CaltechAUTHORS
  A Caltech Library Service

The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 μm Cluster Luminosity Functions

Muzzin, Adam and Wilson, Gillian and Lacy, Mark and Yee, H. K. C. and Stanford, S. A. (2008) The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 μm Cluster Luminosity Functions. Astrophysical Journal, 686 (2). pp. 966-994. ISSN 0004-637X. doi:10.1086/591542. https://resolver.caltech.edu/CaltechAUTHORS:MUZapj08

[img]
Preview
PDF
See Usage Policy.

4MB

Use this Persistent URL to link to this item: https://resolver.caltech.edu/CaltechAUTHORS:MUZapj08

Abstract

We present a catalog of 99 candidate clusters and groups of galaxies in the redshift range 0.1 < z_(phot) < 1.3 discovered in the Spitzer FLS. The clusters are selected by their R_c − 3.6 μm galaxy color-magnitude relation using the cluster red-sequence algorithm. Using this cluster sample, we compute the 3.6, 4.5, 5.8, and 8.0 μm cluster LFs. Similar to previous studies, we find that for the bands that trace stellar mass at these redshifts (3.6 and 4.5 μm) the evolution in M* is consistent with a passively evolving population of galaxies with a high formation redshift (z_f > 1.5). Using the 3.6 μm LF as a proxy for stellar luminosity, we remove this component from the MIR (5.8 and 8.0 μm ) cluster LFs and measure the LF of dusty star formation/AGNs in clusters. We find that at z < 0.4 the bright end of the cluster 8.0 μm LF is well described by a composite population of quiescent galaxies and regular star-forming galaxies with a mix consistent with typical cluster blue fractions; however, at z > 0.4, an additional population of dusty starburst galaxies is required to properly model the 8.0 μm LFs. Comparison to field studies at similar redshifts shows a strong differential evolution in the field and cluster 8.0 μm LFs with redshift. At z ~ 0.65 8.0 μm -detected galaxies are more abundant in clusters compared to the field, but thereafter the number of 8.0 μm sources in clusters declines with decreasing redshift, and by z ~ 0.15, clusters are underdense relative to the field by a factor of ~5. The rapid differential evolution between the cluster and field LFs is qualitatively consistent with recent field galaxy studies that show that the star formation rates of galaxies in high-density environments are larger than those in low-density environments at higher redshift.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1086/591542DOIArticle
http://www.iop.org/EJ/abstract/0004-637X/686/2/966/PublisherArticle
ORCID:
AuthorORCID
Muzzin, Adam0000-0002-9330-9108
Wilson, Gillian0000-0002-6572-7089
Lacy, Mark0000-0002-3032-1783
Additional Information:© 2008 The American Astronomical Society. Received 2007 August 23; accepted 2008 June 27. We thank the anonymous referee, whose comments improved this manuscript significantly. We would like to thank David Gilbank, Thomas Babbedge, Roberto De Propris, and Stefano Andreon for graciously making their data available to us. We thank David Gilbank for useful conversations that helped improve the clarity of this analysis. We also thank Dario Fadda for recomputing the FLS R-band photometry using different apertures. A. M. acknowledges support from the Spitzer Visiting Graduate Student Program during which much of this work was completed. A. M. also acknowledges support from the National Sciences and Engineering Research Council (NSERC) in the form of PGS-A and PGSD2 fellowships. The work of H. K. C. Y. is supported by grants from the Canada Research Chair Program, NSERC, and the University of Toronto. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.
Group:Infrared Processing and Analysis Center (IPAC)
Funders:
Funding AgencyGrant Number
Spitzer Visiting Graduate Student ProgramUNSPECIFIED
Natural Sciences and Engineering Research Council of Canada (NSERC)UNSPECIFIED
Canada Research Chairs ProgramUNSPECIFIED
University of TorontoUNSPECIFIED
Subject Keywords:galaxies: clusters: general; galaxies: evolution; galaxies: photometry; galaxies: starburst; Galaxy: fundamental parameters; infrared: galaxies
Issue or Number:2
DOI:10.1086/591542
Record Number:CaltechAUTHORS:MUZapj08
Persistent URL:https://resolver.caltech.edu/CaltechAUTHORS:MUZapj08
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:13393
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:07 May 2009 18:49
Last Modified:08 Nov 2021 22:37

Repository Staff Only: item control page