the source (yellow cross) is located at x; = (1600, 2900) and the
receivers (yellow circles) at x,.; = (2000, 2934) and at x,, = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries.
The explosive source has a Ricker wavelet source time function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at
t = 0.82 s. The direct fast P (a), the reflected fast P (b), the reflected fast P-to-S and the fast P-to-slow P converted (c) waves (which overlap because they have
similar wave speeds) may be observed in the upper layer, together with the direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f),
and the reflected slow P-to-fast P converted (g) waves. We also observe the reflected fast P wave due to the free surface (h). In the lower layer, the transmitted
fast P (i), fast P-to-S and fast P-to-slow P converted (j) waves (which again overlap because they have similar wave speeds) can clearly be identified, together
with the transmitted slow P and slow P-to-S converted (k) and slow P-to-fast P converted (1) waves. There are some weak spurious reflections from the
absorbing boundary at x = 0. (2) Vertical-component velocity seismograms at receivers 1 and 2 (SEM: solid black line, analytical solution: dashed red line).
We use domain composition to accommodate the first-order discontinuity in porosity in the Biot (u;, W) formulation based upon the approach described in
Section 13.3.1

explosive source is located in the upper layer at x; = (1600, 2900). We place one receiver in each domain at x,; = (2000, 2934) and x,, =
(2000, 1867) (Fig. 9(1)). Fig. 9(2) displays SEM synthetic seismograms at the two receivers, which are compared to the analytical solution
provided by Dr Julien Diaz. As demonstrated by the RMS misfit values, the results are again in good agreement.

13.3.3 Discontinuous bulk and shear moduli and a jump in porosity

Again, we consider a two-layer poroelastic model. The properties of the layers are summarized in Table 5. Note that in this case we choose
distinct bulk and shear moduli for the two layers, and a discontinuous porosity. The dimensions of the domain are 4800 m x 4800 m.
The explosive source is located in the upper layer at x, = (1600, 2900). We place one receiver in each domain at x,; = (2000, 2934) and
X2 = (2000, 1867) (Fig. 10(1)). Fig. 10(2) shows the SEM synthetic seismograms at the two receivers, which are in good agreement with the
analytical solution provided by Dr Julien Diaz.
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Table 5. Poroelastic—poroelastic model properties—heterogeneous case.

Variable name Symbol Unit Value
Upper layer
Solid density Ds kgm™3 2200
Fluid density Py kgm™3 950
Porosity ] - 0.4
Tortuosity c - 2
Solid bulk modulus Kg GPa 6.9
Fluid bulk modulus Ky GPa 2.0
Frame bulk modulus K fr GPa 6.7
Fluid viscosity nr Pas 0
Frame shear modulus g GPa 3.0
Fast P wave Cpl ms~! 2693
Slow P wave cpl ms~! 1186
S wave Cs ms~! 1410
Lower layer

Solid density Ps kgm™3 2650
Fluid density or kgm™3 750
Porosity ¢ - 0.2
Tortuosity c - 2
Solid bulk modulus Ks GPa 37
Fluid bulk modulus Kf GPa 1.7
Frame bulk modulus Kfr GPa 2.2
Fluid viscosity ny Pas 0
Frame shear modulus L GPa 4.4
Fast P wave Cpl ms~! 2535
Slow P wave Cpll ms~! 744
S wave Cs ms! 1416

13.3.4 Gradient in porosity

In this section, we perform various simulations involving porosity gradients or discontinuities, as tabulated in Table 4, to highlight the
differences between the following five models:

(i) Model A: no domain decomposition, meaning we incorrectly consider W to be continuous across the porosity discontinuity (as discussed
in Section 13.3.1).

(ii) Model B: a smooth porosity gradient.

(iii) Model C: an intermediate porosity gradient.

(iv) Model D: a sharp porosity gradient.

(v) Model E: domain decomposition (as discussed in Section 13.3.2, Fig. 9).

For each of these five models, the behaviour of the porosity across the interface is displayed in Fig. 11. The dimensions of the domain are
4800 m x 4800 m. The explosive source is located in the upper layer at x;, = (1600, 2900). We use a Ricker wavelet source time function
with a dominant frequency of 15 Hz. We place one receiver in each domain at x,; = (2000, 2934) and x,, = (2000, 1867) (Figs 12(1)—(4)).

As mentioned at the beginning of Section 13.3.1, the SEM discretization naturally accounts for porosity gradients, but not for disconti-
nuities in porosity. A comparison of seismograms for the various models (Fig. 12(5)) at receivers 1 and 2 shows that a gradient in porosity is
not the right tactic to handle a porosity discontinuity. We note the strong sensitivity to the nature of the gradient by observing the increasing
level of accuracy reached by Models B-D, as we sharpen the porosity gradient. Moreover, we have confirmation that porosity discontinuities
are not naturally taken into account by our SEM discretization of W by comparing Models A and E, that is, domain decomposition is required
to properly model a discontinuity in porosity.

13.4 Coupling between elastic and poroelastic waves

We recall the elastic wave equation and discuss the coupling with a poroelastic domain, before presenting an application.

13.4.1 Elastic wave equation
The equation of motion for an elastic medium is

pdPu, =V - T,, (248)
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Figure 10. Simulation of wave propagation in a model consisting of two homogeneous poroelastic layers with discontinuous bulk and shear moduli and
porosities, as tabulated in Table 5. The model dimensions are 4800 m x 4800 m, the source (yellow cross) is located at x; = (1600, 2900) and the receivers
(yellow circles) at x,; = (2000, 2934) and at x,, = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The
explosive source has a Ricker wavelet source time function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at t =
0.82 s. The direct fast P (a), the reflected fast P (b), and the reflected fast P-to-S and fast P-to-slow P converted (c) waves (which overlap because they have
similar wave speeds) may be observed in the upper layer, together with the direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f), and
the reflected slow P-to-fast P converted (g) waves. We also observe the reflected fast P wave due to the free surface (h). In the lower layer, the transmitted fast
P (i) and fast P-to-slow P converted (j) waves may be clearly identified, together with the transmitted slow P (k), slow P-to-S converted (1) and slow P-to-fast
P converted (m) waves. Note that the transmitted fast P-to-S converted wave, which presents a low amplitude, is not visible. (2) Vertical-component velocity
seismograms at receivers 1 and 2 (SEM: solid black line, analytical solution: dashed red line). We use domain composition to accommodate the first-order
discontinuity in porosity in the Biot (uy, W) formulation based upon the approach described in Section 13.3.1

with

T,=c.:Vu,, (249)
where ¢, is the fourth-order elastic tensor. For an isotropic material we have

Cip = (Ke = 2/318)8i;80 + 1e(Six 1 + 88 j)- (250)
Here «, denotes the bulk modulus and p, the shear modulus. Dotting (248) with an arbitrary test vector i, and integrating by parts leads to

the following weak form:

fpeﬁe~8t2ued3x=—/ Vﬁe:Ted3x+/ﬁ-Te.ﬁed2x. (251)
Q Q r

Coupling between the elastic and the poroelastic domains is achieved by imposing the following boundary conditions:

T a=T,-f, T, 0=T,-0, uU=u, wW=0. (252)
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Figure 11. Various gradients in porosity used to mimic a porosity discontinuity.

13.4.2 Poroelastic—elastic coupling

We consider a poroelastic layer on top of an elastic layer; the properties of the two layers are summarized in Table 6. Note that we choose
the poroelastic upper layer properties to be identical to one of the previous models (Section 13.3.2) and that we choose the elastic lower layer
properties (bulk and shear moduli) such that the phase speeds are identical to those in the poroelastic lower layer of the same previous model
(compare Tables 4 and 6). In Section 10, we summarized expressions for the fast and slow compressional wave speeds as well as the shear
wave speed in homogeneous porous media. We recall that the compressional and shear wave speeds in a purely elastic medium, ¢, and c;,
respectively, are determined by

- (253)

The phase speeds displayed in Table 6 have been calculated based upon these formulae and may be compared to the values summarized
in Table 4. The dimensions of the domain are 4800 m x 4800 m. The explosive source is located in the upper (poroelastic) layer at
X, = (1600, 2900). We place one receiver in each domain at x,; = (2000, 2934) and x,, = (2000, 1867) (Fig. 13(1)). Fig. 13(2) displays
synthetic seismograms at the two receivers, together with the seismograms obtained for the previous model with a discontinuity in porosity
(Section 13.3.3). The results at receiver 1, located in the poroelastic upper layer, show differences in the amplitude of the various phases
between the two models, except for the direct fast and slow P waves. The results at receiver 2, located in the elastic lower layer, exhibit
equivalent arrival times but differences in amplitudes. The amplitude differences between the two simulations clearly illustrate the implications
of the distinct reflection and transmission coefficients at poroelastic—elastic and poroelastic—poroelastic interfaces.

14 SAMPLE APPLICATIONS

In this section, we present examples of poroelastic wave propagation in more complex media.

14.1 Compacted sedimentary layer

We consider a model with an acoustic (water) layer on top of a compacted sedimentary layer (with an exponential decrease in porosity with
depth and constant bulk and shear moduli, see Fig. 14(1)). This experiment has ingredients relevant to problems encountered in the petroleum
industry. We use a Ricker wavelet source time function with a dominant frequency of 15 Hz. We compare the results obtained based upon this
model with those obtained for the model used as a benchmark in Section 13.2.2 to highlight the effects of a porosity gradient (Fig. 14(2)).
We observe exactly the same arrival times and amplitudes at receiver 1 in the acoustic domain, while we observe clear differences at receiver
2 in the poroelastic domain. These differences highlight the effects of a porosity gradient on phase speeds (see Section 10). For a porosity
of 0.4 we have ¢,y = 3677 ms™!, ¢,y = 1060 ms~! and ¢, = 2378 ms~!, whereas for a porosity of 0.1 we have ¢,y = 3279 ms™!, ¢,y =
862 ms~! and ¢, = 2046 ms~', and in the purely elastic layer ¢, = 3399 ms™' and ¢, = 1963 ms™'. Note that because of the smoothly
vanishing porosity towards the elastic interface, the poroelastic—elastic boundary does not act as a strong reflector.

This application clearly illustrates that our spectral-element implementation of the Biot equations remains stable and valid when the
porosity vanishes. In such regions, the volumetric fluid flow per unit surface area, W, vanishes, and the Biot equations reduce to the elastic
wave equation.
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Figure 12. Simulations of wave propagation in a model consisting of two homogeneous poroelastic layers with continuous bulk and shear moduli and
discontinuous porosities, as tabulated in Table 4. The dimensions of the domain are 4800 m x 4800 m. The explosive source is located in the upper layer at
xs; = (1600, 2900). We use a Ricker source time function with a dominant frequency of 15 Hz. We place one receiver in each domain at x,.; = (2000, 2934) and
x,2 = (2000, 1867). Various types of models have been designed to address a discontinuity in porosity, as shown in Fig. 11. Snapshots of the vertical-component
displacement at + = 0.82 s for (1) Model A: no domain decomposition, (2) Model B: a smooth porosity gradient, (3) Model C: an intermediate porosity
gradient, (4) Model D: a sharp porosity gradient, and Model E: domain decomposition (see Fig. 9). The direct fast P (a), the reflected fast P (b), the reflected
fast P-to-S and the fast P-to-slow P converted (c) waves (which overlap because they have similar wave speeds) may be observed in the upper layer, together
with the direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f), and the reflected slow P-to-fast P converted (g) waves. We also
observe the reflected fast P wave due to the free surface (h). In the lower layer, the transmitted fast P (i), fast P-to-S and fast P-to-slow P converted (j) waves
(which again overlap because they have similar wave speeds) can clearly be identified, together with the transmitted slow P and slow P-to-S converted (k) and
slow P-to-fast P converted (1) waves. (5) Vertical-component velocity seismograms at receivers 1 and 2.
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14.2 Buried object detection

Table 6. Poroelastic—elastic model properties.

Spectral-element simulations of wave propagation in porous media

Variable name Symbol Unit Value
Poroelastic layer
Solid density Ds kgm™3 2200
Fluid density of kgm™3 950
Porosity ¢ - 0.4
Tortuosity c - 2
Solid bulk modulus Ks GPa 6.9
Fluid bulk modulus Kf GPa 2.0
Frame bulk modulus Kfr GPa 6.7
Fluid viscosity ny Pas 0
Frame shear modulus e GPa 3.0
Fast P wave cpl ms~! 2693
Slow P wave Cpll ms~! 1186
S wave Cs ms~! 1410
Elastic layer

Density Pe kgm™3 2650
Bulk modulus Ke GPa 6.845
Shear modulus He GPa 4.652
P wave cp ms~! 2219
S wave Cy ms~! 1325

Table 7. Acoustic—poroelastic model properties: buried object detection.

Variable name Symbol Unit Value
Acoustic layer
Density o kgm™3 1020
Bulk modulus K GPa 2.295
P wave cpl ms~! 1500
S wave Cy ms~! 0
Poroelastic layer
Solid density Ps kgm™3 2650
Fluid density oy kgm™3 750
Porosity ¢ - 0.4 (0.14)
Tortuosity c - 2
Solid bulk modulus Ks GPa 37.0
Fluid bulk modulus Kr GPa 1.7
Frame bulk modulus K fr GPa 2.2
Fluid viscosity nr Pas 0
Frame shear modulus e GPa 6.0
Fast P wave cp1 ms~1 2709 (2811)
Slow P wave cpl ms~! 923 (705)
S wave s ms~! 1857 (1604)
Elastic buried metal object
Density De kgm™3 4000
Bulk modulus Ke GPa 63.6
Shear modulus e GPa 8
P wave cp ms~! 4309
S wave cs ms™! 1414

Considerable attention has been given by military and humanitarian organizations to improving the detection and characterization of a large
variety of buried landmines and unexploded ordnance (UXO) worldwide. For example, acoustic methods have been employed for such
detection purposes (e.g. Scott ef al. 2001; Zeng & Liu 2001a; Xiang & Sabatier 2003).

We designed two models to evaluate the signature of a purely elastic buried object in three types of environments:

(i) Model 1: acoustic layer on top of a poroelastic medium with a porosity gradient and no viscous damping.

(ii) Model 2: acoustic layer on top of a poroelastic medium with a porosity gradient and viscous damping (with n , = 107> Pas, an isotropic
permeability k = 10712 m?, and f. = 42 kHz).

(iii) Model 3: acoustic layer on top of an elastic medium.

© 2008 The Authors, GJI, 175, 301-345
Journal compilation © 2008 RAS



336  C. Morency and J. Tromp

=
=
F
=
-
-
£ 2
T opn
-
[=]
(=
0
= -
L] T L] T T
0 1200 2400 3600 4800
X (m)
(1)
Receiver 1 Receiver 2
1 1
— Model poroslasticialastic
~ =~ Model poroetastic/poroelastic I
[ere'sg &) ]

=
o

05 E

Mormalized vertical velocity
3
‘ﬂs--:=—'
ﬁ
=
Mormalized vertical valocity
,{:“—
r___-
1

&
o
&

- . ; o i
-0.25 0 025 0.5 0.75 1 125 -0.25 [ 0.25 0.5 0.75 1 125
Time (s) Time (s}

(2)

Figure 13. Simulation of wave propagation in a model consisting of a homogeneous elastic layer beneath a homogeneous poroelastic layer, as tabulated in
Table 6. The model dimensions are 4800 m x 4800 m, the source (yellow cross) is located at x; = (1600, 2900) and the receivers (yellow circles) at x,.; =
(2000, 2934) and at x,, = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The explosive source has a Ricker
wavelet source time function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at # = 0.82 s. The direct fast P (a), the
reflected fast P (b), and the reflected fast P-to-S (c) and fast P-to-slow P converted (c’) waves may be observed in the poroelastic domain, together with the
direct slow P (d), the reflected slow P (e), the reflected slow P-to-S converted (f), and the reflected slow P-to-fast P (g) converted waves. We also observe the
reflected fast P wave due to the free surface (h). In the elastic domain, the transmitted fast P (i) wave can clearly be identified, together with the transmitted
slow P and slow P-to-S (k) and slow P-to-fast P converted (1) waves. Note that the transmitted fast P-to-S converted wave has a low amplitude and is not
visible. (2) Vertical-component velocity seismograms at receivers 1 and 2 (poroelastic—elastic interface: solid black line, poroelastic—poroelastic discontinuity
as in Section 13.3.3: dashed red line). We use domain composition as described in Section 13.4.1.

We use a Ricker wavelet source time function with a dominant frequency of 5 kHz, that is, three orders of magnitude higher than in
previous experiments. The source is located in the acoustic domain, and we place 20 receivers close to the bottom of this domain [Figs 15(1)—
(3)]. The model dimensions are 10 x 8 m, that is, much smaller than in the previous experiments. The model geometry mimics a typical
under water landmine/UXO detection experiment (Tables 7 and 8).

The differences between synthetic seismograms for Models 1, 2 and 3 with and without the buried metal object [Fig. 15(4)] illustrate
the corresponding seismic signatures. The differential seismograms for Models 1 and 2 illustrate the impact of viscous damping on the slow
compressional waves, which are clearly suppressed in Model 2. The signature of the object in differential seismograms for elastic Model 3 is
notably different from that in the poroelastic models. Clearly, the nature of the environment in which the object is buried has an influence on
the object’s signature.
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Figure 14. Simulation of wave propagation in a water layer over a compacted sedimentary layer, as tabulated in Table 3 but with variable porosity. The model
dimensions are 4800 m x 4800 m, the source (yellow cross) is located at x; = (1600, 2900) and the receivers (yellow circles) at x,.; = (2000, 2934) and at
X,2 = (2000, 1867). The top is a free surface and the remaining three edges are absorbing boundaries. The explosive source has a Ricker wavelet source time
function with a dominant frequency of 15 Hz. (1) Snapshot of the vertical-component displacement at # = 1.00 s. We can observe the direct P (a) and the
reflected P (b) waves in the acoustic domain, the transmitted fast P (c), the fast P-to-S (d), and the fast P-to-slow P (e) waves in the poroelastic domain. (2)
Porosity profile in the poroelastic layer. (3) Vertical-component velocity seismograms at receivers 1 and 2 (compacted sediment layer: solid black line, constant
porosity of 0.4: solid red line). We use domain composition as described in Section 13.4.1.

15 CONCLUSIONS

This paper presents a numerical implementation of poroelastic wave propagation using a SEM. The first part is dedicated to a straightforward
derivation of the main equations that govern wave propagation in a general poroelastic medium. This set of equations is derived using an
averaging principle, which accommodates the transition from the microscopic to the macroscopic scale. We pay particular attention to the
effects of gradients in porosity, and we show that the original Biot formulation naturally takes such gradients into account. The popular
equation for the ‘change in fluid content’ acquires two extra terms related to porosity gradients.

The second part of the paper deals with the numerical aspects of wave propagation in porous media. Using a spectral-element approach
one naturally obtains a diagonal mass matrix, which—as in the elastic and acoustic cases—leads to explicit time schemes that lend themselves
very well to applications on large parallel computers. Coupling between acoustic, elastic and poroelastic waves at first-order interfaces may
be accommodated based upon domain decomposition. In particular, problems involving a sharp discontinuity in porosity may be efficiently
handled in this fashion. Our spectral-element implementation compares favourably to analytical reference solutions for problems involving
acoustic—poroelastic and poroelastic—poroelastic coupling at first-order discontinuities. Gradual transitions from porous to elastic media are
stably and accurately accommodated by the method.
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Figure 15. Simulation of wave propagation in a model consisting of a water layer over a poroelastic layer (1 and 2) or an elastic layer (3) with a buried metal
object (yellow rectangle). The properties of the acoustic and poroelastic layers are summarized in Table 7, and those of the acoustic and elastic layers in Table 8,
together with the elastic metal object properties. The model dimensions are 10 m x 8 m, the source (yellow cross) is located at x; = (2.5, 4.0) and 20 receivers
(yellow circles) are evenly located between x,.; = (4.0, 3.5) and at x,29 = (8.0, 3.5). All the edges are absorbing boundaries. The explosive source has a Ricker
wavelet source time function with a dominant frequency of 5 kHz. Snapshot of the vertical-component displacement at # = 1.76 ms for (1) Model 1: porosity
gradient and no viscous damping, (2) Model 2: porosity gradient and viscous damping and (3) Model 3: elastic. We can observe the direct P (a) and the
reflected P (b) waves in the acoustic domain, the transmitted fast P (c), the P-to-S converted (d), and the fast P-to-slow P converted (e) waves in the poroelastic
domain, plus waves reflected by the elastic object (f). (4) Difference between vertical-component velocity seismograms at receivers 1-20 for Model 1 with
and without the buried metal object. These differential seismograms highlight the signature of the buried target. (5) Difference between vertical-component
velocity seismograms at receivers 1-20 for Model 2 with and without the buried metal object. (6) Difference between vertical-component velocity seismograms
at receivers 1-20 for elastic Model 3 with and without the buried metal object. We use domain composition as described in Section 13.4.1.
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Table 8. Acoustic—elastic model properties: buried object

detection.
Variable name Symbol Unit  Value
Acoustic layer
Density p kgm™ 1020
Bulk modulus K GPa  2.295
P wave cpl ms~! 1500
S wave Cs ms~! 0
Elastic layer
Density Pe kgm™ 2650
Bulk modulus Ke GPa  7.26
Shear modulus e GPa 9.14
P wave cpt ms~! 2709
S wave Cg ms~! 1857
Elastic buried metal object

Density Pe kgm™ 4000
Bulk modulus Ke GPa  63.6
Shear modulus e GPa 8
P wave cp ms~! 4309
S wave cs ms~! 1414

Future applications of the method will involve 3-D simulations of poroelastic wave propagation in complex geometrical domains. These
simulations will be of interest in the context of oil reservoir monitoring, and also for the seismic detection of landmines and unexploded
ordnance buried in compacted sediments.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE MACROSCOPIC INTERFACIAL

STRAIN

In this appendix, we seek to determine the interfacial strain using the principle of virtual work. To that end, we use the definition of the

potential energy per unit volume P of the poroelastic medium (98) in terms of uy; and u:

2P =(1—¢)T,:Vu, + ¢T,:Vu, + T,: Vo(u, — ).
This quadratic form can also be written as
aP aP aP aP

“ave,  “Tave, Ve Yo,

(AT

(A2)
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Upon comparing (A1) and (A2) we deduce that

2 la-er (A3)
avu, 2
P 1¢T (A4)
aovu, 277"
o _ IT Vo (AS)
auw, 2 7 ’
or _ IT Vo (A6)
om, 27T
Expecting the interfacial strain E to be a function of uy, u,, Vu, and Vu, we can write it in the following general form
E=a:Vu,+o:u,Vop +a3:Vu, +oy:u,Ve, (A7)
where &, o5, 03 and a4 remain to be determined. We recall the constitutive relationships (48) and (51):
(1 _¢)Ts =CSIV[(1 _¢)ﬁx]+cx:E (A8)
and
¢T/ = CfZV(¢ﬁf)—CfZE. (A9)
Since P is an exact differential, we have the following constraints:
3P _1a[( - O)T,] _ 3P 1 3(¢T/) (A10)
avu,ovu, 2 dvVu,  avudvu, 2 avu,
3*pP 1 (T, - V) . d’P 1 (T, Vo) (All)
dusdw, 2 du,  dudu, 2 9y
3P 1 (T, Vo) B a’pP 1 3(¢T) (A12)
avusou, 2 dvu,  Jw,ovu, 2 du,
3P 1ol —)T,] B 3P 1 (T, V) (Al3)
dw,ove, 2 o T avudu, 2 ava,
Using the constraints (A10)—(A13) together with (A7), (A8) and (A9) it may be shown that
o) :c}l:cf—i-qb_]cs_l:cf:a], (Al4)
o3 = —c;l Criay, (A15)
oy = —df'cs’l Criog. (A16)
This implies that

1 1

P = E(Vﬁ.v):[(l — ¢)e; — degral:(Vuy) + E(Vﬁf): [p(c, —cric e )] (VUy)
+ (Vuy):(pesa):(Vuy) + (V) : (e, :0): (U — W,)Ve
+(Vuy):(cy —cric; e ia): (U, — U,)Ve

+ %¢71(V¢)(if —uy):(ey—c¢y :c;1 iepia):(uy —ug) Ve, (A17)
and
E = —¢a:Vu, + c;l (e —cria):u Vo + °;1 icrio: V(guy), (A18)
where we have introduced the fourth-order tensor
o=—¢ 'a. (A19)

We can now see that the result (A18) is entirely consistent with (80).

APPENDIX B: SPATIAL DISCRETIZATION

As in a classical FEM, the mesh in the SEM involves a subdivision of the model volume 2 into 7, non-overlapping elements 2., e =
1, ..., ne. Each of these elements is mapped to a reference domain [—1, 1]" (a square in 2-D, n; = 2, and a cube in 3-D, n,; = 3), such
that there is a unique relationship between a point x within 2, and a GLL point & = (£, n, ¢) in the reference domain. Details regarding the
discretization may be found in Komatitsch & Tromp (1999) and Komatitsch et al. (2005). In the following we give expressions for the solid
and fluid mass matrices as well as the viscous damping matrix resulting from integration at the elemental level of (224) and (225).
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342 C. Morency and J. Tromp

B1 Solid mass matrix

Using the spectral-element discretization scheme, the mass matrix for the skeleton part at the elemental level (224) may be integrated as

/ BidlTadx ~ Y 5P wawgw, J Y L E)ly )y (6) Y LarEallpr ()l (6007757 (1), (B1)

wpy o By %
where il is a test vector, w, denote the weights associated with the GLL points of integration, J* = J (£ 4, 8> £ ) is the Jacobian evaluated
at the GLL point (&, g, ¢, ), PP = p(&,, g, ¢,) denotes the density evaluated at a GLL point, and /,, is a Lagrange polynomial. Using the
property /,(€y') = Suo of the Lagrange polynomials, (B1) simplifies to
/ i d’x & Y B wowgw, S 9T (t). (B2)
e @By
Note that the term %" w,w Wy J, *fY is a multiplicative factor, such that the elemental mass matrix is diagonal. Note also that p =
(1 —¢)ps + ¢p s can vary from one gridpoint to an other, thus allowing for material gradients within an element (Komatitsch & Tromp 2002).

The second term can also be interpreted as a mass matrix, accommodating the relative acceleration of the fluid, and may be similarly
integrated as

/ PP X~ 3 0 wewgw, S T (1), (B3)

¢ a.py

where p‘;-ﬂ "wowgw, J* is a simple multiplicative factor, leading to a diagonal matrix.

B2 Fluid mass matrix

The first term on the left-hand side of (225) is a mass matrix relative to the fluid. It may be integrated as
/ miv, 7wy d x ~ Z m* wwaw, JP 92w (1), (B4)
¢ a.By

where m*# w,wgw, J* is again a simple multiplicative factor and m = p rc/¢ can vary from one gridpoint to an other.
The second term on the left hand side may be interpreted as a second mass matrix relative to the skeleton and is integrated as

/ 0 i dfugdix & Z ,of Y wewpw, JP 2Tl (). (B5)

¢ o.B.y
This mass matrix is also diagonal.

B3 Viscous damping matrix

The third term on the left hand side of (225) is the viscous damping force and may be diagonally integrated as

/ 1y Z(k Y00, dx ~ Y P wawgw, S Z(k e s (). (B6)

a.By

APPENDIX C: GLOBAL SYSTEM MATRICES

Let us have a closer look at the global system (229) and the corresponding global system matrices (230)—(233). Denoting the elements of the
global diagonal mass matrices by M| = [M ;)], M2 = [My;5], and M3 = [M 3], we have

My = Z WeWpWy, Je P,
(a.B,y,Qe)—> (1)
My = Z WeWpWy, Jepr,
(a.B,y,Qe)— () )
My = Z WewpWy, Jeprc/@,
(. .y, Q)= (1)
where we have omitted the indices « 8 y on the Jacobian and the model parameters to avoid clutter. As a result we find
. 2 —1 — ¢
M(SII) = My — My yMyy ) = Z Wo WpWy Je (,0 - ;,0_/> ,
(a,B.7.Qe)—>(I)
; . pprc —dpy e
M(II = M3([]) MZ(II M II) Z waw,gwae 7¢7 - . ( )
(@.B.7.Qe)—>(I) L
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Similarly, we can evaluate the elements of D° = D°W and D/ = D/W as

. ¢
Dyy=- > oy N Wawp Wy Je > 0,0, (C3)
(a,B.7,Qe)—>(1) J
and
D= > npwawpwy ey (k7 )8, (0). (C4)
(a.B.7.Qe)—>(1) J

The elements of 7} = KU, T, = KW, T / = K/U, and T:f = K";W are:

5 o'py o (Ea ) oy | . o o
Tip= Y. wpw, Y wr JEP > G,”;’;V E(a,-us,'” + 8% "), &
o J

(@,B.7,Q)—> (1)

L& Lo
+ wew, Z (JEY ﬂ(gﬂ ) ZGkﬁ,” 0,1 S,ﬂy + u u? "a;n
I

0l
+ wawg Y wy S (SV) ZG;“} ~@Es + o )a;¢
Y j

¢ o'y a(Ea) o
- > iy ﬂwyz JE Py a0l ( Zcﬁvauf’yak,ag

(o.B,7.Q2)~>(I)
r, 0lg(Epr) ' —af!
E: aﬂyf’5§:aﬂr_ﬁy..
+ wew, : wyJ; o . Crouy; "ok0m

(C5)
apy 0Ly (&) By’ g By’
+ wawﬁZwy/Jeﬁy %;C B8t 81;9,¢ |

%

5 o'y o (é‘a) o By o —
T = Z wﬂwyzwa,Jg pr a5/ ZC B 9w P 80,8

(@.B,7,R2e)—=> (1) o

’ 8[ 4 ! 40[/
+ wyw, Z wpy J% V% Z P o P 81;0,m

wpy Oy (&) o By —a
+ wawg Y wy S 7%{ ZC Progw} 77 84,0,

'

o gy Ol (Et oy —a
- > il wﬁwyzwwgﬁyigg )ZM“ﬁVa,.wi 60,8
o J

afy
(@.B.7,Qe)—>(1)

., 0lg (g , ,
+ wawyzwﬁ’J:‘ﬁy#ZMaﬂyaiwﬁyékja/ﬂ
n - o
g
o (6, b —apy (C6)
+ WoWg Zwy/Je"‘ 4 T ZM“ 4 Bl»wl- Skjajg“ ,
v’ J
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. 0l (&, —a
TA]“U) = Z wpw, Zwa/.]aﬁy (é )anﬁya, y,ﬂy(Skja,E

(a.B.y.Qe)=>(1)

alg(Ep
+wawyzwﬁ,JgﬁV ﬁ(gﬂ)zca[waaxﬁy&ga}n
I

/81 ’
+ wawﬁzwy Jaﬁy (SV)ZCaﬁya—algysk/ajg-

’S‘l

ot

al (";:Dt) otﬂ 1 —a'p —a'p

s olg(Ey g u o
+ wow, Y wy S V%”) > Gk]’?,/i(a,-uj gus a,uj )o;n
! J

oL,
T wawp 3wy S (fﬂzczﬁy @ + " yy¢ |
Y J
and

al, o
Tho= 3 L, Do S o o
(. B,y,Qe)— (1) o
. 0lg(Ep , /
+ W W, Z wﬂ/‘]eaﬁ 14 % Z M ﬁyaiw?‘ ﬁysk/‘ajn
4 f

ol (&, , /
+ wowg ZwV,J:ﬂV % ZMQ ﬂyaiw;’ ﬂyiskjaj{
v’ J

afy

Py o'y a(ar) o ‘s
R SR P PP TR ) ST
(e, B,7,Re)— (1) o’ J
. 0lg(Ep e ap
+ wew,, Z wﬂ’Je‘Xﬁ ! % Z c’ J/aiwiﬂ ngjajn
B J

oL, (&, , /
+ W W Z wy/JeotﬂV % Z Cotﬁ}’ aiw;"ﬁl/ Skjajg
14 J

This requires knowledge of the partial derivatives of u; and W at the GLL points. We have

ol, (&, —wo dl, —apo, Oy
0itL (X(Ew- 1 8- r)—[Z”%) @} [Z 7 (1) (""‘)}a,-m[ (1) (;V)}a,-;,

and

dl, (&, —wo ol —wpo, - 0ls
0T (56 13 €, 1) = {Z”ﬂy(z) Teed )} §E + [ij V(z)a(:‘“)} an+ {Zw/ﬁ‘ (r)a(f”} ac.

The elements for the source vectors are

Fyy = (1 ‘(’fa:;y)S(r)Zl a0 G LT L Ea M ma y (5) + O35 L&y )y (61,)
07 B My 5],
and

o5 Bsvs
Fly= (1 - Sgs,sm> S0 Xt Lo Ga e () (8L OTT 1 G s (g )y () + OF3 laEa M5 (np)] (51,

+ 073l (Ea M p(np )L, (81,)];
where x(&, , 1, &y,) = Xs and Oy = Zj M,;9;&;. The system (229) thus reduces to
M*U = RHS,

M/W = RHS/,
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Spectral-element simulations of wave propagation in porous media
where
RHS}), = Fiy = [Py + ooy + T
RHS/, = F{), - [Dif1> + T+ Tf(n] :
The mass matrices being diagonal, these linear equations may be solved by simple division:

3 s—1 5
Uy = M RHS;,,,

i f-1pmg/
W([) = M(”) RHS(,)
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