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Shunting inhibition, a conductance increase with a reversal potential
close to the resting potential of the cell, has been shown to have a divi-
sive effect on subthreshold excitatory postsynaptic potential amplitudes.
It has therefore been assumed to have the same divisive effect on firing
rates. We show that shunting inhibition actually has a subtractive effecton
the firing rate in most circumstances. Averaged over several interspike in-
tervals, the spiking mechanism effectively clamps the somatic membrane
potential to a value significantly above the resting potential, so that the
current through the shunting conductance is approximately independent
of the firing rate. This leads to a subtractive rather than a divisive effect.
In addition, at distal synapses, shunting inhibition will also have an ap-
proximately subtractive effect if the excitatory conductance is not small
compared to the inhibitory conductance. Therefore regulating a cell’s pas-
sive membrane conductance—for instance, via massive feedback—is not
an adequate mechanism for normalizing or scaling its output.

1 Introduction

Many neuronal models treat the output of a neuron as an analog value coded
by the firing rate of a neuron. Often the analog value is thought of as what
the somatic voltage would be if spikes were pharmacologically disabled
(sometimes called a generator potential). This has led to a class of simpli-
fied single-compartment models where the steady-state above-threshold
membrane potential is computed as

* It has come to our attention that a previous study also pointed out that shunting
synapses close to the spike mechanism have a subtractive effect (F. Gabbiani, J. Midtgaard,
and T. Knoppel, Synaptic Integration in a Model of Cerebellar Granule Cells, J. Neurophys-
iol., 72: 999-1009, 1994).
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Figure 1: A comparison of divisive and subtractive inhibition. (A) Divisive inhi-
bition changes the slope of the input-output relationship. In this case, f = g(V)
was a linear function of V and G was varied from 10 to 70 nS in equal steps.
(B) Subtractive inhibition shifts the curves by subtracting a current. Here I,
varies from 0.08 to 0.058 nA in equal steps.

where lgyy is the synaptic current and G is the input conductance. A firing
rate is then computed directly from this above-threshold membrane poten-
tial:

f=g(V),

where g is some monotonic function—for example, fout o« V2 in Carandini
and Heeger (1994) or fyut = tanh(V) in Hopfield (1984).

Varying G—for instance, via activation of inhibitory input with a reversal
potential close or equal to the cell’s resting potential (also known as silent
or shunting inhibition)—will directly affect the generator potential V in a
divisive manner. A recent and quite popular model (Carandini & Heeger,
1994; Nelson, 1994) has suggested that changing G by shunting inhibition
would be a useful way to control the gain of a cell; when the inhibitory
input rate increases, the slope of the input-output relationship decreases
(see Figure 1A), but the threshold does not change much.

On the other hand, inhibition that is not of the shunting variety should
have a subtractive effect on the input-output relationship. If the reversal
potential of the inhibition is far from the spiking threshold, then the in-
hibitory synapse will act more like a current source; the cell’s conductance
is not changed much, but a hyperpolarizing current is injected. This current
simply shifts the input-output relationship by changing lsyn to lsyn — linn (Se€
Figure 1B) where ljy, is the inhibitory current.

Simplified models based on a generator potential ignore the effect of
the spiking mechanism and assume that the behavior of the neuron above
threshold is adequately described by the subthreshold equations. We show
that because of the spiking mechanism, changing the membrane leak con-
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ductance by shunting inhibition does not have a divisive effect on firing
rate, casting doubt on the hypothesis that such a mechanism serves to nor-
malize a cell’s response. A similar conclusion has been reached indepen-
dently for certain classes of neuron models (Payne & Nelson, 1996).

2 Methods

Compartmental simulations were done using the model described by Ber-
nander, Douglas, Martin, and Koch (1991); Bernander, Koch, and Douglas
(1994); Bernander (1993); and Koch, Bernander, and Douglas (1995). The
geometry for the compartmental models was derived from a large layer V
pyramidal cell and a much smaller layer 1V spiny stellate cell stained during
invivo experiments in cat (Douglas, Martin, & Whitteridge, 1991) and recon-
structed. Geometries of both cells are shown as insets in Figure 2. Each model
has the same eight active conductances at the soma, including an A current
and adaptation currents (see Koch et al., 1995, for details). The somatic
conductance values were different for each cell, but the same conductance
per unit area was used for each type of channel. Dendrites were passive.
Simulations were performed with the program Neuron (Hines, 1989, 1993).

To study the effect of GABAA synapses and shunting inhibition, we did
not explicitly model each synapse; we set the membrane leak conductance
and reversal potential at each location in the dendritic tree to be the time-
averaged values expected from excitatory and inhibitory synaptic bombard-
ment at presynaptic input firing rates fg and f; (as described in Bernander
et al., 1991). To compute the time-averaged values, synapses were treated
as alpha functions with a given time constant and maximum conductance
(9(t) = gmaxte™¥7e~1/7). The area density of synapses at a given location on
a dendrite was a function of the length of dendrite that separated the area
from the soma (see Table 1). Two different sets of densities (“near” and “far™)
were used, depending on whether inhibitory synapses were near the soma
or far from the soma. The “near” configuration is identical to the distribution
used by Bernander et al. (1991) and reflects the anatomical observation that
inhibitory synapses are mostly located near the soma in cortical pyramidal
cells. The “far” configuration is not intended to be anatomically realistic.
For simplicity, we used the same number of synapses for both the spiny
stellate cell and the layer V pyramidal cell models.

Our integrate-and-fire model is described by

dv

C
dt

= —V0eak + lsyn forV < Vi (2.1)

where g is the input conductance, C is the capacitance, and sy, is the
synaptic input. When the voltage V exceeds a threshold Vy,, the cell emits
a spike and resets its voltage back to 0. We used C = 1 nF, gjeak = 16 nS,
Vi = 16.4 mV, which matches the adapted current-discharge curve of the
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Table 1: Parameters of Synapses in the Compartmental Models

Type Reversal Number gmax Area Density

Potential Near Far

AMPA O0mV 4000 1nS 05ms 1+tanh(x_40> 1+tanh(x_1oo>

22.73 22.73
—x/50 x — 100
GABAA —70mV 500 1nS 5ms e 1+ tanh 2273
GABAg —95mV 500 0.1nS 40 ms xe~X/50 '

Note: x is the length of dendrite in um that separates this compartment from the soma. The
“near” area density was used for Figure 2; the “far” area density was used for Figure 4.
The normalization for the area density is not included in the expression because it depends
on the geometry; different neurons have different fractions of their membrane at a given
distance from the soma.

layer V pyramidal cell model quite well (not shown). Results from this
article are not changed if a refractory period or an adaptation conductance
is added to the integrate-and-fire model.

3 Results

We first describe our results and reasoning for an “anatomically correct”
distribution of synaptic inhibition in relative close proximity to the cell
body. Since we fail to observe silent inhibition act divisively but would like
to know under which circumstances it can act so, we next investigate the
anatomically less realistic situation of more distal inhibition.

3.1 Proximal Inhibition. Changing gj.ax does not change the slope of the
current-discharge curve for integrate-and-fire cells (see Figure 2A); it pri-
marily shifts the curves. It therefore has a subtractive rather than a divisive
effect.

The compartmental models’ behavior is very similar to that of the inte-
grate-and-fire unit. For two different geometries (a layer V pyramid and a
layer 1V spiny stellate cell), we computed the fully adapted firing rate as
a function of the excitatory synaptic input rate for various different rates
of inhibitory input to synapses with GABAA, receptors (see Figure 2B). The
slope of the input-output relationship does not change when the GABAA
input amplitude is changed; the entire curve shifts. The same effect can be
observed when considering the current-discharge curves (not shown).

This effect is most easily understood in the integrate-and-fire model. In
the absence of any spiking threshold, V would rise until V = lsyn/Jjeax (S€€
Figure 3). Under these conditions, the steady-state leak current is propor-
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Figure 2: Changing gjeqk has a subtractive rather than a divisive effect on firing
rates. (A) Current-discharge curves for the integrate-and-fire model, with gjeax
varying from 10 to 70 nS (from left to right) in steps of 10 nS. (B) Fully adapted
firing rates of the two cells as a function of excitatory input rate for different
inhibitory input rates. From left to right, the curves correspond to a GABAA
inhibitory rate of 0.5, 2, 4, and 6 Hz. In all of these cases, the curve shifts rather
than changes slope. In this case, inhibitory synapses were near the soma (“near”
configuration in Table 1), as found in cortical cells.

tional to the input current. However, if there is a spiking threshold, V never
rises above Vy,. Therefore, no matter how large the input current is, the leak
current can never be larger than Vi gieak- Ve can replace the leak conduc-
tance by a current whose value is equal to the time-average value of the
current through the leak conductance ({lieak) = ieak(V)), and simplify the
leaky integrate-and-fire unit to a perfect integrator. (Now, however, (ljex)
will be a function of lsyy.) If the current is suprathreshold, the cell will still

fire at exactly the same rate because the same charge fOT(Isyn — liear) dt is
deposited on the capacitor during one interspike interval T, although for
the leaky integrator the deposition rate is not constant.

For constant just suprathreshold inputs, (V) will be close to V¢, and
(lieak) Will be large. For larger synaptic input currents, the time-averaged
membrane potential becomes less and less (since V has to charge up from
the reset point), and therefore the time-averaged leak current decreases for
increasing inputs (compare Figures 3A and 3B). It can be shown that

Isyn if Isyn < VithGieak

(lleak) = ( lsyn 1 ) . (3.1)
V + otherwise.
thteck Vth Oleak IOQ(]- - Vth gleak/lsyn)

For large lsyn, and even for quite moderate levels of lsy, just above Vin gjeak,
the lower expression is approximately equal to gieaVin/2, independent of
Isyn (see Figure 3C). Therefore, it is a good approximation to replace the leak
conductance by a constant offset current. The current-discharge curve for
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the resulting perfect integrate-and-fire neuron is simply?

lsyn — (lieak) . lsyn _ Oleak
CVshw  CVyq 2C°

f(l) = (3.2)

Shunting inhibition (varying gieak) above threshold acts as a constant, hy-
perpolarizing current source, quite distinct from its subthreshold behavior.

A similar mechanism explains the result for the compartmental models.
Here, the voltage rises above the firing threshold, but the spiking mechanism
acts as a kind of voltage clamp on a long time scale (Koch et al., 1995) so that
the time-averaged voltage remains approximately constant. Furthermore,
spiking conductances are so large that during a spike, any proximal synaptic
conductances will be ignored.

3.2 Distal Inhibition. Distal synapses are not so tightly coupled electri-
cally to the soma, so one might expect that distal GABAA inhibition might
act divisivly. Since the spiking mechanism can be thought of as a kind of
voltage clamp (Koch et al., 1995), one can study the neuron’s response by ex-
amining the current into the soma when it is clamped at the time-averaged
voltage Vs (Abbott, 1991). For analysis, we simplify the dendritic tree into
a single finite cable that has an excitatory synapse (conductance gg, rever-
sal potential Eg) and an inhibitory synapse (g, and E,) located at the other
end. The cable has length |, radius r, specific membrane conductance Gjey,
intracellular resistivity R;j, and a length constant A = /r/(2RiGjeax). Using
the cable equation, one can show that at steady state, the current flowing
into the soma from the cable is

|soma = —gooVs
_L9e(Ee — Vse_L) +ai(El — Vse_L) + goovse_L
(Ge + 9L —e2h) + goo(1 +e72L)

+ 20uct . (33

where L = I/x is the electrotonic length of the cable and go, = mr3/2
v 2Geak /R is the input conductance of the cylinder but with infinite length.
(Inthis equation, all voltages are relative to the leak reversal potential, not to
ground.) Despite the simplification involved in equation 3.3, it qualitatively
describes the response of the compartmental model.

First, in the absence of any cable (L = 0), this equation becomes linear in
both ge and g;, and inhibition acts to subtract a constant amount from lsoma,
as we have shown above.

1 This expression can also be derived from the Laurent expansion of the current dis-
charge curve for a leaky integrator, f(lsyn) = —0jeak/C109(1 — VinGjeak/Isyn), in terms of
l/'syn around |5yn =00 (Stein, 1967)
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Figure 3: Why shunting inhibition has a subtractive rather than a divisive effect
on an integrate—and-fire unit. (A) The time-dependent current across the leak
conductance ligg (in NA) in response to a constant 0.5 nA current into a leaky
integrate-and-fire unit with (solid line) and without (dashed line) a voltage
threshold, Vy,. The sharp drops in ljga occur when the cell fires, since the volt-
age is reset. (B) Same for a 1 nA current. Note that ;.5 with a voltage threshold
has a maximum value well below Il without a voltage threshold. (C) Time-
averaged leak current (lje¢) in NA as a function of input current, computed from
the analytic expression. Below threshold, the spikeless model and the integrate-
and-fire models have the same Iy, but above threshold (lj.) drops for the
integrate-and-fire model because of the voltage threshold. For Iy, just greater
than threshold, the cell spends most of its time with V ~ Vy,, so (ljga) is high
(panel A; at threshold, ligax = VinQieak). For high Isyn, the voltage increases ap-
proximately linearly with time, so V has a sawtooth waveform as shown in
panel B. This means that (ljgg) = (MaX ligak) /2 = VinGieak/2-

When L # 0, some divisive effect is expected since g, appears in the
denominator. However, a subtractive effect will persist due to the term
containing g, in the numerator. The reversal potential of GABAA synapses
(increasing a membrane conductance to chloride ions) is in the neighbor-
hood of —70 mV relative to ground, while the time-averaged voltage when
the model neuron is spiking is around —50 mV (Koch et al., 1995). When
a cell is spiking, therefore, a nonzero driving potential exists for GABAA
inhibition. In the pyramidal cell model, the subtractive effect turns out to be
much more prominent than the divisive effect even for quite distant inhibi-
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Figure 4: The effect of more distant inhibition on firing rates for the layer V
pyramidal cell. (A) The effect on the input-output relationship when inhibitory
synapses are more distant from the soma (“far” configuration in Table 1). In-
hibitory rates are 0.5 Hz (solid) and 8 Hz (dashed). In these simulations, E,,
the GABA reversal potential, had its usual value of —70 mV. Top: The volt-
age clamp current when the soma is clamped to —50 mV, close to the spiking
threshold of the cell. Bottom: The adapted firing rate when the soma is not
clamped. Very little divisive effect is visible on the firing rate; there is a slope
change for firing rates less than 20 Hz, but this is too small to have a significant
effect. (B) Same as A, except that E, and the reversal potential of all leak conduc-
tances were changed to —50 mV so there is no driving force behind the GABAA
synapses or the membrane passive conductance. A clear change in slope for low
firing rates is evident. However, even for this rather unphysiological parameter
manipulation, subtraction prevails at moderate and high input rates.

tion (see Figure 4A). Both the inhibitory and excitatory synapses have been
moved to more than 100 um (which is more than 1 A) away from the soma.
To a good approximation, inhibition still subtracts a constant from both the
current delivered to the soma and the firing rate of the cell.

Equation 3.3 predicts that if the term containing g, is removed from the
numerator, then a divisive effect might be visible. When we changed the
reversal potential E; of the GABAA synapses and the leak reversal potential
Eeak to —50 mV, we found that there is indeed an observable change in slope
atalowfiring rate (see Figure 4B). For higher firing rates, however, inhibition
still acts approximately subtractively. We demonstrate this in the extreme
case of moving both E; and the reversal potential associated with the leak
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Figure 5: When gg is not small compared to g,, then inhibition acts more sub-
tractively than divisively even when the IPSP reversal potential is equal to the
somatic voltage. The two upper curves are lsoma as a function of ge for two dif-
ferent values of g, such that g, + B changes by a factor of two in equation 3.4.
The lower curve is the difference between those two curves. For ge > ¢, +B, itis
approximately constant over a large range. Units of gg are such that g, + B =1
for the smaller value of g,.

conductance to —50 mV (also the value to which the somatic terminal of the
cable is clamped). Under these conditions, equation 3.3 simplifies to

e

| , =constant + A———
soma(QE, 91) + R

(3.4)

where A and B are independent of ge and g;. Clearly if gg is small, changing
g1 simply changes the slope. When ge is not small, then it turns out that
changing g, has an effect that is more subtractive than divisive (see Figure 5).

Since in the “far” model both kinds of synapses have the same distribu-
tion, their firing rates are proportional to the conductances. With the synap-
tic parameters we have used (see Table 1), ge/g) = 0.8fg/f;; therefore, we
expect to see a subtractive effect when ge > 6 Hz, and this is approximately
true (see Figure 4B).

4 Discussion

Divisive normalization of firing rates has become a popular idea in the
visual cortex (Albrecht & Geisler, 1991; Heeger, 1992; Heeger, Simoncelli, &
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Movshon, 1996). It has been suggested that this is accomplished through
shunting inhibitory synapses activated by cortical feedback (Carandini &
Heeger, 1994, for a similar suggestion in the electric fish, see Nelson, 1994).
Most discussions of shunting inhibition have assumed that the voltage at the
location of the shunt is not constrained and may rise as high as necessary
(e.g., Blomfield, 1974; Torre & Poggio, 1978; Koch, Poggio, & Torre, 1982,
1983). However, when the shunt is located close to the soma, the voltage at
the site of the shunt cannot rise above the spike threshold. Therefore, the
current that can flow into the cell through the shunting synapse is limited
and at moderate rates becomes a constant offset (see Figure 3C). Under
these circumstances, shunting inhibition implements a linear subtractive
operation.

Even if the conductance change is not located close to the soma, it may not
have a divisive effect (see Figure 4A). First, when the cell is spiking, shunting
inhibition is not “silent”; there is a significant driving force behind GABAA
inhibition, since the somatic voltage is clamped to approximately —50 mV
by the spiking mechanism, and the reversal potential for GABA inhibition
is in the neighborhood of —70 mV. Second, even if the reversal potential for
GABA, and the leak reversal potential are set to —50 mV, inhibition acts
divisively only if the excitatory synaptic conductance is small compared
to the inhibitory conductance (see Figures 4B and 5). Large excitatory con-
ductances are expected when the cell receives significant input (Bernander
et al., 1991; Rapp, Yarom, & Segev, 1992) so the subtractive effect of large
conductances is relevant physiologically.

Current-discharge curves are affected as predicted by the simple inte-
grate-and-fire model in response to inhibitory postsynaptic potential and
GABA iontophoresis in motoneurons in vivo (Granit, Kernell, & Lamarre,
1966; Kernell, 1969) and cortical cells in vitro (Connors, Malenka, & Silva,
1988; Berman, Douglas, & Martin, 1992). The input-output curves for dif-
ferent amounts of inhibition do not diverge for larger inputs, as would be
required for a divisive effect; in fact, they converge at high rates because of
the refractory period (Douglas & Martin, 1990). In recordings from Limulus
eccentric cells, current-discharge curves show both a slope change and a
shift (Fuortes, 1959) because the site of current injection is distant from the
site of spike generation.? Rose (1977) showed that iontophoresis of GABAA
onto an in vivo cortical network appeared to act divisively. Because shunt-
ing inhibition has a subtractive effect on single cells, this could possibly be
caused by a network effect (Douglas, Koch, Mahowald, Martin, & Suarez,
1995).

For synapses close to the spike-generating mechanism, as well as for the
integrate-and-fire unit, the subtractive effect of conductance changes does

2 In this case, only the current-discharge curve was measured; the considerations in
Figures 4 and 5 are not relevant.
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not depend on the reversal potential of the conductance. Changing the re-
versal potential is equivalent to adding a constant current source in parallel
with the conductance, and in a single compartment model this will obvi-
ously merely shift the current-discharge curve. Therefore, like inhibitory
input, proximal excitatory input does not change the gain of other super-
imposed excitatory input.

Our analysis assumes that synaptic inputs change on a time scale slower
than an interspike interval. High temporal frequencies may be present in
synaptic input currents for irregularly spiking neurons. Furthermore, our
analysis assumes passive dendrites; active dendritic conductances compli-
cate the interaction of synaptic excitation and inhibition.

Although we cannot rule out that under some parameter combinations
shunting inhibition could act divisively on the firing rates, we have not
found such a range for physiological conditions. In combination with our
integrate-and-fire and single cable models, we believe that a different mech-
anism is necessary to account for divisive normalization.
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