A Caltech Library Service

On the mechanics of fracture in monoliths and multilayers from low-velocity impact by sharp or blunt-tip projectiles

Chai, Herzl and Ravichandran, Guruswami (2009) On the mechanics of fracture in monoliths and multilayers from low-velocity impact by sharp or blunt-tip projectiles. International journal of impact engineering, 36 (3). pp. 375-385. ISSN 0734-743X.

[img] PDF
Restricted to Caltech community only


Use this Persistent URL to link to this item:


The propagation of cracks in layered glass from low-velocity impact of sharp or spherical tip projectiles is observed using high-speed photography. Tests are also carried out to determine the threshold impact energy for chipping in glass blocks and subsurface crack instability in an edge-supported glass plates. The results identify the median and subsurface radial crack systems as the prime damage sources in such applications. A dynamic fracture analysis is developed assuming elastic contact and quasi-static load transfer between target and projectile. The equation of motion of the latter is solved analytically taking into consideration localized elastic contact and plastic penetration of the tool into the material as well as flexural deformations. The growth history of the median crack is then found using an appropriate relationship between crack length and contact load. The predicted crack propagation history of the median crack and the threshold impact energy for chipping or flexure-induced subsurface crack instability compare well with the tests. The analysis explicitly exposes the role of projectile mass, bluntness and velocity, the target's stiffness, toughness and hardness, and the interface critical stress on damage tolerance of well-bonded layered structures.

Item Type:Article
Related URLs:
URLURL TypeDescription
Ravichandran, Guruswami0000-0002-2912-0001
Additional Information:© 2008 Elsevier. Received 13 May 2008. Received in revised form 24 July 2008. Accepted 28 July 2008. Available online 5 August 2008. We gratefully acknowledge the support of the DoD MURI at the California Institute of Technology on Mechanics and Mechanisms of Impulse Loading, Damage and Failure of Marine Structures and Materials through the Office of Naval Research (Grant #N00014-06-1-0730, Dr. Y.D.S Rajapakse, Program Manager).
Funding AgencyGrant Number
Office of Naval ResearchN00014-061-0730
Subject Keywords:Indentation; Impact; High-speed photography; Vickers; Cracks
Issue or Number:3
Record Number:CaltechAUTHORS:CHAijie09
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:13363
Deposited By: Ruth Sustaita
Deposited On:10 Feb 2009 23:26
Last Modified:09 Mar 2020 13:19

Repository Staff Only: item control page