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In microrheology, elastic and viscous moduli are obtained from measurements of the fluctuating
thermal motion of embedded colloidal probes. In such experiments, the probe motion is passive and
reflects the near-equilibrium (linear response) properties of the surrounding medium. By actively
pulling the probe through the material, further information about material properties can be
obtained, analogous to large-amplitude measurements in (macro-) rheology. We consider a simple
model of such systems: a colloidal probe pulled through a suspension of neutrally buoyant bath
colloids. We choose a system with hard-sphere interactions but neglect hydrodynamic interactions,
which is simple enough to permit analytic solutions, but nontrivial enough to raise issues important
for the interpretation of experiments in active and nonlinear microrheology. We calculate the
microstructural deformation for arbitrary probe size and pulling rate (expressed as a dimensionless
Péclet number Pe). From this, we determine the average retarding effect on the probe due to the
microstructure, as well as fluctuations about this average. The high-Pe limit is singular, giving a
finite Brownian contribution even in the limit of negligible diffusion. Significantly, different results
are obtained for probes driven at constant velocity and constant force. Furthermore, we demonstrate
that a probe pulled with an optical tweezer (roughly a harmonic well) can behave as fixed-force,
fixed-velocity, or as a mixture of those modes, depending on the strength of the trap and on the
pulling speed. More generally, we discuss how these results relate to previous work on the rheology
of colloidal suspensions. Not surprisingly, the present theory (which ignores hydrodynamic
interactions) gives shear thinning but no shear thickening; we expect that the incorporation of
hydrodynamics would result in shear thickening as well. The effective micro- and macro-viscosities,
when appropriately scaled, are in semi-quantitative agreement. This seems remarkable, given the
rather significant difference in the two methods of measurement. However, for more complicated or
unknown materials, where such scaling relations may not be known in advance, the comparison
between micro- and macro may not be so favorable, which raises important questions about the
relation between micro- and macrorheology. Finally, by analogy with previous work on
macrorheology, we propose methods to scale up the present (dilute) theory to account for more
concentrated suspensions, and suggest new active microrheological experiments to probe different
aspects of suspension behavior. © 2005 American Institute of Physics. [DOI: 10.1063/1.1960607]

. INTRODUCTION materials, and rheological measurements of material proper-

ties are typically performed over a range of time scales. Mea-

While traditional materials like solids, liquids, and gases sured features in the frequency-dependent viscous (“loss”)

have been studied for centuries, the study of “complex” flu-
ids has emerged relatively recently.1 This is surprising, given
their ubiquity in biology, industry, food science, and personal
care products. Broadly speaking, traditional schemes classify
materials in terms of solids or fluids based on their equilib-
rium phase behavior derived from energy arguments; dynam-
ics are omitted altogether. On the other hand, the rich variety
of behavior exhibited by complex fluids results directly from
dynamic effects. Silly putty is a canonical example: it flows
like a viscous liquid if left to sit for several minutes, but
bounces like an elastic solid in response to a fast impact.
This illustrates a property of fundamental importance to
complex fluids: their behavior depends on the time scale of
interrogation.

Rheology is the study of the deformation and flow of
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and elastic (“storage”) moduli belie microstructural pro-
cesses that, in turn, determine the macro-scale behavior of
the material. For example, the long entangled polymers that
comprise silly putty do not have time to relax in response to
a rapid shock and give a high-frequency elastic behavior,
whereas they can relax via reptation and allow the material to
flow like a viscous fluid if forced over a long time scale.
Traditional rheological measurements probe material
properties by shearing a macroscopic volume of the sample
between two solid surfaces of given geometry, such as the
cone and plate. A small-amplitude, oscillitory shearing mo-
tion is typically applied, so that the material is perturbed only
slightly from equilibrium, and its linear response is mea-
sured. Because of the weakly nonequilibrium nature of these
measurements, powerful relations can be derived concerning
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the linear viscoelastic regime.l Nonlinear rheological mea-
surements can also be performed by significantly straining
the material, which enables additional information to be ob-
tained, such as shear thinning and shear thickening,2’3 normal
stress differences,4 and relaxation processes.s_9

However, some materials of interest (particularly bio-
materials) are difficult to procure in the large quantities re-
quired for traditional rheometers. To address such issues,
techniques encompassing “microrheology” are being devel-
oped using small colloidal beads as tracers.'*"* The most
straightforward technique records the positions of the col-
loids as they fluctuate due to Brownian motion. More sophis-
ticated “two-point” techniques enable measurements of het-
erogeneous materials by measuring and cross-correlating the
fluctuating motion of two well-separated tracer beads.” In
both cases, the tracers move passively within the material,
and the material is assumed to maintain a near-equilibrium
configuration. This allows the use of the fluctuation-
dissipation theorem from statistical mechanics and the “gen-
eralized Stokes—Einstein-Sutherland relation” (GSESR)'® to
relate the fluctuating positions directly to the viscous and
elastic moduli of the material. As such, “passive” microrheo-
logical experiments are expected to mirror the linear-
response macrorheological measurements, '+’ although
questions remain about, e.g., the role of specific interactions
between the probe and the background material.'*"°

Forcing and flows in the real world, however, need not
be so gentle. It is therefore of interest to explore and under-
stand the behavior of materials driven beyond the linear-
response regime. Techniques in “active” microrheology, in
which a probe colloid is externally forced to move through a
material, are currently under investigation using
magneticzo*25 or optical forces.”**" Active experiments allow
the nonlinear response of the material to be tested, and an
effective viscosity to be inferred from the relationship be-
tween driving force and probe velocity. In such cases, the
microstructure itself can be deformed significantly, so that
the material response differs from the linear response case,
and the fluctuation-dissipation theorem and GSESR relation
do not hold. Furthermore, confocal microscopy allows the
perturbed microstructure itself to be visualized, providing an
experimental window into the relationship between the non-
linear microstructural deformations (which can be measured
directly), and the resulting “macroscopic” response of the
material.

Many interesting and important questions are raised in
these active and nonlinear microrheological experiments.
Most importantly, what exactly is being measured? What
connections, if any, do the quantities measured in these ex-
periments have with those obtained using conventional mac-
rorheology? How general are the measurements—how do
they depend on the size and properties of the probe itself?
How important are fluctuations in these measurements, and
how do they scale? Conventional macrorheology employs
two driving modes: constant shear stress and constant strain
rate. By analogy, is there a distinction between active mi-
crorheological probes driven at constant velocity and con-
stant force? Which mode (if either) is employed in active
microrheology, and what difference does it make? What ad-
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ditional information might be provided by active microrhe-
ology that is inaccessible to its passive analog, or over con-
ventional rheology?

Because microrheology remains in the early stages of
development, it faces important and reasonable questions
concerning its veracity, and ultimately its utility. Currently,
the analogous macrorheological measurements serve as the
benchmark against which microrheologically measured prop-
erties are compared. After all, agreement between the two
techniques would certainly inspire confidence in the mi-
crorheological results; furthermore, one could immediately
map the machinery developed for macrorheology onto mi-
crorheological measurements. However, it is worth asking
whether such agreement is necessary for microrheology to be
considered worthwhile. After all, both macro- and microrhe-
ology are concerned with probing complex material proper-
ties; any disagreement between the two would indicate that
different information is encoded in the different measure-
ments, and more (not less) information would be learned. In
such a case, one could not use the macrorheological machin-
ery to analyze the microrheological data; however, since the
data itself are microrheological, it would seem fitting to try
to understand it using microrheological models. Macro- and
microrheology probe different aspects of the material: the
former makes measurements over extremely long (macro-
scopic) length scales using a viscometric flow field, whereas
the latter effectively measures material properties on the
scale of the probe itself (since flow and deformation fields
decay on this length scale). As the probe increases in size,
one might expect that since the length scales over which the
material is probed become sufficiently long that micro- and
macrorheology would agree. However, it may very well be
that they do not agree—even in the continuum (large-probe)
limit—one measurement uses a viscometric flow, the other
does not. A final, but important, point: materials that cannot
be produced or procured in quantities sufficient for mac-
rorheology (i.e., those materials that originally motivated mi-
crorheology) would not allow such agreement to be checked.

In this article, we propose and examine a simple model
system for active and nonlinear microrheology. This model is
simple enough to allow transparent analysis and to admit
analytical solutions, yet sufficiently nontrivial that it contains
the physics essential toward an understanding of many fea-
tures generic to active and nonlinear microrheology. In par-
ticular, we demonstrate that even this simplest of model sys-
tems yields insight into many of the questions raised above.
After describing the model colloidal system (Sec. IT) and the
role of microstructural perturbations (Sec. IIT), we derive an
equation for microstructural dynamics (Sec. IV). Initially, we
solve for the steady-state microstructural deformation in two
simple limiting cases and the “average” apparent viscosity
that results (Sec. V), as well as fluctuations about that aver-
age (Sec. VI). We then solve for the microstructural pertur-
bation for arbitrary Péclet number (ratio of the external forc-
ing to the thermal restoring forces) and present viscosity and
fluctuation results for general Pe (Sec. VII). We examine the
difference between constant-force and constant-velocity
driving modes (Sec. VIII), and raise the possibility that cur-
rent experiments may, in fact, mix these modes of operation.
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In Sec. IX we make a direct comparison between micro- and
macrorheology for the simple model considered here, and
(by analogy) suggest how the dilute results can be scaled up
to higher concentrations and to include hydrodynamic inter-
actions. Last, since our model is meant to be simple yet
illustrative, we discuss its shortcomings, possible generaliza-
tions and connections to techniques such as falling-ball vis-
cometry (Sec. X).

Finally, we note that microrheological experiments can
provide an opportunity to rigorously examine the theoretical
framework used to understand rheological properties of col-
loidal suspensions. The approach we adopt here is among the
simplest variations of this framework. We make certain ap-
proximations that may seem overly simplistic, yet which
have yielded remarkably accurate results in other contexts. It
would be of significant value and interest to determine
whether this prior success was simply fortuitous, or whether,
in fact, such approximations and the accompanying physical
interpretation may be more generally applied. Active and
nonlinear microrheology, with its wealth of data, provides a
promising platform for such studies.

Il. MODEL SYSTEM

Complex fluids encompass a wide variety of materials
and exhibit diverse properties. Certain key attributes, how-
ever, are shared among them, including a microstructure that
gives rise to the “complex” macroscale material behavior.
The microstructure can be driven out of equilibrium and
“heals” by thermal motion, so that the (time-dependent) mi-
crostructural deformations give rise to a material response
that is time-scale and amplitude dependent. Here, we exam-
ine perhaps the simplest model complex fluid to exhibit these
traits: a suspension of neutrally buoyant rigid colloidal
spheres.

We consider the behavior of a microrheological “probe”
colloid particle in a suspension of “bath” particles. In passive
microrheology, the probe fluctuates due to Brownian motion;
in active microrheology, the probe is pulled through the ma-
terial (Fig. 1). Various forces can exist between the probe and
bath particles, including electric/osmotic forces between
charge double layers, van der Waals forces, steric repulsions
arising from grafted polymer ‘“hairs,” and hard-core repul-
sions between the solid spheres themselves.”® To model these
interactions in the simplest way, we adopt a hard-sphere po-
tential,

Ur<a+b)=cx, (1)

Ur>a+b)=0, (2)

so that the colloids do not interact until their hard-sphere
radii touch, whereupon a force is exerted to prevent the hard-
sphere radii a and b of the probe and bath particles, respec-
tively, from overlapping. (Appendix A explores the more
general case.)

One might naturally assume the hard-sphere radii a and
b to be the same as the physical “hydrodynamic” radii a; and
b;, where the no-slip boundary condition is obeyed. However,
colloidal forces (e.g., electrostatic and steric) are often ex-
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FIG. 1. Model system for active and nonlinear microrheology. A probe
particle of hydrodynamic radius a,, is pulled at velocity U (or with force F)
through a suspension of neutrally buoyant bath particles of hydrodynamic
radius b,,. Long-range repulsive interactions are modeled with a hard-sphere
potential at effective radii of a=\a;, and b=N\b,, respectively. In principle,
this model system can be used to treat any size ratio a/b. In practice,
however, the neglect of hydrodynamics is only valid when A > 1, which only
occurs when the extended repulsive interactions between the probe and bath
particles occur over a length scale that is large with respect to their hydro-
dynamic radii. The present results are most reliable when \ is of order 1.

erted beyond the physical boundary of the colloid, and par-
ticles can “collide” without their surfaces touching. In gen-
eral, hydrodynamic radii are smaller than hard-sphere radii,
and the ratios N\,=a/a;, and N,=b/b, exceed 1. This forms
the basis for the “excluded annulus” model, in which a pa-
rameter N “tunes” hydrodynamic interactions:*’ hydrody-
namic interactions between particles are negligible as A
— 0, become increasingly important as A decreases and in-
clude near-body “lubrication” interactions as A — 1. The dis-
tance a—a,, reflects the physics of the interaction, and is thus
related to, e.g., the ionic screening length or the length of
grafted polymer “hairs.” In practice, the physics of the inter-
actions will limit A, particularly for large particles. This limi-
tation should be kept in mind throughout this work, as we
will consider arbitrary probe to bath particle size ratio,

@=, 3)
where 0 <a <. In the large-probe (a> 1) limit, the range
of the interactions may not be long enough for the neglect of
hydrodynamic interactions to be accurate.

In the present work, for simplicity, we neglect hydrody-
namic interactions (A — o). Although this may seem to be a
severe approximation, it allows a straightforward and trans-
parent analysis that captures and illustrates many of the sig-
nificant physics of active, nonlinear microrheological experi-
ments. Furthermore, this limit has been surprisingly effective
in reproducing experimental measurements of the shear vis-
cosity of colloidal suspensions, for which all particles are
equivalent (a=b).”* Remarkably, the effective shear vis-
cosity derived from the infinite A limit does not differ appre-
ciably from the results for N\ as small as 1.1. (Khair and
Brady find this also holds for the microviscosity when
a=b.34) For even smaller \, lubrication forces give rise to
shear thickening at high shear rates. Experimentally, such
behavior is seen as well: the onset of shear thickening can be
delayed significantly when colloids are kept apart with elec-
trostatic charges2 or grafted polymer “hairs”.”” In the shear
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viscosity problem, then, nonlubrication hydrodynamic inter-
actions play only a quantitative role in the low-Pe limit, and
the excluded annulus model captures the behavior quite well.
An important question concerns to what extent this behavior
is general, to which we shall return in Sec. IX. In general,
our results should hold whenever the “hard-sphere” radii are
much larger than the physical, or hydrodynamic radii. This
effectively places an upper limit on the particle size (probe or
bath) for which this theory can be expected to hold. How
effective the theory will be for more extreme values of «
remains to be seen.

lll. AVERAGE PROBE MOTION

We now turn to the motion of the probe particle and the
dynamics of the suspension itself. Because deformations to
the microstructure are of central importance to the rheologi-
cal response (micro or macro) of the material, we must solve
for the distribution of bath particles surrounding the moving
probe. The stochastic nature of Brownian motion requires
such distributions to be found statistically. We denote the
probability density for finding the probe and bath particles in
a given configuration as Py(x|,X,,...,Xxy), where the label 1
denotes the probe particle and 2— N the bath particles, and
x; denotes the position of particle & (Particle momentum is
not important for colloids.) Particles in suspension move un-
der the action of external forces (the probe) and entropic
Brownian forces (probe and bath). In the absence of hydro-
dynamic interactions (A — ) the velocity of the probe par-
ticle is given by

U=M[F8Xl—kBTV lnPN], (4)

where the mobility of the probe M=1/67na; and we have
dropped the label 1 denoting the probe particle for clarity.
The viscosity of the suspending fluid is 7, k3T is the thermal
energy and F*' denotes the external force moving the probe
particle.

As shown in Appendix A, averaging (4) over the posi-
tions of the N—1 bath particles and integrating by parts re-
sults in an exact formula for the average probe velocity:

(U) =M{Fe’“—nkBT§ ng(r)dS}. (5)
r=a+b

In (5) the integral is over the surface of “contact” between
the probe and bath particles, r=a+b, with normal n directed
radially out from the probe. The number density of bath par-
ticles is n, and g(r) is the pair-distribution function: the prob-
ability density for finding a bath particle at r relative to the
probe particle. Equation (5) was derived for a constant im-
posed external force F*'; for a constant imposed velocity the
formula is the same (in the absence of hydrodynamic inter-
actions) with the average now about the external force rather
than the velocity. While equation (5) is the same for both
cases, the pair-distribution function g(r) is not, as will be-
come evident.

From (5) we see clearly that the thermal motion of the
bath particles acts to resist the motion of the probe particle:
there is a buildup of bath particles in front of the probe
particle, and a deficit or wake trailing it, resulting in a reac-
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tive force that slows the probe (see Fig. 5). In the absence of
an external force on the probe (i.e., in equilibrium), g(r) is
isotropic and the integral in (5) is zero. Near equilibrium—in
the linear response regime—the departure from equilibrium
is proportional to the external force and the average velocity
is linear in F°X,

(U) =M F™, (6)

where kzgTML =D, is the long-time self-diffusivity of the
probe particle in the surrounding bath particles (see Sec. IX
and Appendix A). This connection between diffusion and
mobility follows directly from the fluctuation-dissipation
theorem.

Passive microrheology measures the motion of the probe
due to thermal fluctuations (i.e., the self-diffusvity), and then
relates this to an effective viscosity 7., of the medium
through an assumed Stokes—Einstein—Sutherland relation

kT

D,=—"—
O T Negrdt)y

(7)
Generalizations of the above to time- or frequency-
dependent behavior is straightforward. For a discussion of
the relationship between the self-diffusivity and the suspen-
sion viscosity, see Ref. 36.

In the nonlinear active microrheology regime, the distur-
bance to the microstructure is no longer linear in the forcing,
but we can still choose to interpret the slowed probe motion
as due to an effective “viscosity” of the background suspen-
sion. From simple Stokes drag F*'=67.4a,(U), we define
the effective microviscosity as

" kT -
ﬂ;rt - [1 _ ”F,S(t jg nzgdS] , (8)
Z

where we have taken the direction of the external force to lie
along the z-axis. In the case of fixed velocity rather than
force, the analog of Eq. (5) becomes

nkgT
n—eff:1+—3

n.gds. 9
n 67777ahU§Xt§ # ®)

From (9), it is natural to define the viscosity increment Az
= n— 1 for fixed velocity,

A e _ nkgT

ds, 10
” 67777ahU:)(t§nzg ( )

and by analogy for fixed force we have

Anye  nkgT
Tetfz Fit §nzgd5, (11)

where the latter is strictly true only in the dilute limit when
the denominator in (8) can be expanded to leading order in
the concentration of bath particles n.

It is interesting to compare this microrheological expres-
sion for the viscosity to that for macrorheology. The same
excluded annulus model in the absence of hydrodynamic in-
teractions gives the following expression for the contribution
of the particles to the bulk stress:>
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() =- nkBT[I +nb ﬁ; nng(r)dS] , (12)

where I is the isotropic tensor. At equilibrium, the contact
integral in (12) is isotropic and gives the familiar osmotic
pressure of a hard-sphere suspension
IT
nkgT

=— %I:(Ep)= 1 +4¢g(2,9), (13)

where ¢p=4mb’n/3 is the volume fraction based on the ra-
dius b of the bath particles, and only the contact value of the
pair-distribution function is important. (For macrorheology
there is no probe particle, and all particles are of the same
size b.) The suspension viscosity is defined as the ratio of the
shear stress to shear rate and thus a viscosity increment for
macrorheology, analogous to (11), is

Ag™  n’kgTh
7 Ny

%nxnyg(r)dS, (14)

where 7,, is the imposed shear rate. Here we have subtracted
the high-frequency dynamic viscosity, which includes the
Einstein correction (5/2)¢, but in the absence of hydrody-
namic interactions is simply the solvent viscosity (7). Note
that the macrorheological viscosity increment is for a fixed
shear rate, which corresponds to a fixed velocity in microrhe-
ology; a fixed stress in macrorheology corresponds to a fixed
force in microrheology and would give an expression analo-
gous to (8) for the effective viscosity. Although the fixed
stress and fixed shear rate measurements in macrorheology
give the same results (apart from any shear banding, etc., i.e.,
for homogeneously deformed materials), the two situations
differ in microrheology as we discuss below.

Apart from the obvious additional factor of n (or ¢) in
the macroviscosity, Egs. (10) and (14) for the micro- and
macroviscosity increments are very similar in structure, in-
volving an appropriate weighting of the pair-distribution
function at contact. This similarity is also present when hy-
drodynamic interactions are included. Although similar, it
should be noted that not only are different “moments” of g
present in the two expressions, the forcing of the microstruc-
ture from equilibrium is also different in the two cases: a
dipolar forcing for microrheology and a quadrupolar forcing
for macrorheology. Further, the microviscosity also retains
an as yet unknown dependence on the size ratio of the probe
to the bath particles which is not present in macrorheology.
Thus, it is not obvious a priori that the viscosities measured
by these two methods should be the same, nor that they
should share the same dependence on volume fraction and
shear- or pulling-rate. Indeed, a major objective of this work
is to explore this connection.

Even without solving for microstructural deformations,
it is immediately evident that the viscosity increments mea-
sured with the two techniques do scale differently with ¢.
Physically, this is because the microviscosity arises from col-
lisions between the probe particle and individual bath par-
ticles, whereas the macroviscosity increment arises from col-
lisions between bath particles. In the colloidal context,
understanding this scaling allows the two measurements to
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be compared in a meaningful and semi-quantitative fashion.
For more general (e.g., unknown) materials, such scalings
would not be known a priori, and so the two methods of
measurement should not be expected to agree. As a final
comment, it should be noted that microrheological experi-
ments can only determine the scalar viscosity (at least for a
spherical probe particle, see Sec. X for a discussion). By
contrast, macrorheology can, in principle and in practice, de-
termine the full stress tensor, not just the viscosity.

IV. MICROSTRUCTURAL DEFORMATION EQUATION

To determine the viscosity increment, we need to obtain
the pair-distribution function g(r) of the bath particles in the
presence of a moving probe particle. Although the above
expressions for the viscosities are exact for all volume frac-
tions of the bath particles, a closed equation for the pair-
distribution function cannot be obtained for all concentra-
tions. To proceed analytically, it is necessary to restrict the
analysis to the dilute limit, i.e., to pair-interactions between
the probe and bath particles. Below we present a physically
motivated derivation of the microstructural evolution equa-
tion; a detailed derivation that allows for hydrodynamic in-
teractions and general interaction potentials, can be found in
Appendix A.

In a frame fixed on the probe particle, which translates at
velocity U, each bath particle is advected with velocity —U
and moves diffusively. For dilute bath particle concentrations
the probability flux has diffusive and advective terms,

Jj=-DVg-Usg, (15)

where D is the relative diffusivity between the bath and
probe (with a subtlety to be addressed shortly). Continuity of
bath particles requires g+ V -j=0, so that, at steady state, we
have the familiar Smoluchowski or advection-diffusion equa-
tion

DV?g+U- Vg=0. (16)

Collisions at the probe/bath boundary give rise to a no-flux
boundary condition

n-j=Dn-Vg+n-Ug=0 atr=a+b. (17)

Finally, the microstructure is undisturbed far from the probe,
giving
g~1 asr— oo, (18)
Scaling lengths with the contact distance [r=(a+b)F]
and velocity with the velocity of an isolated probe U,
=F*'/6mna,, the nondimensional versions of (16)—(18) be-
come

Vg + Ped,g =0, (19)
(d.g + Pecos 6g),-, =0, (20)
glr—o) — 1, 21

where we have defined a Péclet number
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_ Uo(a + b)

D (22)

and have taken the motion to be along the z-axis so that
7-U=cos 6. The relative viscosity increment is then given by

Anp nkpT(a + b)?
n  6mna,Up,

3
_3 D+ ¢3€ n.g(r=1;Pe)dqY, (23)

jg n.g(r=1;Pe)d(}

417'D Pe

where a=a/b is the ratio of probe to bath radii, d() is the
solid angle of integration, D,, is the diffisivity of the probe
particle, and D is the relative (probe and bath) diffusivity.

Last, we address a subtlety concerning the relative dif-
fusivity D. If the velocity of the probe particle is fixed, it
experiences no diffusive motion, and relative diffusivity
arises from the bath diffusivity alone:

kT

. 24
67777bh ( )

U =
By contrast, a probe that is driven through the suspension
with a specified force moves both deterministically and dif-
fusively. The relative diffusivity is then given by the sum of
the two diffusivities,

+ D, = LT (25)

The difference between Dy and Dy, is negligible when bath
particles are much smaller (and more mobile) than the probe
particle; in such a case, fixed-force and fixed-velocity mea-
surements give similar results. If the probe is comparable in
size to bath particles, however, the distinction becomes ap-
preciable. In fact, constant-force and constant-velocity mea-
surements differ significantly in the small-probe limit. We
shall see below that the viscosity increment Az in the fixed
velocity case exceeds that for fixed force by the amount (1
+a)/a, for all Pe. Additional factors arise when hydrody-
namic interactions are important (Appendix A), but it ap-
pears to be generally true that motion at fixed velocity is
more “dissipative” than at fixed force. Such differences have
been predicted in falling-ball rheometry of noncolloidal sus-
pensions as well.”’

V. MICROSTRUCTURAL DEFORMATION: LIMITING
CASES

Although the Smoluchowski equation (16) can be solved
exactly analytically for all Pe, it is instructive to first exam-
ine the microstructural deformations that arise in the high-
and low-Pe regimes and the effective viscosity increments
that result.

A. Low-Pe limit

The limit of small Pe is the linear-response regime in
which the microstructure is only slightly perturbed from its
equilibrium state. This is the limit that would be probed with
passive microrheological techniques. In this case diffusion
dominates over advection, and a regular perturbation expan-
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(b) <
g=1
=0
E i
8~O(Pe)

FIG. 2. Low- and high-Pe microstructural deformations. (a) Diffusion domi-
nates at low Pe, giving a symmetric diffusive dipole and microstructural
deformations of order Pe. (b) A convection-diffusion boundary layer of
width ~(a+b)Pe”! forms at high Pe, within which the deformation has
magnitude of order Pe. The upstream microstructure is unchanged (g=1)
outside of the boundary layer, and a wake with no bath particles (g=0) trails
the probe.

sion in Pe turns the microstructural evolution equation (16)
into Laplace’s equation with the boundary condition (17)
representing simple dipolar forcing

3,8|,21 = — Pe cos 6. (26)

The probe particle thus perturbs the microstructure with a
simple diffusive dipole,

1+P cos 0
=1+
§ ¢ 272

(27)

shown in Fig. 2(a), resulting in a pair-correlation function at
contact

P
er=1,00=1+ ?ecos 0. (28)

There is an O(Pe) excess of bath particles in front, and an
O(Pe) deficit behind the probe, both of which retard the
probe.

B. High-Pe limit

In the opposite (high Pe) limit, diffusion is important
only in a thin boundary layer of thickness 8~ O(Pe ! (a
+b)) adjacent to the probe, outside of which advection domi-
nates. In this limit, the boundary layer looks locally planar,
and gradients along the boundary layer are small compared
with those across it. Diffusion balances the perpendicular
component of the advection velocity (1, =U cos ), giving
an approximate equation

> g
D—2 + U cos 0— =0, (29)
2 (24
where { is a coordinate perpendicular to the (local) surface.
This has the solution

g(r) ~ 1+ f(Q)eVecos 0P, (30)

where f is a function to be determined. One can integrate
across the boundary layer to obtain the “local” surface prob-
ability density o(6),

_Df(6)

31
Ucos 0 (31)

O'( 0) f f( 0)6 U cos (9§/D g
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FIG. 3. The microstructure within the high-Pe boundary layer can be deter-
mined by a flux balance. A total flux Q;,=g*Um(a+b)*sin’, flows through
the cylinder into the boundary layer. Transport within the boundary layer,
along the contact surface (r=a+b), occurs due to the parallel component of
the velocity, U;=U sin 6, which sweeps a flux Q,=2m(a+b)sin 6,U,0(6,)
out of the cylinder. Here o is the local microstructure probability density,
integrated across the boundary layer. Requiring Q;, to equal Q,, in steady
state gives (35).

The function o(6,) at any angle 6, can be determined
using the flux balance shown in Fig. 3. The total flux into the
0< 6, portion of the boundary layer is simply given by

Qin(6p) = 7l (a + b)sin 6,]°Ug”. (32)

In steady state, the inward flux Q;, must be balanced by the
flux Q,, of particles advected out of the boundary layer. The
parallel component of the velocity, U;=U sin 6, carries the
probability o(6,), outside of the control volume. The total
probabilty, integrated around the perimeter at 6, is 27(a
+b)sin 6,01(6,), so that O, is given by

Qou00) = 27(a + b)o(6,) U sin® 6, (33)

downstream along the surface. Requiring that Q;,=0Q,, at
steady state gives

o(6)=—>—"—, (34)

meaning that o is constant on the leading hemisphere, but
zero on the trailing hemisphere, as shown in Fig. 2(b).

The upstream perturbed microstructure follows from
(30), (31), and (34),

P
g(r, < g) ~1+ ?eCOS fe~Uz cos 6/D (35)

giving a pair correlation at contact

(—19<f)—1+& 0 (36)
glr=1, 5 )= 2cos .

The pair correlation at contact on the downstream face is
zero. Thus there is a large O(Pe) excess in front of the probe,
but only an O(1) deficit behind it, since the bath particle
concentration cannot drop below zero.

C. Relative viscosity increments in both limits

Finally, we use (28) and (36) in (23) to calculate the
relative viscosity increment in the two limits, giving

Phys. Fluids 17, 073101 (2005)

Anp(Pe<1) _2A7;(Pe >1) B (1+ a)3&

. 37
7 7 2 D 47

Notably, the high- and low-Pe limits differ only by a factor
of 2, despite the substantial qualitative differences in their
microstructures. This reflects the singular nature of Pe— oo:
the advection-diffusion boundary layer shrinks like Pe™!, yet
the concentration within the boundary layer grows like Pe,
giving a finite contribution even as Pe — 0. The decrease in
the viscosity with increasing shear- or pulling-rate (“shear
thinning”) is typical of colloidal suspensions. Since g(1)
~O(Pe) for all Pe, and since the dimensionless viscosity
increment has a Pe™! in front of the microstructural integral
[Eq. (23)], the correction is always O(1).

A clear physical picture of shear thinning emerges from
this example. On a physical level, shear thinning occurs be-
cause at low Pe, the bath particle is both pushed from the
front and sucked from behind; by contrast, the high-Pe mi-
crostructural perturbation is O(Pe) only in the leading-edge
boundary layer, and only O(1) behind, and thus the probe is
only “pushed” from the front—a factor of 2 smaller that at
low Pe. It may seem strange that the effective viscosity is
larger at small rather than high Pe, where there is a large
buildup of bath particles in front of the probe which would
seem to offer strong resistance to motion. However, in the
high-Pe limit, the entropic reactive force of the bath particles
is O(kgT/(a+D)), which is much smaller than the external
driving force, F*"—their ratio being Pe!. Therefore, the re-
active force would go to zero in the limit of high Pe, were it
not for the boundary layer at contact with O(Pe™!) thickness
and O(Pe) amplitude, which amplifies the entropic reactive
force to be O(Pe kgT/(a+b))—the same size as the driving
force.

In what follows, we highlight two important features of
active microrheology: a dependence on probe size, and the
difference between viscosity increments measured in the two
“ideal” modes of active microrheology (fixed velocity and
fixed force). Using (24) and (25)), we note that

%:(1+af)_1 (38)
F

for the constant-force probe, and
—4 =g (39)

for the constant-velocity probe. A low-Pe fixed-velocity
probe would measure an effective viscosity increment

AnY(Pe<1) B ¢(1 + a)3ﬁ _ ¢(1 +a)’

, 40
i 2 a 2a “40)
whereas the low-Pe fixed-force probe would measure
Ayf(Pe<1) (1+ a)?
=¢ . (41)

7 2

The ratio of the viscosity increments at fixed velocity and
fixed force is
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FIG. 4. When the probe is smaller than the bath particles (a <b, or a<<1),
the difference between fixed-velocity and fixed-force modes becomes appar-
ent. (a) If the probe is constrained to move at fixed velocity (the “bulldozer”
limit), it must push all bath particles out of its way, increasing the force on
the probe substantially during collisions. (b) A probe moving under a fixed
applied force (the “Pachinko” limit) can move laterally to pass the large and
immobile bath particles. Since the probe velocity remains of order U
throughout the collisions, the change to the velocity is not as dramatic.

AV 1+a

Ayl
and simply represents the ratio of the characteristic time
scales 1/ Tp=Dp/Dy;. The high-Pe limits are simply 1/2 of
(40) and (41), while the ratio (42) applies for all Pe.

We now examine the influence of particle size ratio on
the viscosity increment. The two measurements are the same
in the large-probe limit a— o, giving A~ a?. This can be
understood in the high-Pe (deterministic) limit physically as
follows: A large probe moves a distance L in a time 7;
~L/U, during which it collides with N~ a’L¢/b bath par-
ticles. Each collision endures for a time 7.~a/U, during
which it contributes an additional retarding force AF
~Fy/a. The time-averaged force is simply (AF)
~NT,AF/ 7, giving (AF)/Fy~ &’ ¢. In this limit, the probe
acts like a large “strainer”—a limit which may be difficult to
achieve in practice due to the finite extent of intercolloidal
forces.

When a~ O(1) or smaller, however, the two techniques
give rather different results. In this limit, the force required
to push bath particles (relative to the Stokes force on the
probe) is large. As shown in Fig. 4(b), a fixed-force probe
can make its way around bath particles without displacing
them, like a ball falling through a Pachinko machine, and the
velocity remains of O(U) throughout the collision. A fixed-
velocity probe, on the other hand, must push the large bath
particles out of its way to maintain its constant velocity [Fig.
4(a)]—like a bulldozer—and requires a force that is a factor
of O(b/a) larger than the Stokes force on a probe.

The bulldozer and Pachinko limits can be understood in
the high-Pe, low-a limit from a simple physical picture. The
bulldozer limit is simplest: in traversing a distance L, the
probe experiences N~ (1+a)?L¢/b collisions, each of
which lasts a time 7.~ (a+b)/U and contributes a force
Fy/a. The average force experienced by the probe is then
increased by an amount (AF)/Fy~ (1+a)*¢/a, as in (40).

The fixed-force (Pachinko) limit is similar, but more
subtle: consider L~b/¢ to be the distance the probe must
travel before colliding with a bath particle, so that on average
the probe collides once per L, with a collision that lasts 7,
~b/U. During collisions, the probe velocity is slowed by a
factor of order U, giving a relative velocity increment

(42)
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Ur,

o) (L/U) ¢ 49
that remains finite in the limit «— 0, as in (41).

Hydrodynamic interactions modify the above depen-
dence on size ratio a. Previous studies have been performed
in the non-Brownian limit (Pe=) in the context of falling
ball rheometry.37 Incorporating hydrodynamic interactions
yields the Einstein result An/7p— 5¢/2 in the large-probe
limit (a—0), as expected. A divergent viscosity is obtained
in the non-Brownian, small probe limit (a¢—0), for both
constant force and constant velocity modes (in contrast with
our results, where the divergence only occurs for the constant
velocity mode). Physically, the Pe=w, a<<1 divergence
arises because hydrodynamic interactions decay on the scale
of the (larger) bath particles, so that “collisions” are long-
lasting. Lubrication interactions dramatically slow the probe
when it is closest to bath particles (or increase the force
necessary to maintain a constant velocity), further enhancing
the average retarding effect. By contrast, the present theory
(which neglects hydrodynamic interactions) yields a probe
velocity that remains O(U) even at contact and results in a
finite viscosity for constant-force measurements in the A
>1 limit. Which picture is more relevant to experiments
depends on the physically realizable values of A.

VI. FLUCTUATIONS

The above calculations used the probability distribution
function for the steady-state microstructure to determine an
average quantity—the viscosity increment A 7. However, the
N-particle distribution function Py (Appendix A) allows any
statistical quantity to be calculated. Here, we examine the
fluctuations about the mean.

The velocity increment for a particular microstructural
realization is given by

AU_ kT

=———V InPy, 44
U 6mna,U o “4)

for a constant-force probe. As calculated above, an average
(weighted by Py) gives the ensemble-averaged relative ve-
locity increment. The difference between the velocity incre-
ment due to a particular microstructure and the average in-
crement is given by

AU’ = AU - (AU), (45)

and fluctuations follow from the mean-square velocity varia-
tion,

(AU =(AU? - (AU, (46)
giving
A 12 A 12 2
¢ (l]]2 >=< ]}; >EA=<%> nJ Vg Vg(l/g)dv
0
+0(¢). (47)

Note that (AU)? is omitted from the right-hand side because
it is of order d>2. Nondimensionalizing, we obtain
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[ [ s

A=

Before explicitly calculating the fluctuations, we discuss
briefly their scaling. In the small-Pe limit, g~ O(1) and
Vg~ O(Pe), giving an O(Pe?) integral. In the large-Pe limit,
g is largest in the thin boundary layer of volume O(Pe™!)
around the leading edge of the probe, where g~ O(Pe) and
ngv(Q(Pez).38 Thus the integral in (48) is O(Pe?) in both
limits, and fluctuations are of order

D, \?
A~ @1+ 3(—“) . 49
d(1 +a) D (49)
Using (37) and (49), we see that the relative fluctuations

(normalized by the increments) have the scaling

AI/Z l
AUIU (1 + @)

(50)

Relative fluctuations diverge as ¢— 0 when collisions are
infrequent, and vanish in the large-probe limit due to the
large number of colliding bath particles. In the small-probe
limit («¢—0), on the other hand, the fixed-velocity fluctua-
tions diverge in the same way (~a~!) that the increment
itself diverges. This reflects the physics of this (“bulldozer”)
limit: the force on the probe alternates between the relatively
small Stokes force between collisions and the large forces
required to push bath particles out of the way. Here the mean
is dominated by the fluctuations, and the two scale in the
same way.

It is fairly straightforward to evaluate (48) using the mi-
crostructures derived for low and high Pe, Egs. (27) and
(35). The fluctuations are given by

(1+a)?(D A A

Aij(Pe< 1)—T<D> ¢(35~+ Uin), (51)
(1+a)(D oA

A,-j(Pe> 1)_T<D> ¢(25~+ Uin), (52)

where U is a unit vector in the direction of U. The ratio of
parallel to perpendicular fluctuations is given by

AH 4
—(Pe<1)=7, 53
Al( e<l)=7 (53)
AH 3
—(Pe>1)=—. 54
Al( e>1)=7 (54)

Vil. SOLUTION FOR ARBITRARY Pe

Having explored the two limiting cases, we now proceed
to treat the case of general Pe, the details of which can be
found in Appendix B. Microstructural deformations for three
intermediate values of Pe, obtained using this solution, are
shown in Fig. 5. The viscosity increment,

Phys. Fluids 17, 073101 (2005)

FIG. 5. Microstructural perturbations at intermediate Pe, found using the
general solution (B1). (a) Asymmetry is notable at Pe=0.15, (b) increases
for Pe=0.5, and (c) a wake becomes evident for Pe=1.5.

&] (1+a)’D

. 5 —¢V(P ), (55)

can be calculated for intermediate Pe, with the dimensionless
viscosity increment function V(Pe) given to O(Pe*) by

V(Pe)=[1 - 2P + tPe* - 22 pet] + O(PS).  (56)

Equation (56) agrees with Eq. (37) as expected in the
low-Pe limit, but diverges at high Pe, reflecting the singular
nature of the advection-diffusion problem. While the exact
solution in Appendix B is valid for arbitrary Pe, the singular
nature of the problem renders its implementation in the high-
Pe limit less practical. From (B13) a 19-term expansion of
V(Pe) was obtained and Padé approximants used to extrapo-
late to the high-Pe limit. A (9-9) Pade approximant, plotted
in Fig. 6, reveals V(Pe— ©)=0.5019, quite close to the ex-
pected value of 1/2. Force-thinning behavior is clearly evi-
dent. We expect Fig. 6 will represent a sort of “universal
curve” for active microrheology of colloidal suspensions
when @~ O(1), after accounting for probe/bath sizes and
volume fractions as in (55), and higher volume fractions
treated as described in Sec. IX.

The general solution can likewise be used to calculate
the fluctuations for arbitrary Pe, giving, to leading order in
Pe,

1+a)?’ (D, \? 353
A“""( a) <_a) ¢U2(1— Pez+"'>, (57)
5 D 2940
3(1+a)?(D,\? 209
AL~M<—“> ¢U2<1— Pe* + ) (58)
20 D 1470
1.2
=2
>
0.8
0.6
0.4
0.01 1 100 Pe 10000

FIG. 6. The 9-9 Pade approximant to the dimensionless viscosity increment
function V(Pe). A clear force-thinning behavior is evident, with a high-
Pe V(Pe) asymptote of 1/2. We expect that the Brownian viscosity contri-
bution for a wide range of active microrheology experiments will collapse
onto this “universal curve,” once probe size and bath volume fraction are
properly scaled out. Note also that the analogous (macrorheological) shear
viscosity shear-thins in a similar, but not identical, fashion.
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Several features in the complete expression for the vis-
cosity increment, Eq. (55), bear emphasis. As discussed
above, the factor (D,/D) depends on how the probe is pulled
(constant force or constant velocity), most dramatically for
probes that are as small as or smaller than bath particles. It
will be important to keep this distinction in mind when in-
terpreting experiments. Second, the Péclet number itself [Eq.
(22)] depends on the relative diffusion constant, and thus on
both particle size and driving mode [Egs. (24) and (25)].
From the constant-velocity and constant-force Péclet num-
bers,

pey=2U¥b) - p,,  Ua (59)

D, D,
one sees again that the small-probe limit is special: pulling
the probe at the same velocity, but in different modes, yields
different Pe and thus different microstructural deformations.
In general, Pey is smaller than Pe;, reflecting the additional
probe diffusivity in the constant-force mode.

Equation (59) raises another subtlety: in computing the
constant-force Péclet number Pey, what velocity U should be
used? Since the difference between the probe velocity in sus-
pension and its Stokes velocity is O(¢), no significant dif-
ference occurs in the dilute limit ¢<<1, and Pep=F(a
+b)/kgT. However, at higher volume fractions the situation
may be different. This is discussed in detail in Sec. IX, where
a proposal for scaling-up to higher ¢ is given.

VIil. MIXED MODE

Thus far, we have considered “idealized” active mi-
crorheology in which the probe particle is driven at either
fixed velocity, or with a fixed force. In real experiments,
however, neither mode may occur. For example, a probe par-
ticle held in place by optical or magnetic gradient forces
while the bath itself is translated might seem to be a fixed-
velocity probe. In fact, however, such probes are held in a
(roughly) harmonic potential well, and can make excursions
from the center of the trap. Whether a probe behaves like
fixed-velocity or fixed-force depends on the “stiffness” of the
trapping force. This can be understood most clearly in the
small-probe, non-Brownian limit, where the distinction be-
tween experimental modes is strongest.

Consider a small probe («<<1) held in a harmonic po-
tential centered at x=0, against a bath translating with veloc-
ity Up,m, and subject to a harmonic restoring force F=—kx. A
translating probe particle experiences Stokes drag F,
=6mna, Uy, and trails the center of the trap by a distance
Ax=F,/k. When the probe collides with a (large) bath par-
ticle, its behavior depends on the strength of the trapping
potential. If the spring is very strong, the probe is held in
place and can “bulldoze” the bath particle out of the way. A
weak spring, on the other hand, allows the probe to tempo-
rarily leave the trap center to make an excursion around the
bath particle.

In the Pachinko (constant-force) limit, the bath particle
remains fixed during the collision, and the probe moves a
distance of order O(a+b) from its steady-state position,
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which changes the force on the probe by an amount of order
AF~k(a+b). The constant-force limit thus occurs when
AF<F, or

Upan > Marh) U (60)

6mnay,

The opposite (bulldozer) limit occurs when the spring is
strong enough to hold the probe in place as it pushes the bath
particle aside. In that case, both particles are forced to move
with velocity ~Uy,;, which requires an additional force
AF ~67nb, Uy, acting back on the probe. If the resulting
displacement of the probe, Ax ~ 67 9b,Uy,,/k, is small com-
pared to the collision radius (a+b), then the spring force is
sufficient to hold the probe in place while it bulldozes the
bath particle. Thus the fixed-velocity limit occurs when

= als. 61)

To summarize, in the non-Brownian (Pe>1), small-
probe (a@<<1) limit, translating the trap slowly (U<aUy%)
corresponds to fixed-velocity operation, quickly (U>U%)
corresponds to fixed-force operation, and with intermediate
speeds a<U/Uy<1 corresponds to a mixed-mode of opera-
tion. All three may occur in real active microrheology ex-
periments as pulling speeds increase.

To see how these limits arise, consider the mixed-mode
problem for the joint probability P of finding the probe par-
ticle at location r, relative to the trap and a bath particle at r,
relative to the probe. The detailed derivation, including hy-
drodynamic interactions, is given in Appendix A.

The probe and the bath particle fluxes, viewed from the
frame of the moving trap, are given by

J1==kgTM N P~ M jr\P - UpP, (62)

J2=—kgTMV,P = Uy P, (63)
and probability conservation yields
ksTM V7P + kgTM, VP + Uy, - (VP + V| P)
+MakV (I‘IP)=0 (64)
The no-flux boundary condition is quite complicated in this
frame, but is simpler in the probe frame; in that case, how-
ever, Eq. (64) becomes more complicated (see Appendix A
for details).
Scaling mobilities by the probe mobility M, and lengths
by (a+b) gives
ViP+aV5P+Pei-(V,P+VP) + KV, - (r,P) =0,
(65)

where Pe is based on probe diffusivity and where we have
introduced a nondimensional spring constant

k(a+b)?
g Hlatrb)y

e (66)

The above physical picture, which invoked the small-probe
limit @<<1, can be understood from Eq. (65). Because «
<1, we neglect the second term but retain the first (diffu-
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sive) term, which can balance either the third (convective) or
fourth (spring). Whether the convective or spring flux is
dominant is determined by the ratio

52 k(a+b) ' 67)

Pe 67 mbUpun
The condition K> Pe is equivalent to Eq. (61), and corre-
sponds to the constant velocity mode: the spring is strong
enough to hold the probe in place. The opposite (fixed-force)
limit, Eq. (60), corresponds to K << aPe, for which the origin
[in Eq. (65)] of the additional « is not immediately clear. In
general, a more detailed analsis of Eq. (65) [or Egs. (A31)
and (A32)] will be required to determine the fixed-force and
fixed-velocity conditions for general a. The problem seems
to be particularly rich—K, Pe, a—with a number of pos-
sible interesting limits.

IX. RHEOLOGY
A. Comparison to macrorheology

A major issue in the use of microrheology as a predictive
and/or characterization tool is to what extent the microvis-
cosity and the macroviscosity are the same. The expressions
(10) and (14) for the viscosity increments clearly suggest a
similarity, as does the force-thinning of the microviscosity;
colloidal suspensions without hydrodynamic interactions
also shear thin’' and have a similar O(1/Pe) boundary layer
at particle-particle contact at high Peclet number.”’ But ex-
actly how good is the connection?

In the linear-response regime of passive microrheology,
the measurement of the mean-square displacement corre-
sponds to the transition from the short- to the long-time self-
diffusivity—high frequency gives short time and low fre-
quency gives long time (see Appendix A). This problem has
been studied extensively in the colloids literature for a dif-
fusing particle of the same size as the “background” particles
(a=1), which form a viscoelastic medium (e.g., see Ref. 36).
The frequency-dependent viscosity of such a medium has
also been studied by macroscopic rheology” and thus a di-
rect comparison between micro and macro is possible. Since
the transition from one limit to another reflects the underly-
ing microstructural behavior, the proper comparison is be-
tween the scaled differences: (i) micro: [1/D*(w)
—-1/D{)/(1/D5,=1/D{) and (ii) macro: [9(w)-n.1/(7
—-1.,). Here Dj is the short-time self-diffusivity, 7., is the
high-frequency dynamic viscosity and 7, is the steady zero-
shear-rate viscosity. This comparison was addressed in Ref.
36 where it was shown that, apart from the obvious different
volume fraction scalings in the dilute limit (micro scales with
¢, while macro scales with ¢2), the micro- and macrovis-
cosities agree very well for all frequencies and volume frac-
tions. It is also the case that DI, X 7, and Dy X 7., are experi-
mentally found to be approximately constant for all ¢. Thus,
in the linear-response regime the micro-macro connection is
semi-quantitatively well founded. [It is also interesting to
note that the linear response viscosities (micro and macro)
frequency-thin in a manner similar to shear thinning and pos-
sess a high-frequency boundary-layer at particle-particle con-
tact analogous to the that at high Pe. ¥4 No analogous
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FIG. 7. The macroviscosity increment, (77"%"/ p—5¢/2—1)/ ¢?, of Bergen-
holtz et al. (Ref. 30) in absence of hydrodynamic interactions (A — =) (@) is
plotted vs the Péclet number along with the microviscosity increment,
(7™ p—1)/ ¢, determined in this work (A). We have taken a=1 for com-
parison. For macrorheology Pe=ya?/D,, where 7 is the shear rate, and for
microrheology, Pe=Ua/D,. While the agreement shown here is nearly
quantitative, we emphasize that the similarity in the shear thinning behavior
is the most relevant comparison to make, as detailed amplitudes depend on
a, perhaps \ for large «, and so on. Furthermore, we have scaled the relative
viscosity increments appropriately with ¢, which is only possible because
such scalings are known for collodal suspensions. For more general (and
unknown) complex fluids, such scalings would not be known a priori.

shear- (or frequency-) thickening appears, however, when the
departure from equilibrium is small, regardless of frequency,
i.e., small Péclet number. ]

In the nonlinear regime of active microrheology, we can
make the first definitive connection between micro and
macro by comparing with the work of Bergenholtz et al.,”
who considered the analogous macrorheology problem—a
dilute, monodisperse suspension of spheres interacting with
the excluded annulus model. They solved the appropriate
pair Smoluchowski equation and determined the effective
macroviscosity increment (14). Their macroviscosity incre-
ments, (77"%"°/ 9p—5¢/2—-1)/ ¢ in the absence of hydrody-
namic interactions (A —0) are shown in Fig. 7 along with
our results for the microviscosity increments, (7"°/ 7
—1)/ ¢, as functions of Pe: Pe=7ya*/D, for macrorheology,
where 7 is the shear rate, and Pe=Ua/D,, for microrheology.
Note that we have taken a=1, or a=b, in making this com-
parison.

As seen from the comparison, both viscosities “shear”
thin and reach the same high Péclet number asymptote,
which is a manifestation of the O(1/Pe) boundary layers
present in both cases. The low Péclet asymptotes are differ-
ent, however, being 12/5 for the macroviscosity and 2 for
the microviscosity, reflecting the difference between the di-
polar and quadrupolar forcings. Apart from these slight nu-
merical differences, the microviscosities are in very good
accord with the macroviscosities, so long as the appropriate
scaling with ¢ is performed and a~ O(1). As « increases,
7"e would increase as well, as the probe acts like a
“strainer” so long as A — . In the large-probe (a> 1) limit,
the A=c0 approximation may no longer be appropriate.

In the absence of hydrodynamic interactions, the viscos-
ity (micro or macro) shear thins; hydrodynamic lubrication
interactions are required for shear thickening. As shown by
Bergenholtz et al. 30 for the excluded annulus model the mac-
roviscosity shear thins for all A=1.1; only for A<1.1 is
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shear thickening seen. The recent work of Khair and Brady34
shows the same to be true for the microviscosity.

Thus, it seems that, at least for dilute colloidal disper-
sions, the macro- and microviscosities are comparable for all
Péclet numbers and display both shear or force thinning, as
well as shear or force thickening when hydrodynamic lubri-
cation forces become important (A<<1.1). Although the
micro- and macroviscosities are comparable, it should be
noted that in microrheology only the scalar viscosity (at least
for a single spherical probe particle) can be determined. In
contrast, a macrorheology experiment or theory can deter-
mine the full stress tensor, including normal stress differ-
ences and an isotropic pressure. This is an important distinc-
tion that must be borne in mind when assessing the strengths
and weaknesses of the two approaches.

The comparison shown in Fig. 7 is between the micro-
viscosity at fixed force and the macroviscosity at fixed shear
rate. Properly, one should compare fixed velocity with fixed
shear rate (or fixed force with fixed stress). However, at the
pair level, i.e., to leading order in ¢, the macroviscosity at
fixed stress is the same as at fixed shear rate and so the
comparison in Fig. 7 is appropriate. Even though this mixed
comparison is legitimate, the microviscosties for fixed force
and fixed velocity are not the same at leading order in ¢;
from Eq. (55) we see that the microviscosity at fixed velocity
(for a=b) is a factor of 2 larger than that at fixed force for all
Pe. Also, the Péclet number for fixed velocity is twice as
large as that at fixed force. Together this would shift the
microviscosities in Fig. 7 up and to the right by a factor of 2.
The important comparison is the form of the shear thinning
behavior, not necessarily the detailed amplitude.

That the microviscosities at fixed force and fixed veloc-
ity are different naturally raises the question as to whether
the marcoviscosities for fixed stress and fixed shear rate may
also differ. It is easy to show that in the linear-response re-
gime fixed stress and fixed shear rate give the identical mac-
roviscosities. In the nonlinear regime, however, one cannot
prove that the two are the same, although it would seem most
likely that they are. (We are considering here homogeneously
deformed materials and exclude from discussion nonhomo-
geneous deformations such as shear banding, etc., which
could differ in the two situations.) In the thermodynamic
limit of large systems the fluctuations in shear rate that are
present for elperiments at constant stress are expected to
decay as 1/\N and thus vanish, resulting in the same viscos-
ity for the two systems. If the fluctuations did not decay with
system size, as might happen near a critical point (a disper-
sion near a point of yielding, e.g.) then the two measure-
ments may give different macroviscosities. By contrast, in
microrheology the constant force or velocity is applied to a
single probe particle, and the differing fluctuations in the two
situations are not small on the scale of the probe, therefore
giving rise to measurable differences in response.

B. Scale-up to higher concentrations

Although we have considered the simplest, ideal, case of
a dilute suspension of hard spheres without hydrodynamic
interactions, previous work on the macrorheology of colloi-
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dal dispersion529’3l’41 has shown that the results of such a

model can be scaled up to accurately predict the behavior of
concentrated dispersions both with and without hydrody-
namic interactions. Here, we follow the same reasoning and
offer suggestions as to how the present results may be ex-
tended to higher concentrations and to include hydrodynamic
interactions.

There are several issues that need to be appreciated be-
fore attempting to scale up dilute results to higher concentra-
tions. Both the magnitude of the viscosity and the Péclet
number need to be scaled. Furthermore, it is the viscosity
increments that one should try to scale up and compare be-
tween micro and macro, as these reflect the microstructural
deformations that produce the rheological behavior. For mac-
rorheology, the viscosity increment is A7/ = 7/"*"( Pe)
— 7., where 7, is the high-frequency dynamic viscosity,
which is a purely hydrodynamic quantity; in the absence of
hydrodynamics (A — ), 7. is simply the solvent viscosity
7. For microrheology the average mobility of a particle in
the equilibrium suspension is just 1/kgT times the short-time
self-diffusivity D, and hence the equivalent of the high-
frequency dynamic viscosity is the inverse of the short-time
self-diffusivity (67ma,Dy/kgT)™". The microviscosity incre-
ment is thus A7"=5""(Pe)—(6ma,Dy/kzT)", where
y"icro(Pe)=F/6ma,U from the Stokes drag law definition of
the microviscosity. Like 7., the short-time self-diffusivity D;
is a purely hydrodynamic quantity and is simply given by the
Stokes—Einstein—Sutherland value for an isolated particle in
the absence of hydrodynamic interactions. As mentioned be-
fore, Dj) X 7.,~ const, and therefore we may use 7., or 1/Dj
interchangeably, and hence both viscosity increments can be
written relative to 7.,.

The high-frequency dynamic viscosity corresponds to
that of an equilibrium (random) microstructure and expresses
the fact that the particles are rigid and do not deform affinely
with the flow. In macrorheology this “passive” resistance
could be scaled out by simply replacing the solvent viscosity
with the high-frequency dynamic viscosity—it was as if the
two particles found themselves in a medium with effective
viscosity 7.. The volume fraction dependence of all hydro-
dynamic functions were captured by this simple rescaling
and the remaining volume fraction dependence came from
structural deformations (e.g., at low or high Péclet), which
could be estimated from the pair problem; hydrodynamics
could be neglected completely for shear thinning, while for
shear thickening only knowledge of the boundary layer was
necessary.32 The structure of the microrheology problem sug-
gests that this simple, but powerful, approximation should be
applicable and we use it in what follows.

In the linear response regime, the average velocity cor-
responds to the long-time self-diffusivity, and thus the natu-
ral scale for the magnitude of the microviscosity is the in-
verse of the long-time self-diffusivity; specifically, 7"/
=D,/D. as Pe—0, where D,=kzT/67na, is the Stokes—
Einstein—Sutherland diffusivity of an isolated particle. At
small Pe, the distortion of the microstructure occurs over the
length scale of the probe-bath particle interaction, O(a+b),
and the time scale for the microstructural response on this
length scale is inversely proportional to the concentration-
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dependent long-time self-diffusivity 7~ (a+b)?/D:(¢p).
Thus, the appropriate Péclet number for the response is Pe
=U(a+b)/D.(¢), where D.(¢) is the relative diffusivity
(appropriate for fixed force or fixed velocity) at long times.
(Technically, the fixed velocity problem does not correspond
precisely to the long-time self-diffusivity as Pe— 0, but we
do not expect a significant quantitative difference; the differ-
ence in the dilute no-hydrodynamic case is a factor of 2.)
Now, in the case of fixed velocity the U in the Péclet number
is the actual velocity at which the particle is dragged. For
fixed force, however, the velocity is not given but rather
should be the average velocity (U) with which the probe
moves, which is proportional to D:F/kgT, and therefore
Pep=F(a+b)/kgTX D./D.,. The ratio of the long-time self-
diffusivity to the long-time relative diffusivity depends on
the size ratio between the probe and bath particles, but
should not depend on the bath particle concentration. Thus,
the constant force Péclet number should be independent of
¢. Hence, throughout the shear thinning regime—that is, up
to Pe~ O(1)—both the fixed-force and fixed-velocity micro-
viscosity scaled by the long-time self-diffusivity should be a
universal function of the Péclet number based on the long-
time self-diffusivity. Further, studies of the self-diffusivites™
suggest that the long-time self-diffusivity may be factored
into the hydrodynamically determined short-time self-
diffusivity times the long-time self-diffusivity in the absence
of hydrodynamic interactions: D;%DBX[A)ZC"}’W’”, and since
Dy~ 1/ 7., we are able to scale out 7., as in macrorheology,
i.e., in magnitude A 7"~ 5. /DM,

At high Péclet numbers the situation is somewhat differ-
ent, as is the case for macrorheology. Here, all the action is
in the thin O((a+b)/Pe) boundary layer at probe-bath par-
ticle contact. The response time is now the time to diffuse the
thickness of the boundary layer 7~ &°/D, where 6~ (a
+b)/Pe and the diffusivity is that for diffusion over this
scale, which is the short-time self-diffusivity Dj. Thus, the
appropriate Péclet number is that based on the short-time
self-diffusivity, rather than the long-time self-diffusivity
which is applicable at low Pe. For the fixed force case the
velocity is again the average velocity we seek, Pep=(U)(a
+b)/D(¢), while for fixed velocity Pey=U(a+b)/D}(¢).
From the expression for the average velocity in the fixed
force problem (5) (or its counterpart in Appendix A with
hydrodynamics) we see that the average velocity is propor-
tional to the average mobility times the difference between
the driving force and the reactive Brownian force. The aver-
age mobility is proportional to 1/677.ay,, as the solvent vis-
cosity can be replaced by the high-frequency dynamic vis-
cosity. The reactive Brownian force is proportional to ¢
times the pair-distribution function at contact, which is of
O(Pe) in amplitude times the value of the pair-distribution
function just outside the boundary layer, which we denote as
g”(1;¢). Combining these estimates in (5) shows that at
high-Péclet number the microviscosity increment scales as
Aqricro~ 5! X ¢g”(1; p)—the microviscosity scales as the
average “resistivity”, which is proportional to 7., times the
number of particles contacting the probe, ¢g*(1;¢).** The
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pair probability outside the boundary layer needs to be de-
termined, but its magnitude with respect to ¢ should scale
like the equilibrium pair-distribution function at contact,
g%(1; ¢), which, for equal probe and bath particle radii, can
be found from the Carnhan-Starling equation of state for
hard spheres. Note with this estimate for the magnitude of
(Uy, we have Pep~F(a+b)/kgTX1/[1+Ceg®(1;¢p)],
where C is an O(1) constant.

To summarize, we expect that the shear thinning compo-
nent of the microviscosity increment will scale like

(1+a)’D,

A7 ~ (@) g (1) VP, (68)

where Pe” is a scaled Péclet number given for low Pe by

- Ula+b)
VT D¢ )
o Fla+b) D5, F(a+b)’ (70)

and

- Ula+b)
P="pye) 7
o= 2D L gt g, (72)

B

for high Pe. The ratio D,/D in (68) is only used to indicate
the scalings with the size ratio « in the fixed-force or fixed-
velocity cases; all the volume-fraction dependence is ac-
counted for by 7.()bg®(1;¢) and in Pe”. In writing (68)
for low Péclet number we have used the estimate that the
long-time self-diffusivity in the absence of hydrodynamic in-
teractions scales like 1/¢g®(1;¢), which was shown to
agree well with the available experimental data at least up to
the glass transition at gb%0.58.36

The above arguments apply equally well whether or not
there are hydrodynamic interactions between particles; only
the values of the short- and long-time self-diffusivites are
affected by hydrodynamics. Furthermore, the scaling esti-
mate at high Péclet number also applies when force-
thickening is present (N <<1.1); in this case the function
V(Pe") would, of course, be different. Also, the arguments
used in arriving at this scaling estimate are based on ideas
that may only be valid when the probe and bath particles are
comparable in size—say 1/2<a=<2—outside this range
other estimates may apply, and (68) should be used with
caution.

As a final note, the above scaling estimate would only be
expected to hold if the dispersion remains in a “liquid-like”
state. At very high concentrations colloidal dispersions may
become solidlike and display a yield stress. The above theory
would not apply to such yielding systems. At high Péclet
numbers the motion of the probe particle may be sufficient to
locally “melt” the suspension, resulting in a finite viscosity
and the above estimates would then apply.
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X. DISCUSSION AND CONCLUSIONS

In summary, the core of our approach involves determin-
ing the perturbation to the suspension microstructure caused
by the motion of the probe. We have derived an equation for
the microstructure and solved it in the simplest limiting case
of hard-sphere interactions and negligible hydrodynamic in-
teractions. This corresponds physically to systems in which
extended interactions prevent the probe and bath particles
from approaching close enough for their hydrodynamic in-
teractions to be significant. While this limit may seem se-
vere, it is surprisingly accurate for the analogous shear vis-
cosity problem,30’3l’33 in which case the shear thinning
regime is (quantitatively) insensitive to hydrodynamic inter-
actions. We find the viscosity increment, as measured using
active microrheology, to force thin with Pe, in a similar and
almost identical fashion to macrorheologically measured be-
havior. Of course, neglecting hydrodynamic interactions
means that the Einstein correction to the high-frequency dy-
namic viscosity [A 7/ 7=2.5¢+O(¢?)] does not appear. Our
analysis specifically isolates the Brownian (microstructural)
component, and our proposal to account for the Einstein (hy-
drodynamic) contribution follows the analogous strategy in
the shear macrorheology problem.

Beneath the semi-quantitative agreement between the
viscosity increments as measured by micro- and macrorheol-
ogy (Fig. 7), however, lies an important property: the micro-
structural contribution to the microrheologically measured
viscosity varies with ¢, whereas that for macrorheology var-
ies with ¢?. This difference arises because the former is sen-
sitive to each collision between the probe and bath particles,
whereas macrorheology involves collisions between bath
colloids. If this scaling were not known, the two techniques
would not appear to agree. The distinction between these
results is thus both beneficial and detrimental. It belies the
difference between the modes of measurement, and thus en-
codes additional physical information about the material; but
complicates the understanding and analysis of more general
materials for which such scalings are not known.

Another important distinction with the shear viscosity
problem arises. In active microrheology, the probe and bath
particles can have different sizes, whereas all particles are
(typically) identical in the shear viscosity problem. We have
examined A# for general probe/bath size ratio, and demon-
strated that A/ 7 can diverge in the small-probe limit. In the
large-probe limit, in which the probe acts like a “strainer,”
our results may have questionable applicability. The force
range a—ay, is a physically determined length scale that scales
with, e.g., the length of grafted polymer “hairs” or the ionic
screening length, meaning that A —cc may be difficult to at-
tain for large probe particles.

Once the microstructural perturbation is known, many
statistical quantities can be computed. We have calculated
the effective viscosity increments and fluctuations about
those values, for all values of Pe and general probe/bath size
ratios, in the dilute limit. This results in a “universal” curve,
onto which we expect a wide range of measurements will
collapse. Furthermore, microstructural deformation fields can
be measured and directly compared to theory. More gener-
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ally, the relation between microstructural deformations and
probe forces [Eq. (5)] could be tested directly given suffi-
cient experimental resolution. Any discrepancy would come
from hydrodynamic interactions or non-hard-sphere interpar-
ticle interactions, and would thus provide an experimental
handle for these effects.

We have proposed methods to modify this theory to ac-
count for less dilute systems. Comparisons with measure-
ments and simulations will be necessary to determine
whether these ideas are applicable in the active microrheol-
ogy context.

It would be of interest to study active microrheology
with hydrodynamic interactions (1 <\ <), for several rea-
sons. Incorporating hydrodynamic interactions will naturally
capture the hydrodynamic contribution to viscosity, and give
more reliable results in the large-probe limit. Furthermore, as
with the macrorheology of sheared suspensions, lubrication
interactions (in the limit N — 1) are expected to cause shear
thickening.30 Recent work by Khair and Brady34 shows this
to be the case.

An important result highlighted above is that the effec-
tive viscosity increment measured in active microrheology
depends on whether the probe is pulled at constant velocity,
with constant force, or with a mixture of the two. In mac-
rorheology, this distinction would be analogous to differ-
ences between constant-stress and constant-shear rate modes,
which we expect to be negligible (away from any critical
points). In fact, a series of microrheological experiments at
different Pe might switch from one mode to the other as Pe
is increased, which would complicate or obfuscate interpre-
tation. Care should thus be exercised in real experiments. A
similar difference, albeit hydrodynamic in origin, was noted
for falling-ball rheometry.37 Generally, the constant velocity
mode seems to yield a higher effective viscosity increment
than the constant force mode.

Unsteady effects present an obvious and important gen-
eralization to the present study. For example, experiments in
which probe particles are oscillated with finite-amplitude (or
force) would provide information about the “healing time” of
the microstructure. A high-Pe oscillitory probe should carve
out (and remained confined to) a void region, so long as the
oscillation frequency is sufficiently high that the void does
not have time to close. One would expect, however, a quali-
tative change in behavior below a crossover frequency,
where bath colloids diffusively “heal” the void before the
probe returns.

Another interesting unsteady system is the microrheo-
logical analog of so-called stress-jump experirnents.5 As in
macrorheology, these would allow experiments to differenti-
ate between the hydrodynamic and Brownian contributions
to the viscosity increment. In such experiments, a probe
would be moved steadily (where it is subject to hydrody-
namic and Brownian forces) and suddenly allowed to stop.
The hydrodynamic component of A# would vanish immedi-
ately, leaving microstructural perturbations alone, whose
(diffusive) relaxation could be directly measured.

In this article, we have analyzed the simplest “complex”
fluid possible, for which much is known and a well-defined,
well-posed mathematical treatment can be derived starting
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with very basic assumptions. On the other hand, most com-
plex materials are not nearly so “simple,” and it is of tremen-
dous importance (but substantial difficulty) to generalize the
present approach to treat more complicated microstructures.
Filamentous actin is a favorite model bio-material of mi-
crorheologists (both passiv<315’43’44 and active’***) that con-
sists of a network of elastic fibers that can be cross-linked to
varying degrees. A simple model system for such materials
would require the elastic nature of the microstructural ele-
ments to be incorporated. The mathematical structure of this
problem would seem to be related to the system discussed in
Sec. VIII and Appendix A 3. We hope that the framework we
have provided here will form a basis upon which to address
these types of problems.

As discussed in the Introduction, we feel it is important
to de-emphasize the requirement that microrheological mea-
surements faithfully reproduce macrorheological ones. While
such agreement would certainly facilitate analysis and under-
standing, disagreements would by no means render mi-
crorheology unsuitable as a technique. Quite the opposite—
any disagreements would result from the physical difference
between methods for probing the materials, and would in
fact yield additional information about the material in ques-
tion. While it would be convenient to use the set of tools
developed for macrorheology to analyze microrheological
data, one need not take measurements in the micro-world,
and then employ techniques from the macro-world to say
something once again about the micro-world. Since mi-
crorheology probes materials on different length scales than
macrorheology, and since active microrheology probes mate-
rials in a physically different manner, models based on mi-
crorheology would seem more appropriate for obtaining
micro-structural information from microrheological data.

We close with the general observation that nonequilib-
rium microstructural deformations play a significant role in
the motion and forcing of probe particles. This article has
focused on the interaction between a probe and the micro-
structural deformation it induces (the most relevant for active
and nonlinear microrheology). When multiple probes are
present, however, the microstructural perturbation estab-
lished by one can affect the motion/force of the others, which
can lead to attractive or repulsive forces between two or
more probes and may result in interesting collective dynam-
ics and pattern formation. Similarly, multiparticle microrhe-
ology may also allow normal stress differences to be mea-
sured microrheologically. We leave the rich world of
multiparticle active microrheology and deformation-
mediated interactions for future work.
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APPENDIX A: SYSTEMATIC DERIVATION

We consider a viscous suspension of colloidal particles
and denote the probability density for finding the N particles
in a given configuration Py(x;,X,,...,Xy,), where label 1
refers to the probe particle and labels 2— N to the N—1 bath
particles. The particles move under the action of an external
force F¢, interparticle colloidal forces denoted as F¥ and
entropic or thermal forces —kzTVIn Py. The velocity of any
particle £ is given by

N

Ug= 2 Myg- (F§'+ Fj— kgTV gin Py), (A1)
B=1

where M4(x) is the configuration-dependent hydrodynamic
mobility coupling the velocity of particle ¢ to the force ex-
erted on particle 3. In the absence of hydrodynamic interac-
tions the mobility tensor is diagonal and constant: Mg
=1/6mnad 6.

For a statistically homogeneous suspension we refer all
particles relative to the probe 1, defining r;=x,~x; and thus
the velocity of any particle ¢ can be written as

N
U= 2 [Myg- (F§'+F) = (Dgg=Dy1) - Vgln Py].

B=1

(A2)

where the translational diffusion tensor is given by Dgg
=kgTM B all derivatives are with respect to the relative co-
ordinates rg, and the absolute position of the probe particle
does not matter so derivatives with respect to x; are zero.

The average motion of the probe particle is
obtained from (A2) by averaging over the positions of the
N-1 bath particles. The N-particle probability
distribution can be written as  Py(x;.rp,...,Fy.1)
=Py_11(Fa,13, .. rn t| X, 0)Pi(x,1), wWhere Pp_y is the
conditional probability for finding the N—1 bath particles in
configuration ry_; given that the probe particle is at location
x;. Owing to the statistical homogeneity of the suspension,
Pp_1;1 does not depend on the position of the probe. Thus,
the average velocity of the probe is defined by

U, EfUlPN_m(rz,r3,...,rN,t)drz...drN, (A3)

where the subscript 1 on ( ), refers to the conditional average
relative to the probe particle at x;.

The cases for the fixed force, fixed velocity and mixed
conditions are different and so we shall proceed with these
separately.

1. Fixed force

A fixed force corresponds to a constant external force
exerted on particle 1 only. Thus, substituting (A2) into (A3)
we have
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<U1>F5fU1PN—1/1("2J‘3,~-.J'N,t)d"2~--d"N

N
=<fM11PN—1/1drN—1)'F?Z"'E (M, ;- Fj
=1

—(Dyg=Dyy) - Vgin Py_y 1 1Py_ydry.
N
=<M11>'FTXZ—E [(Dlﬁ
B=1

-Dyy)- Vﬁln(PN—1/1/P7\7—1/1)]PN—1/1d"N—1, (A4)

where the superscript F' denotes fixed force. The first term on
the right-hand side of (A4) is simply the average hydrody-
namic mobility of the probe particle in the deformed micro-
structure. In obtaining the second term on the right-hand side
(rhs) of (A4) we have used the fact that at equilibrium the
Boltzmann distribution applies, with P{/~exp(-V/kgT) and
F Zz—V gV to replace the interparticle forces with the deriva-
tive of the log of the equilibrium distribution, showing quite
clearly that the entropic reactive force of the bath particles is
only nonzero out of equilibrium. At equilibrium the second
term on the rhs of (A4) is zero and the average velocity is
equal to the equilibrium-averaged mobility times the external
force (U,)}“/=(M,,)*?-F¢". The short-time self-diffusivity
of the probe particle is simply equal to kg7 times the average
mobility: Dy=kgT{M,,)*?, which is related to the mean-
square displacement of the probe particle in passive mi-
crorheology at short times. Here, short time means the dis-
placements are small compared to the smallest length scale
in the suspension, e.g., the bath or probe radius, interparticle
separation, etc.

At longer times in passive microrheology one measures
the linear response of the material corresponding to the de-
formation of the microstructure due to a weak external force.
For a weak force the perturbation to the microstructure is
linear in the force, and Py_;;;— P}, is proportional to F{*
via the Green’s function of the Smolushowski equation (AS).
Thus, (U,)! is proportional to F¢, with kzT times the pro-
portionality tensor defining the time- or frequency-dependent
self-diffusivity D*(¢). At short times D*(r) ~ Dy, while at long
times D*(r)~D3, the long-time self-diffusivity. It can be
shown quite easily, as one would expect in the linear-
response regime, that the definition of (U l)f and the micro-
structural evolution problem is identical to the problem of
the self-diffusivity (at long wavelengths).”® Beyond the
linear-response regime, the self-diffusion problem and the
motion of an active probe are no longer so simply, if at all,
related.

Equation (A4) for the average velocity of the probe ap-
plies quite generally for any form of interparticle colloidal
forces, F¥. Hard-sphere forces are special and allow a sig-
nificant simplification, however. As first pointed out in Ref.
40, at the N-particle level, hard-sphere forces are identically
zero in the space of all accessible configurations; they only
enter at the boundaries to enforce the no flux boundary con-
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dition. Thus, F Z in (A4) is identically zero leaving only the
entropic force. A straightforward integration by parts in (A4)
then yields

N

<U1>f’HS=<M11>'F?”+E [V-(Dg
B=1

N
~D )Py pdry - 2 f %"ﬁ'(Dlﬁ
p=1

=Dy )Py_ 1)1 dSpdry_ 4, (A5)

where dSg is the “surface” available to particle B8 and the
integral, dry_;p, is over the volume accessible to the N-1
# B other particles. (The flux at infinity vanishes.) When the
hard-sphere force is exerted at the hydrodynamic radius, i.e.,
full hydrodynamic interactions (A= 1), the relative mobility
of two particles at contact is zero and the surface integral in
(A5) vanishes, leaving only the average of the divergence of
the relative mobilities.

In the absence of hydrodynamic interactions (A — ),
which is the situation considered in the main sections of this
paper, the opposite occurs: only D, is nonzero and is a con-
stant. Thus, the second term on the rhs of (A5) zeros and the
average velocity becomes

Uyt =M, - [Fm"‘”kBTjg nzg("z,f)dsz}, (A6)

where we have used the indistinguishability of the N—1 bath
particles to integrate out over all but one particle located at r,
relative to the probe particle. In (A6) the number density of
bath particles is n=(N—1)/V and the pair-distribution func-
tion is defined by ng(r,,t)=Py,(ry,1), with Py, the condi-
tional probability of finding a bath particle at r, given the
probe at the origin (x,). To obtain (5) in the text one needs to
recognize that the normal n, is out of particle 2, while the
normal n in (5) is out of the probe particle. In the absence of
hydrodynamic interactions the self-mobility is simply M,
=1/6arna,l, where a;, is the hydrodynamic radius (not the
excluded volume radius a) of the probe particle.

The probability density Py satisfies the Smoluchowksi
equation

(A7)

where the flux of particle ¢ is simply Py times the velocity
from (Al), j=UPy. Switching to relative coordinates and
noting that the absolute position of the probe particle does
not matter (A7) becomes

N

IP_

—L LYV, (=) =0, (A8)
&1

ot
with the relative flux for fixed force given by
N

Ge—j) =[(Mzy-M,) - F" - > (Dgg—D g—Dy
B=1

+Dyy)- Vﬁln(PN—l/l/Pf\?—1/1)]PN—1/1- (A9)
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To proceed further one integrates (A8) over the positions
of N-2 bath particles to obtain

98

+Vy - (o=j1)2=0, (A10)
ot

where the conditional average of the flux is now with a bath

particle at r, and the probe particle at x;. The conditionally

averaged relative flux is
Go—j0)s =[(My =M, ), F{"'=((Dy =Dy, - Dy,
+Dyy) - VoIn(Py_y i/ PRy 1))2

- f ((Dy3=Dy3-Dy,

+Dy) - V3In(Py_i i/ PR 10))3P1ya(rslry)drs]
Xg(ryt), (A11)

which unfortunately cannot be written only in terms of
g(r,,1), but involves an infinite hierarchy of conditional av-
erages with more and more particles fixed. A closure is
sought by diluteness, neglecting the integral term on the rhs
of (Al11), breaking the conditional average of the relative
diffusivities times the gradient of the log of the probabilities,
and replacing In(Py_;,/P3yl,,;) with In(g/g®), as all ne-
glected terms are O(¢), where ¢p=4mh’n/3 is the volume
fraction of the bath particles. Thus, the dilute pair Smolu-
chowski equation becomes

% + V- [(My =M, ))g"]- F{" =V, - gDy - Vy(g"1g),
(A12)
where we have defined the relative diffusivity
D/ =Dy-Dy-Dy +Dy, (A13)

and we have appended the superscript F to remind us that g©
corresponds to the microstructure for fixed force.

Again, for hard-sphere interparticle potentials the equi-
librium pair-distribution function is everywhere zero in the
accessible space and can be dropped from (A12).

In the absence of hydrodynamic interactions Df =(Dy,
+D )l =Dpl=kgT(ay+b,)/6mna,bl, (My—M,,)-F{'=
-M |, F$", and (A12) is identical to (16) in the text.

The boundary conditions for the Smoluchowski equation
are a random structure with large separations

gh~1 asr,— o, (A14)
and no relative flux at contact
n,-(G,—ji)5=0 atr=a+b. (A15)

2. Fixed velocity

The analysis for the case of a fixed velocity proceeds in
the same manner as above and we shall be brief. For the
fixed velocity U, is given and F{" is to be found. From the
general expression for the velocity of a particle (A2), the
velocity of particle 1 is

Phys. Fluids 17, 073101 (2005)

N
Ui=M, F"-2 (Dyg=Dyy) - VgIn(Py_ 11/ PR 1),
p=1

(A16)
from which the external force is
N
F{'=M;| - U+ ﬁE (M) - (Dyg
=Dyy) - VIn(Py_ i1 /PYLy 1), (A17)

where M,‘ll is the inverse of the mobility of the probe par-
ticle. Note that this mobility corresponds to a single particle
moving under an applied force in a bath of force (and torque)
free particles. Its inverse is not equal to the single particle
resistivity R, which corresponds to a single particle moving
in a bath of fixed particles. The single particle resistivity
R,,=[(M)7'];;, where M stands for the grand mobility ma-
trix composed of the individual particle-particle mobility ma-
tricies Mg as blocks.

Averaging over the N—1 bath particles as before we
have

N
F =MD - U+ 2 | (M) - (D
B=1
=Dyy) - VgIn(Py_y i/ PRy ) IPy-1ndry-y -

(A18)

For hard-sphere interparticle forces P;/,,; can be removed
and an integration by parts performed to give the analog of
(A5):

N

(FYHS =y, - U - 2
B=1

=D\ )]Py_pdry,
N

+ 2 f 3gnﬁ' (Mﬁl) : (Dlﬁ
B=1

=D\ )Py 1) dSpdry_y 2.

[V (M) (Dg

(A19)

And in the absence of hydrodynamic interactions (A19) be-
comes

(FYU™S = (M) - U, - nkBTjﬁ n,g(ry,0dS,,  (A20)

which is identical to (A6) for the fixed-force case.

Although the expression for the average force in the ab-
sence of hydrodynamic interactions is identical to that for the
average velocity, the Smoluchowski equations are not the
same in the two cases. The general balance equations (A8)
and (A10) are the same, but the relative flux of the particles
is different and is given by
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N
Ge—i)V=| Mg My -1)-U -2 [(Deg—Dyig—Dyg
B=1

+Dyy) — (Mg - My =) - (D4
=Dy))]- Vgn(Py_yi/ PRy | Py-in- (A21)

In the dilute limit for pair interactions only, the relative flux
becomes

(iz—jl)U=(M21 Arul -1 UlgU_[Dr_(MZI Arlll
-I)-(D;,-Dy)]- Vzln(gu/geq)g(]- (A22)

And in the absence of hydrodynamic interactions (A22) be-
comes

Gr—j)V=-U,8" =Dy, - [V,In(g"7g*)]g",

showing quite clearly that only the bath particles are diffus-
ing. The “relative” diffusivity now becomes D,=Dy=D,,
=kgT/671mb;, and the final Smoluchsowski equation and
boundary conditions follow directly from the above expres-
sions for the relative flux.

(A23)

3. Mixed mode

In some active microrheology experiments neither the
force nor the velocity is fixed, but rather the probe particle is
trapped in an external potential well (e.g., optical or mag-
netic tweezers) and the well dragged through the suspension
at a prescribed velocity U". If the well is very deep one
would expect this situation to approximate the fixed velocity
case. But how deep must the well be? Indeed, how does one
actually impose a fixed velocity experimentally? For
colloidal-sized probes one cannot attach, for example, a rigid
rod, because a rod that would not disturb the microstructure
surrounding the probe would need to be so small that it
would be subject to thermal fluctuations and therefore would
not be perfectly rigid. Thus, the analysis of this mixed mode
is necessary for the interpretation of experimental data.

Since the external potential well now defines a specific
origin in the system the statistical homogeneity of the system
is broken and the above analyses need modification. The
location of the trap, e.g., the minimum of the external poten-
tial, is denoted x(f) and moves with velocity U"*(¢) relative
to the laboratory frame. The probability density for finding
the probe at x, and the N—1 bath particles at x,, £# 1, given
that the external potential (trap) is at x, is denoted as
Py(xy,...,xy|x0,1). The velocity of any given particle ¢ in
the lab frame is the same as in (A1) with the addition of the
arbitrary uniform velocity of the laboratory frame U™, The
corresponding flux of particle ¢ is just the velocity of particle
& times the N-particle probability density Py, which satisfies
the Smoluchowski equation (A7). The mean velocity of the
probe measured in the lab frame is given by

<U1>0=J Uledxl...xN, (A24)

where the subscript “0” denotes that the trap is at x,.
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It is most convenient for analysis and physical interpre-
tation to first change to a coordinate system moving with the
trap velocity U”* and to measure positions relative to the
trap. Thus, we define a new coordinate system relative to the
trap zg=x—x,(t), with xo=Xo+U"*t, where X, is the loca-
tion of the trap at r=0. The spatial derivatives change accord-
ing to ngzvzg, EF0 ; VxO:VzO—EQL_lvz and the time de-
rivative according to d/dt=4/ &I—Elgle rap ~Vz§. Thus the
Smoluchowski equation (A7) becomes

N
P
L+ 2V, - (je= UPPy) =0,
ot &=1 3

(A25)

and the flux expressions remain unchanged in this frame. We

now switch to a coordinate system where we measure the

N—-1 bath particles relative to the probe: ri=z;;r;=z2;-2,
. . _ N .

with Vz§=V,§, EF1; Vzl_vrl_z,ﬁ:lvrﬂ to give

N

JdP . ..

TV = UTTPY + 2V, (=) =0, (A20)
&2

and the flux of particle & becomes

N N
Je= | U™+ 2 My (F§'+ Fp) - 2 (Dgy
B=1 B=1

_D§1) . Vﬁln PN_Dfl 'Vlln PN PN (A27)

And the average probe velocity (A24) now becomes an inte-
gration over dry...dry.

The important difference for the mixed mode case com-
pared with either the fixed force or fixed velocity cases is the
explicit dependence on the position of the probe particle and
the accompanying spatial derivatives with respect to the
probe position. The simplest problem that involves the inter-
action of the probe with a single bath particle now has six
degrees of freedom—the three coordinates of the bath par-
ticle relative to the probe (r,) and the three coordinates of the
probe relative to the trap (r,). In the fixed force or velocity
problems we needed only to consider the motion of the bath
particle relative to the probe—three degrees of freedom.
Also, the trap velocity enters explicitly into the Smolu-
chowski equation as the flux of the probe is relative to the
“flux” of the trap (U"*’Py).

At this point we have not specified any form for the trap
force, F T)“, although we have assumed that it does not de-
pend on the origin of the laboratory frame. The only speci-
fication we shall make is that the external force does not
depend on the configuration of the bath particles—the bath
particles do not influence the trap—but it does depend on the
location of the probe particle F{“(r|,t). Note that F{", U”(1)
and U'(t) may be arbitrary functions of time.

The explicit appearance of the external force can be re-
moved in the same manner by which the interparticle forces
were replaced by the equilibrium distribution provided it is
derivable from a potential. Define P§/ to be the equilibrium
distribution of the N particles in the presence of the external
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potential when the external potential is not translating,
U =(. (Technically, all that is required is that U"
—U'=(.) Then without loss of generality

F§'+Fy= =V (V" + V) == kgTV gln P/, (A28)
and the flux (A27) becomes
N
j‘f: Ulab—z(Dgﬁ—Dgl)Vﬁln(PN/vaq)
B=1
_Dfl . Vlln(PN/P]e\;l :|PN (A29)

Substituting (A29) into (A26) shows clearly that Py=P}/
provided that U’ =U"* and that the initial condition is the
equilibrium distribution.

For a given external force or potential one now proceeds
as in the fixed force or velocity cases by integrating over
bath particles to derive a reduced set of hierarchical equa-
tions. In contrast to the prior cases, however, the lowest level
problem is not the pair problem for the interaction between
the probe and a bath particle, but the “single” problem of the
probe interacting with the trap. This is most easily seen by
ignoring the bath particles altogether (¢, — 0); the equation
for the probe then becomes

JP
a—tl +V, - [U -~y - D, - V,In(P,/P$)]P, =0,

(A30)

“195

where the subscript denotes the probe particle. When the
trap and the laboratory move at the same speed, the probe is
in equilibrium with the trap potential and P=P}?
~exp(=V*/kT). When there is relative velocity between the
trap and the laboratory frame the probe is driven out of equi-
librium; however, at steady state the solution is the simple
exponential P,=P%xp(D;{-U*"r,), where U™=U""
—U"P, and the average velocity of the probe follows as
(U)o=U""P: the probe is simply dragged along with the trap,
although it is not located on average at the bottom of the trap
ri=0.

The pair-problem for the interaction of the probe with a
bath particle (and also with the trap) can be constructed from
the general N-particle equation (A26). Here we write down
the simplest problem for the joint probability P,(r;,r,)
=P,(r,)g(ry|r,) for hard spheres neglecting all hydrody-
namic interactions:

JP
a_tz +V1 . UreZP2—D1V%P2— (Dl +D2)V§P2

—MIFTXI'V2P2+2D1V1'V2P2=0, (A31)

subject to the boundary conditions of no relative flux at the
surface of contact between the probe and bath particles

fz'(iz—jl)=fz‘[(D1+D2)V2P2—M1FTXZP2]

—fz‘V1P2D1=0 atr2=a+b, (A32)

and an undistorted structure far away
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Pz""nPl (A33)

as 1y — X,

where P,(r;) is the probability density for finding the probe
at r; and n is the number density of bath particles. One
recovers the fixed force problem when there is no depen-
dence on the location of the probe 7.

APPENDIX B: SOLUTION FOR ARBITRARY Pe
Using the substitution
g=1+e P2 pef, (B1)

the advection-diffusion equataion (16) is transformed to the
Helmbholtz equation

V2f = k*f, (B2)
where
Pe
e B
K=~ (B3)

Here f satisfies boundary conditions

flr—=)=0, (B4)

fil,=1 + K cos Of], == cos fe* Y. (B5)

The general solution to the Helmholz equation (B2) is

o

f(r,0) = X, Cyh, (k1) P, (cos ), (B6)
n=0

where h,(u) is given by

K,10(u)
2 (B7)

Vu

hn(”) =

and we have kept only the solutions that decay at infinity.
The boundary condition at r=1 is satisfied when

o

E(h’c on L
= n-n n+12n+3 n+1

+h_——C ) P,(cos 6)
n—lzn_l n—1 - n\COS

=> b,(k)P,(cos 6), (B8)
n=0

where we have used the identity

+1
xpn(x) = & Pn—l(x) + .
2n

—P , B9
+1 M+ 1 n+1(x) ( )

and where the coefficients b,(k) are given by

2n+1

1
b,(k)=— f xP,(x)e“dx. (B10)
-1

This represents a tridiagonal matrix problem,
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n
Co+h,,—C,_ =b,,
+1 -1 1)M=K

(B11)

, n+1
(hncn + hn+1
2n+3

which can be inverted numerically or using a symbolic math-
ematics program.

Using (B1) and (B6) in (23), we obtain the relative in-
crements

Ay 3 °° :
= §(a+ 1> thm(K)f xP,(x)e""dx, (B12)
n m=0 -1

which can be further simpliﬁed using (B10) to give

A 3
e T TS)) ¢2 S Cula(K)by (= 5.
n 2 m=0 2m
(B13)
The first few terms thus obtained are
2 K2 32 1 2171
Co~ \/:i<1+—;<2——,<3+ K“), (B14)
w2 45 3 4725
2 2 14 1 821
C, ~ \/:K_<1+_K2——K3+ K4>, (B15)
w2 15 3 1575
2 4
C, ~ \/:K—<1 +—K2), (B16)
79 210
2 KO
Cy~ 1\ ——, B17
3 w150 (BI7)

giving an expression for g, here given to O(Pe),

‘ 32 N1 14
g =1+ ke rrilHeos 0)|:K<1 + =K —)— + (1 +—2
r

45 3 15
&\ 1+ kr 2
- 5—cos O+ —«| 1
3 r 9
71 ,\3+3kr+ (3 cos’6—1
+ —K 3 ) (B18)
210 r 2
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