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Materials and Methods 

Discharge at incipient motion 

We estimated the flow needed to carve Box Canyon from the dimensionless bed-

shear stress or Shields stress at incipient sediment motion c*τ : 
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where bτ  is the bed shear-stress, sρ  and ρ  are the densities of sediment and fluid, 

respectively, g  is the acceleration due to gravity, and 50D  is the median grain diameter 
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(S1, S2).  We assume steady and uniform flow, i.e. gRSb ρτ = , where R is the hydraulic 

radius and S is the water-surface slope.   

 To evaluate equation (1), we made measurements within a 125-m reach (Fig. 

S1A) along the canyon floor (marked “Measurement Reach” in Fig. 3), which was 

chosen because it was relatively straight in planform and wadeable.  The bed is bouldery 

throughout the canyon and is probably best described as plane-bed morphology (S3), 

although there are local clusters of boulders and pools.  The grain size distribution was 

measured within this reach (Fig. S2) and the particle-size statistics are 84D  = 0.60 m, 50D  

= 0.29 m, and 16D  = 0.13 m, where the subscripts denote the percentage of grains finer 

than.  We measured the intermediate axes of 100 grains by counting particles every 1 m 

along the channel and conducting four transects spaced ~10 m apart (Fig. S1A).  Owing 

to the large size of particles, measurements were made in situ using a tape measure and 

snorkel gear.  A few grains were larger than 1 m across and these were counted twice in 

the distribution.  The particle sizes were binned following the phi scale.  

The longitudinal profile of the water surface was measured from 1-m resolution 

airborne Light Detection and Ranging (LiDAR) data collected by the National Center for 

Airborne Laser Mapping (Fig. S3).  The profile was extracted from a digital elevation 

model (DEM) following the path of steepest descent, and this profile was verified to be 

accurate by comparison with a field survey within the measurement reach conducted with 

a self-leveling level and stadia rod.  During floods, bed irregularities will be drowned out 

and the water surface-slope will tend to be more uniform over a length scale of many 

times the channel width.  To account for this, we estimated the water-surface slope during 

flood as the average water-surface slope over a 900-m reach bounded by the waterfall 
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downstream and the canyon headwall upstream (Profile P2, Fig. S3).  Using a linear 

least-squares fit, the slope was found to be S = 1.85%, and for this channel slope c*τ = 

0.055 (S4).  Using these values, the necessary bed shear-stress to move the bouldery bed 

was calculated from equation (1) to be 290 N/m2 assuming )( ρρ −s = 1800 kg/m3 for 

basalt.   

From these calculations and measurements, the discharge needed to move 

sediment within the canyon can be calculated from the empirical formula of Bathurst 

(S5): 

 

A
k
hgRSaUAQ

b

s
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== 2/1)( ,     (2) 

 

where U is the average flow velocity across a channel cross section, A is the cross 

sectional area of flow, h is the average flow depth, and ks is the roughness length scale of 

the bed.  a and b were found empirically from measurements in mountain streams to be a 

= 3.84 and b = 0.547 for S < 0.8%, and a = 3.1 and b = 0.93 for S > 0.8% (S5).   

Bathurst (S5) suggested 84Dks ≈ , although this likely depends on the site-specific 

substrate (e.g., bed forms, particle-size distribution, particle angularity).  Others have 

shown that ks can be two or three times 84D  (e.g., S6).  Instead of assuming ks, we 

calculated it from equation (2) for conditions in Box Canyon creek using our surveyed 

cross section, water surface profile, and the USGS measured discharge (Q = 9.15 m3/s) 

from March 2004 (S7).  A cross section (XS2, Fig. 3) within the measurement reach was 

surveyed using a self leveling level and stadia rod (Fig. S4A).  At the time of the 
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measurements, the maximum flow depth was 1.08 m and the average depth over the cross 

section was h = 0.58 m, which is equivalent to a hydraulic radius of R = 0.57 m.  Within 

the measurement reach, the water surface slope at the time of our measurements was 

approximately uniform and equal to 0.9% (Profile P3, Fig. S3).  Inserting these values 

into equation (2) results in ks = 0.81 m, which is about one-third larger than our measured 

D84 within the reach.  In the following calculations we use ks = 0.81 m rather than D84 

making our discharge estimates conservative.  

At incipient motion, the hydraulic radius was calculated from equation (1) to be R 

= 1.6 m.  Such a flow would fill the canyon at XS2 to an average depth of h = 1.7 m and 

a maximum depth of 2.5 m (Fig. S4A).  Using these values and S = 1.85%, equation (2) 

was solved to find that a discharge Q > 220 m3/s is needed to begin to move the sediment 

bed and continue canyon erosion.  

 

Discharge of the flood event 

The scoured channel upstream of the canyon head was used to estimate the 

discharge of the flood event.  Aside from scour marks and a few plucked blocks along 

bedding planes, most of the bedrock surface within the channel is continuous with the 

neighboring land surface and appears to be the original volcanic surface.  This suggests 

that the broad channel was not created by the flood event, but rather was inherited 

topography that likely focused flow towards the canyon.   

A cross section (XS1, Fig. 3) was extracted from the LiDAR DEM (Fig. S4B), 

and at the threshold of overspill of the southern bank (which corresponds to a distance of 

~ 25 m on Fig. S4B) was found have an area of 475 m2.  The water-surface slope during 
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the flood was assumed to be similar to the regional bedrock slope in the direction parallel 

to the scour marks (S = 0.74%), which was also extracted from the DEM.  These 

measurements were used, along with a spectrum of roughness-length scales ( 11.0 ≤≤ sk  

m) to solve equation (2), resulting in a flow discharge ranging from 800 to 2800 m3/s.  

Using the same parameters for the incipient-motion calculation above (i.e., S = 1.85% 

and ks = 0.81 m), we found that this flood event would have filled the canyon to a depth 

ranging from 3.7 m to 5.8 m within our measurement reach (Fig. S4C).   

 

Time to excavate the canyon 

If sediment transport was the rate limiting step for canyon erosion, a duration of 

flow needed to carve the canyon can be estimated by dividing the total volume of the 

canyon (V) by a volumetric transport rate of sediment ( sQ ).  The total volume of the 

canyon (V = 1.53 x 107 m3) was found using the DEM and differencing a surface 

interpolated from the topography surrounding the canyon and the topography of the 

canyon itself.  For our estimated range of flood discharge (i.e., 800 - 2800 m3/s) and the 

corresponding range in hydraulic radii (2.5 – 3.9 m), the volumetric transport rate was 

calculated as  
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where ( ) ρρρ /−= sr  =  1.8 and W is the average bed-width of flow (S8), which at XS2 

was found to be 47 m and 56 m for the two discharge estimates (Fig. S4C).  This 
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calculation (i.e., sQV / ) suggests that flow was sustained for 35 - 160 days to transport 

the required load out of the canyon.   

 

4He Cosmogenic exposure ages 

The original up-direction and, if present, original lava-flow surface of the sampled 

boulders (e.g., Fig. S1B) was identified by basalt density (extent of vesicularity) and 

vesicle orientation. Samples were taken at least 1-m below volcanic-flow surfaces to 

avoid inherited exposure that resulted during hiatuses between basalt eruptions.  In 

addition, the sample from the eroded notch was taken from ~2 m below the original flow 

surface as inferred by tracing bedding surfaces laterally. Helium exposure ages were 

measured on olivine separates from several kilograms of basalt taken from the upper 4 

cm of the exposed surfaces. After extracting any magmatic helium from the olivine, 

cosmogenic 3He was released from the samples by heating in vacuo and measured. 

Exposure ages were then calculated using an average production rate scaled for latitude, 

altitude and surface slope. The correction for shielding from canyon walls was found to 

be less than 4% for all samples and was folded into the error for each age determination. 

Measurements and calculations are further detailed in (S9). 

 

14C Radiocarbon ages 

The shells were extracted from a ~ 20-cm thick, finely laminated bed containing 

clay, silt and sand, which is exposed in a small road-cut within the talus slope (Fig. S1C).  

This bed is probably a backwater deposit from an unknown flood of the Snake River, and 

appears younger than the Yahoo Clay deposited throughout the region following 
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damming of the river by McKinny basalt flows (S10) ca. 52 + 24 ka (S11), and older than 

the Bonneville flood (S12).  Three dates from two shells within the layer yielded 14C 

radiocarbon ages of 22.51 + 0.07 ka, 22.55 + 0.07 ka, and 22.34 + 0.07 ka. The error bars 

represent two standard deviations.  The first two dates are gas splits from acidification of 

the same shell.  The measurements were made at the Keck Carbon Cycle AMS Facility, 

Earth System Science Department, University of California -Irvine, U.S.A, following the 

conventions of (S13). Sample preparation backgrounds were subtracted based on 

measurements of 14C-free calcite. 

 

Supporting Text 

Geologic setting 

Recently Gillerman et al. (S14) reinterpreted the basalt that composes Box 

Canyon as the Thousand Springs Basalt (also called Basalt of Flat Top Butte; ~ 395 + 20 

ka, (S11)), and the inferred the relatively young appearance of bedrock and the origin of 

Box Canyon to be from scour by the catastrophic Bonneville flood, which drained glacial 

lake Bonneville ca. 14.5 ka (S12).  In his autobiography (S15), Stearns also admits the 

possibility that his seepage-erosion hypothesis (S16) was incorrect and that the 

Bonneville flood carved Box Canyon and scoured the neighboring landscape.  Hydraulic 

modeling by O’Conner (S17), however, showed that the Bonneville flood did not 

overspill the Snake River Canyon in this region, which is consistent with our dating and 

analysis that Box Canyon was carved by an older event(s).  U-Th/He eruption ages (S9) 

confirm that the basalt of Box Canyon is 86 + 12 ka to 130 + 12 ka and this is consistent 



 8

with the earlier designation of Sand Springs Basalt (S18, S19) (also named the Basalt of 

Rocky Butte (S14)) with an Ar-Ar eruption age of ~ 95  + 10 ka (S11). 

Near the mouth of Box Canyon, the Quaternary basalt overlies a ~ 5-m thick 

Pliocene or Miocene stratified volcaniclastic unit (S14, S20), which appears older and 

more weathered than the basalt.  This unit is only exposed near the canyon mouth, where 

the talus slope was excavated recently for an aqueduct.  Most of the canyon floor is 

composed of basalt boulders so the underlying bedrock cannot be determined.  

Quaternary basalt is exposed, however, at a ~5-m high waterfall (Fig. S5A) 

approximately 730 m downstream of the canyon head (Figs. 3 and S3).  The log from the 

nearest well, about 0.5 km southeast of the canyon head, extends to a depth of 43 meters, 

or ~ 7 m below the canyon floor near the headwall, and indicates intact basalt to this 

depth (S21).  Thus, if the underlying older unit is laterally extensive, it does not appear to 

have played a role in formation of the canyon, at least upstream of the waterfall.   

 

Spring discharge and chemistry 

Fig. S6 shows the daily average discharge and the dissolved silica concentration for Box 

Canyon creek as recorded by the U.S. Geological Survey (S7).  The saturation value of 33 

mg/L was calculated for dissolved quartz and amorphous silica at 14o C and pH = 8 

(S22), conditions typical of Box Canyon creek.  Seasonal variations in discharge are less 

than 10 to 20% and trends over the 58-year duration of record are thought to record 

changes in farm irrigation across the plain, rather than natural forcing. 
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Talus at the canyon head 

It is puzzling that there is almost no talus at the canyon head (Fig. S5B), while talus 

slopes are well developed elsewhere in the canyon.  Our date of the notch at the canyon 

head suggests that wall collapse has not occurred there since ca. 45 ka.  Perhaps, the 

basalt columns are more interlocked at the headwall, which might also explain why the 

headwall stalled at this location during canyon formation. Alternatively, maybe the spring 

flow prevents rock breakdown at the headwall, e.g. by preventing freeze-thaw (S23). 

 

Delta at the canyon mouth 

There appears to be a small delta (<<1% of the total canyon volume) at the mouth of Box 

Canyon (Fig. S5C).  This might imply that there has been active transport of sediment 

since ca. 14.5 ka when the Bonneville flood swept through the Snake River Canyon 

(S17), or perhaps sediment transport occurred within Box Canyon because of withdrawal 

of the Bonneville floodwater.   

 

Bedrock scour directions 

Bedrock scours near the canyon head indicate flow towards the canyon headwall (Fig. 3).  

We identified three locations near the canyon mouth, however, with bedrock scours that 

appear to display an opposite flow direction with orientations ranging from 113 o to 115 o 

(Table S1).  The consistency of these directions, all aligned with the prevailing westerly 

wind direction, suggests that these outliers resulted from wind abrasion.  A high knob of 

bedrock ~ 7.8 km to the east of Box Canyon also shows scours orientated 110 o consistent 

with this hypothesis.   
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Supporting Figures 
 
 

 
Fig. S1.  (A)  Photograph of the measurement 

reach and cross section XS2 within Box Canyon 

(the stream is ~ 35 m wide for scale).  (B) 

Photograph of the boulder at location 2 (Fig. 3) 

sampled for 4He cosmogenic exposure dating.  

(C) Photograph of a sediment deposit exposed 

within the talus slope (location 5, Fig. 3) 

containing shell fragments that were used for 

14C dating. 

B

A

C
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Fig. S2.  Cumulative frequency distribution of particle sizes along the stream bed of Box 

Canyon within the measurement reach. 
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Fig. S3. Longitudinal profile of Box Canyon calculated as the path of steepest descent 

from the 1-m resolution DEM.  Three linear, least-squares fits to the data, used to 

calculate channel-bed slope, are shown as dashed lines (displayed offset from the data) 

for P1: the entire length of the canyon (S = 2.18%), P2: a 900-m reach bounded by the 

waterfall and the canyon head (S = 1.85%), and P3: the measurement reach (S = 0.9%).  

The elevations of mapped terraces (Fig. 3) are shown in red.   
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Fig. S4.  Cross sections of Box 

Canyon.  (A) XS2 (Fig. 3) along 

the stream bed showing the bed 

and water surface topography 

surveyed in the field, as well as 

the calculated depth for incipient 

motion. (B) XS1 (Fig. 3) 

extracted from the DEM showing 

the depth used to constrain the 

flood discharge. (C) XS2 

extracted from the DEM showing 

a range in depths that correspond 

to the range in calculated flood 

discharges. 
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Fig. S5. Photographs of Box Canyon 

showing the (A) ~ 5-m high waterfall, (B) ~ 

35-m high canyon headwall, and (C) small 

delta at the confluence with the Snake River 

(the Snake River is ~ 200 m wide for scale).   

A

B

C
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Fig. S6.  Discharge and dissolved silica records for Box Canyon creek from the U.S. 

Geological Survey gauge 13095500. 
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Supporting Tables 
 
Table S1 – Inferred wind abrasion marks. 

Location Longitude Latitude Scour orientation
Box Canyon 42.70566˚ -114.81971˚ 113˚ 
Box Canyon 42.70902˚ -114.81895˚ 115˚ 
Box Canyon 42.70874˚ -114.82214˚ 115˚ 
7.8 km East 42.7163˚ -114.70708˚ 110˚ 
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