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ABSTRACT

Measuring the response of the intergalactic medium (IGM) to a blast of ionizing radiation allows one to infer the
physical properties of the medium and, in principle, the lifetime and isotropy of the radiating source. The most sen-
sitive such measurements can be made if the source of radiation is near the line of sight to a bright background QSO.
We present results based on deep Keck HIRES observations of the QSO triplet KP 76, KP 77, and KP 78 atz ~ 2.5,
with separations of 2’3’ on the plane of the sky. Using accurate systemic redshifts of the QSOs from near-IR spec-
troscopy, we quantify the state of the IGM gas in the proximity regions where the expected ionizing flux from the fore-
ground QSOs exceeds that of the metagalactic background by factors of 10—200, assuming constant and isotropic
emission. Based on the unusual ionization properties of the absorption systems with detected H 1, C 1v, and O v1, we
conclude that the gas has been significantly affected by the UV radiation from the nearby QSOs. Aided by observa-
tions of the galaxy density near the foreground QSOs, we discuss several effects that may explain why the transverse
proximity effect has eluded most previous attempts to detect it. Our observations suggest that the luminosities of KP
76 and KP 77 have remained comparable to current values over timescales of, respectively, At > 25 Myr and
16 Myr < At < 33 Myr, consistent with typical QSO lifetimes estimated from independent, less direct methods.

There is no evidence that the UV radiation from either QSO was significantly anisotropic during these intervals.

Subject headings: intergalactic medium — quasars: absorption lines — quasars: general

Online material: color figures

1. INTRODUCTION

The QSO “proximity effect” refers to the observation that the
incidence of Ly« absorption from the intergalactic medium (IGM)
decreases at redshifts close to that of the QSO. If this deficit is in-
terpreted as being due to the influence of the radiation field of the
QSO on the nearby IGM, then measurements of the H 1 density
near QSOs of known luminosity may be used to determine the in-
tensity of the metagalactic ionizing background (Murdoch et al.
1986; Bajtlik et al. 1988; Scott et al. 2000). The statistical signifi-
cance of the QSO proximity effect is high enough that there is little
doubt of its reality. However, the measurement of the intensity of
the metagalactic radiation field from observations of the Ly« forest
is subject to a number of systematic uncertainties, in particular the
uncertainty in the QSO systemic redshift (e.g., Scott et al. 2000;
Espey et al. 1989), the possibly overdense large-scale environment
in which QSOs may be located (e.g., Faucher-Giguere et al. 2008),
and the nonlinear response of the observed H 1 optical depth to
changes in the radiation field intensity, such that only H 1 systems
with relatively low H 1 optical depths (73, < 10) will be signifi-
cantly altered. All of these effects lead to an overestimate of the
background intensity through an underestimate of the sphere of
influence of radiation from the QSO; QSO redshifts determined
from the broad UV emission lines tend to be lower than the true
systemic redshifts, so that the true “proximity region” where the
QSO radiation field dominates over the background is actually

! Based on data obtained at the W. M. Keck Observatory, which is operated as a
scientific partnership among the California Institute of Technology, the University
of California, and NASA and made possible by the generous financial support of
the W. M. Keck Foundation.
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larger than inferred. Similarly, if QSOs are preferentially found
in overdense regions, then the incidence of H 1 with sufficient op-
tical depth to remain relatively unscathed by an enhanced radia-
tion field will be higher than at an average location in the universe,
suggesting that the QSQO’s effect on the local radiation field is
smaller than it really is. Clearly, there are also statistical (as op-
posed to systematic) issues associated with the proximity effect,
since one expects relatively large sample variance in the H 1 con-
tent between the relatively small volumes probed by individual
QSOs.

The so-called transverse proximity effect (TPE), on the other
hand, involves searching for the influence of foreground sources
of UV radiation on the IGM absorption observed in the spectra
of background objects. Unlike the line-of-sight proximity effect,
measurements of the TPE can, in principle, constrain the radia-
tive lifetime and the isotropy of the sources (e.g., Schirber et al.
2004). Line-of-sight measurements of the proximity effect are sen-
sitive only to fluctuations in the source intensity on timescales of
<10* yr (e.g., Martini 2004), whereas transverse measurements
can sample longer timescales—determined by the light travel time
between the foreground source and the observed line of sight—
that are more interesting in the context of QSO lifetimes. The
sphere of influence of the radiation field from a source of UV
photons, as for the line-of-sight proximity effect, depends on
the luminosity of the source. For a typical bright QSO (V' ~ 18)
at z ~ 2.5, the sphere within which an isotropically radiating
QSO significantly dominates over the metagalactic background
has a physical radius of » ~ 5—10 Mpc, corresponding to a line-
of-sight velocity range of Av, ~ 1250-2500 km s~! for mate-
rial moving with the Hubble expansion. The corresponding light
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travel time is 15-30 Myr. A number of quasi-independent argu-
ments have suggested that bright QSOs typically have lifetimes of
10°-10% yr (see, e.g., Hachnelt et al. 1998; Richstone et al. 1998;
Martini & Weinberg 2001; Hosokawa 2002; Yu & Tremaine 2002;
Steidel et al. 2002), so that the potential sphere of influence of the
UV radiation from bright QSOs and the timescale of QSO “events”
may fortuitously be of the same order. The relevant angular scales
are 0 < 10’ on the sky at z ~ 2-3, with the amplitude of the ex-
pected effects varying as 1/6? and proportional to the (far-UV) lu-
minosity of the sources.

A number of authors have used QSOs with small angular sep-
arations on the sky but at different redshifts to search for the TPE
via observations of the Ly« forest (e.g., Fernandez-Soto et al.
1995; Crotts & Fang 1998; Croft 2004; Schirber et al. 2004). To
date, as far as we are aware, no evidence for a reduction in the
number of Ly« forest lines at redshifts near foreground QSOs has
been found.? In fact, all of the above-referenced works except
Fernandez-Soto et al. (1995) instead reported an excess of Ly«
absorption systems at the redshifts where TPE deficits would have
been expected. The common explanations for the lack of the ex-
pected signal include some combination of the QSO large-scale
environment, short or intermittent radiative lifetimes of the QSOs,
and anisotropy of the QSO radiation. More recently, Hennawi
et al. (2006) found that high column density H 1 systems at the
redshifts of foreground QSOs are much more common than as-
sociated systems of similarly high column density seen in the
spectra of QSOs at their own redshifts. These authors also esti-
mated that the clustering of the high column density H 1 systems
with the QSOs may be even stronger than that of star-forming gal-
axies at the same redshifts. Such observations have been inter-
preted as evidence that H 1 gas is distributed anisotropically around
QSO0s, possibly because of QSO variability and/or anisotropic UV
radiation. As a counterargument, however, observations of the
He 1, rather than H 1, Ly« forest seem to show that foreground
QSOs do in fact have a measurable effect on the ionization state of
gas within volumes corresponding to light travel times of ~10°—
107 Myr (Jakobsen et al. 2003; Worseck & Wisotzki 2006;
Worseck et al. 2007). This may suggest that H 1 is not the most
sensitive barometer of changes in the radiation field near QSOs.
The key advantage of the He i transition is that it is sensitive to the
intensity of high-energy photons that can plausibly only be pro-
duced by QSOs or AGNS, so that one can sense changes in both
the intensity and the shape of the radiation field for local sources.

A phenomenon closely related to the TPE is the fluorescence
of high column density H 1 gas in the vicinity of bright sources of
ionizing photons (see, e.g., Gould & Weinberg 1996; Cantalupo
et al. 2005). Searches for fluorescence at the redshifts of QSOs
have so far yielded mixed results. Adelberger et al. (2006) iden-
tified what appears to be a damped Ly« system (DLA) atz = 2.84
that is producing Ly« emission in response to the ionizing radia-
tion from a very bright QSO located ~380 kpc away, implying
that the QSO luminosity has remained approximately constant
over the last ~10° yr (and that the QSO is radiating isotropically).
However, in another case, the lack of fluorescence around a QSO
at a similar redshift was interpreted by Francis & Bland-Hawthorn
(2004) as evidence for anisotropic emission from the QSO.

Thus, the observational situation concerning the TPE is cur-
rently ambiguous. QSO lifetimes of >10° yr and largely isotropic
QSO radiation are supported by some observations but challenged

2 Gallerani et al. (2008) observe a “transmission gap” in the Ly forest of a
background z = 6.42 QSO near the redshift of a foreground QSO at z = 5.65,
although the statistical significance of the region of reduced Ly« opacity is dif-
ficult to evaluate.
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Fic. 1.—QSO KP 76, KP 77, and KP 78 triplet on the plane of the sky. The
transverse physical distances between the QSO sight lines (evaluated at the red-
shift of the lower redshift QSO in each case) are indicated. The QSO systemic red-
shifts were measured from accurate near-IR spectroscopy (§ 2.2).

by others. For this reason, we have elected to investigate the TPE
using a different approach from that of most previous attempts.
Rather than counting Ly« lines or evaluating the average Ly«
opacity near foreground QSOs, we focus on the metal-line sys-
tems. Our strategy is to closely examine the ionization state of
metal-line systems within the expected spheres of influence of
foreground QSOs, using the combination of very high quality op-
tical spectra of the background QSOs and precise determinations
of the systemic redshifts of the foreground QSOs from near-IR
spectroscopy. Our aim is to determine the strength of the ionizing
radiation field seen by gas at various distances from the fore-
ground QSOs, independently of the statistical limitations and sys-
tematic uncertainties inherent in line-counting or “mean flux”
techniques. The hope is that the new data will help to explain why
previous results have been so mixed, as well as better constrain the
radiative lifetime and solid angle of QSO emission.

In the first stage of the program reported here, we focus on the
QSO triplet KP 76, KP 77, and KP 78 (also known as Q1623+
268). This grouping is among the best-studied in the literature,
having figured prominently in earlier work aimed at measuring
the coherence scale and clustering of the Ly« forest (e.g., Sargent
et al. 1982; Crotts 1989; Crotts & Fang 1998; Crotts et al. 1997).
The relative configuration of the three QSOs is illustrated in Fig-
ures 1 and 2. Crotts & Fang (1998) searched for the TPE in the
Lya forests of this triplet and concluded, based on counts of Ly«
absorption lines, that there is no evidence that the foreground
QSOs (KP 76 and KP 77) reduce the density of Ly« lines in the
expected proximity regions. Rather, the line density appears to
be higher than at an average location in the forest at comparable
redshifts.

In this paper we present the highest quality high-resolution
spectra of these QSOs to date, obtained with the recently upgraded
High Resolution Echelle Spectrograph (HIRES) on the Keck I
telescope. We have also obtained, as part of an ongoing survey of
galaxies and the IGM at redshifts 1.8 < z < 3 (see Steidel et al.
2004; Adelberger et al. 2005), spectra of approximately 300 other
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Fig. 2.—Schematic view of the QSO triplet. The relative positions of the metal-line absorption systems studied in this paper, labeled A—J, are indicated within dotted
circles representing the proximity regions of the foreground QSOs KP 76 and KP 77. Within these volumes—spheres of physical radius ~5 Mpc—the ionizing flux from
the nearby QSO is expected to exceed that due to the metagalactic background by more than 1 order of magnitude, if the QSOs radiate isotropically and their luminosities
have remained approximately constant over the last 20-30 Myr. [See the electronic edition of the Journal for a color version of this figure.]

galaxies, QSOs, and AGNSs in this redshift range within an ~15’
field centered on the QSO triplet, providing unprecedented infor-
mation on the surrounding large-scale structure. We examine the
detailed properties of absorption-line systems within the expected
proximity regions of the two foreground QSOs, and we interpret
our findings in the context of our knowledge of the distribution of
galaxies in the same regions.

2. OBSERVATIONS
2.1. HIRES Spectroscopy

The Q1623+2651 field (Sramek & Weedman 1978), which in-
cludes the QSO triplet KP 76, KP 77, and KP 78, is part of a
large-scale survey of galaxies and AGNs in the fields of bright
QSOs that we have been conducting during the past several years
(Steidel et al. 2004). The three QSOs have u’-band magnitudes
(measured from our photometry) of 18.62 (KP 76; zep, = 2.4663),
17.48 (KP 77; zemy = 2.5352), and 18.82 (KP 78; zey, = 2.6148),
presenting a very unusual configuration of three bright QSOs at
similar redshifts and within a few arcminutes on the sky. The an-
gular separations between pairs are 127" (KP 76—KP 78), 147"
(KP 76—KP 77), and 177" (KP 77-KP 78), corresponding to
proper transverse distances (evaluated at the redshift of the lower
redshift member of each pair) of 1.028, 1.190, and 1.424 phys-
ical Mpc, respectively, for the Q) = 0.3, Q) =0.7, Hy =
70 km s—! Mpc™! (h = 0.7) cosmology that is assumed through-
out this paper (see Fig. 1).

The observations reported here were obtained on the nights of
2005 May 31, June 1, and October 9 and 10 with the Keck I tele-
scope and HIRES (Vogt et al. 1994) using the UV cross-disperser
and UV-sensitive CCD array. The data cover the wavelength
range 3100—6000 A, with small gaps in spectral coverage near
4000 and 5000 A corresponding to gaps between CCD chips on
the detector. All exposures were taken through the 1.148" slit,
resulting in a resolution of 8.5 km s~! (FWHM), sampled with
~3 pixels per resolution element. Some additional HIRES spec-
tra of KP 76 and KP 77, obtained in 1995 August by W. Sargent
and collaborators, were also included. The MAKEE data reduc-
tion package, written by T. Barlow, was used to process the two-
dimensional HIRES spectra, extract them, map them onto a
vacuum heliocentric wavelength scale, and finally combine them;
continuum fitting prior to the merging of echelle orders was
accomplished using the IMANIP package, kindly provided by
R. Simcoe. The final one-dimensional spectra have typical signal-
to-noise ratios (S/Ns) of 15—40 per 2.8 km s~! pixel.

2.2. NIRSPEC Spectroscopy

Given the importance of establishing the systemic redshifts of
the QSOs, in order to accurately evaluate their effect on the nearby

IGM, we obtained near-IR spectra of all three QSOs encompass-
ing the [O m] 444959, 5007 and H/3 emission lines. The spectra
were obtained in 2004 September with the Near Infrared Spectro-
graph (NIRSPEC; McLean et al. 1998) on the Keck II telescope in
low-resolution (R =~ 1400) mode using the NIRSPEC-5 filter (cor-
responding approximately to the near-IR H band). The reductions
were performed in the manner described in detail by Erb et al.
(2006).

The redshifts of KP 76 and KP 77 were determined from
Gaussian fits to the [O m] emission lines, yielding z = 2.4663 +
0.0003 and 2.5353 + 0.0003, respectively. The redshift of KP 78,
which is less crucial to our analysis since this QSO lies in the back-
ground of the other two, was measured to be z = 2.6148 + 0.0004
from the HQ line because [O mi] falls in a region of very poor
atmospheric transmission between the H and K bands. Note that
published catalog redshifts for the three QSOs are 2.490, 2.5177,
and 2.6017 (the last two from the Third Data Release of the Sloan
Digital Sky Survey); they differ from the newly determined
and more accurate systemic redshifts by +2050, —1490, and
—1090 km s~!, respectively. In our work, we have found that
such large redshift offsets are in fact typical of bright QSOs, and it
is worthwhile to point out that they are as large as or larger than
the velocity range corresponding (for material moving with the
Hubble flow) to distances over which the radiation field of a bright
QSO dominates over the background (see § 3). Thus, it is essential
to determine accurate redshifts from near-IR spectroscopy for a
meaningful assessment of the proximity effect.

Even so, the systematic uncertainties in the redshifts of the three
QSOs are likely to exceed the statistical error of £30kms~! of our
Gaussian fits. For example, Boroson (2005) has shown, using
a large sample of low-redshift AGNSs, that the redshifts defined
by the [O m] doublet are lower than those of the host galaxies by
40 km s~!, on average, and that the offset can be up to 10 times
higher in the most extreme cases. Nevertheless, the [O m1] doublet
is a far better indicator of systemic redshift than the broad UV emis-
sion lines commonly used. For the purposes of the present work,
we assume that the above values are the systemic redshifts of the
three QSOs considered here.

3. IDENTIFICATION OF ABSORBERS AND ANALYSIS

The first step in the analysis is to determine the wavelength in-
tervals over which to search for evidence of the TPE in the HIRES
spectra of the two background QSOs, KP 78 and KP 77. These in-
tervals correspond to the physical distances to which the ionizing
flux from the foreground QSOs will significantly dominate over
the metagalactic radiation field. Given the difficulties experienced
by previous observers in detecting the TPE, we decided to be de-
liberately conservative in the choice of interval and limited our
analysis to the volume within which the expected radiation field
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Fic. 3.—Portions of the spectra of the background QSOs near the redshifts of foreground QSOs. Each panel shows the Ly« forest within 41500 km s~! of the
foreground QSO redshift. The 10 metal-line systems identified within these proximity regions are denoted by letters A—J (blue dashed lines), while 13 H 1—only absorbers
with log N(H 1) > 13.5 are indicated by lowercase letters (red dashed lines). The yellow regions mark the redshifts (together with their uncertainties) of seven spec-
troscopically confirmed galaxies within the proximity regions of KP 76 and KP 77 and close to the sight lines to KP 77 and KP 78. These galaxies are discussed in § 5.1.

intensity from the proximate QSOs exceeds the metagalactic ra-
diation field intensity by a factor of 2 10, where the impact on the
IGM should be easiest to recognize. We calculated the QSO lu-
minosities using their measured broadband u’ fluxes (correspond-
ing to AB magnitudes at rest-frame wavelengths of ~1000 A,
just above the Lyman limit at 912 A); these values were corrected
for line blanketing in the Ly« forest estimated from the spectra
themselves, increasing their brightness by ~20%. We adopted a
metagalactic background intensity at the Lyman limit of Ji,,(14) ~
5x 10722 ergs s~ em™2 Hz ! sr™! (Scott et al. 2000; Tytler et al.
2004; Bolton et al. 2005). Using these numbers, the ionizing fluxes
from KP 76 and KP 77 will exceed that from the metagalactic ra-
diation field by factors of 210 within spheres of a physical radius
of ~5 Mpc, assuming that the QSOs radiate isotropically and that
their luminosities have remained approximately constant over the
relevant transverse light travel times of ~10°~107 yr. In our cos-
mology, a radius of 5 Mpc corresponds to a velocity interval Av ~
+1250 km s~! for material moving with the Hubble expansion.
Considering the uncertainty in the systemic redshifts of the QSOs,
which from the discussion above we estimate to be £100 km s,
and an additional uncertainty of 4200 km s~! to account for de-
partures from the Hubble flow due to the local density field, we

settled on a velocity range Av ~ +1500 km s~!, centered on the
systemic redshifts of KP 76 and KP 77, over which to examine the
properties of the IGM in the HIRES spectra of KP 77 and KP 78.
These “proximity regions” in the relevant portions of the Ly« for-
est are shown in Figure 3.

We identified metal-line systems within these proximity re-
gions by the presence of Ly« absorption and either C v 441548,
1550 or O vi A41031, 1037 (or both). Since the first-order effect
of an enhanced ionizing radiation field is to reduce the H 1 optical
depth 734, we did not require that strong H 1 be present; in fact,
one system (system C below) has very weak H 1 that would not
have been identified had the search been limited by Ly« optical
depth. The wavelength coverage of the HIRES spectra down to
3100 A in the observed frame is important for confirming that a
given absorption feature in the forest is indeed Ly« (based on the
presence of Ly/3) and for accurate measurement of the H 1 col-
umn density N(H 1) in cases where the Ly« line is saturated (using
higher order Lyman lines). Many of the Ly« lines within the prox-
imity regions have no associated C 1v or O v1 absorption even at
the sensitive detection limits reached by our HIRES spectra. In
the subsequent analysis, we include all such H —only systems
with column densities N(H 1) > 10'33 cm~2, for which we have
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TABLE 1
METAL-LINE SYSTEMS IN PROXIMITY REGIONS

log N b
System Ion z (cm™?) (km s~ 1)
) T Hi1 2.4550 14.76 £+ 0.02 314 £ 0.8
H1 2.4558 13.36 +£ 0.13 203 £ 6.3
O vi 2.4557 13.87 £ 0.14 41.8 £ 15.0
Criv 2.4550 12.92 + 0.04 189 £ 1.9
B Hi1 2.4563 14.12 £+ 0.03 175 £ 1.3
Hi1 2.4573 14.93 + 0.04 332+ 1.8
Hi1 2.4582 14.83 + 0.03 318 £ 1.2
O wvi 2.4578 14.12 £+ 0.06 285+ 45
O vi 2.4584 14.03 £+ 0.07 20.5 + 3.4
Civ 2.4564 12.87 + 0.04 95+13
Ciwv 2.4578 12.68 + 0.09 85+29
Civ 2.4583 12.85 £ 0.07 135 £28
[ O H1 2.4654 12.44 + 0.07 239 + 48
O i 2.4656 14.62 £+ 0.02 342 £ 09
Cwv <12.13
) D 2 Hi1 2.4737 13.50 £+ 0.06 23.1 £ 3.1
O wvi 2.4738 13.53 £ 0.17 20.8 £ 9.8
Civ 2.4736 12.83 £+ 0.05 504 £ 6.2
Eos H1 2.4772 13.41 £+ 0.05 22.1 £3.2
[ORYi 2.4775 13.79 +£ 0.11 23.8 £ 6.1
Crv <12.13
Fo Hi1 2.5358 14.24 + 0.89 23.1 £12.8
Hi1 2.5365 15.26 £+ 0.16 432 £ 7.0
O v 2.5358 13.04 £ 0.14 84 + 3.7
O 2.5365 13.96 £+ 0.03 36.6 £ 3.3
Civ 2.5363 <12.28 e
(€ H1 2.5406 13.10 £ 0.05 17.8 £ 1.3
O i 2.5407 13.47 + 0.07 122 £2.5
Criv 2.5406 12.42 + 0.06 11.1 £ 2.3
Hooris Hi1 2.5422 13.31 £ 0.02 228 £ 1.1
O wvi 2.5422 13.62 £+ 0.06 17.7 +£ 2.7
Ciwv 2.5422 12.46 + 0.07 16.6 £ 3.5
) I, Hi1 2.5506 15.62 + 0.91 25.1 £4.1
Hi1 2.5511 15.64 + 0.64 292 +£ 3.6
O 2.5506 13.37 + 0.13 279 +£9.8
O i 2.5510 12.97 + 0.27 11.1 £ 6.2
Crv 2.5507 13.07 £ 0.03 8.9 £ 0.8
Civ 2.5510 13.52 + 0.01 16.6 £ 0.6
T Hi1 2.4571 13.07 + 0.05 22.1 £ 1.6
Hi1 2.4578 13.85 + 0.01 33.8 £ 0.7
O wvi 2.4571 13.71 £ 0.16 57+32
Ciwv 2.4571 12.09 £+ 0.11 109 £ 3.8

confidence in both their identification and their measured col-
umn densities through the detection of higher order Lyman lines.
In general, these H 1—only systems do not provide significant con-
straints on the ionization level of the IGM, but they are included
for completeness. The 3 o upper limits to metal-line column den-
sities are typically log N(O vi) < 12.7 and log N(C 1v) < 12.1
(with N in units of cm™?).

We used the software package VPFIT? to determine redshifts,
column densities N, and Doppler parameters 5 (km s~!) for a to-
tal of 23 absorption systems. Table 1 lists the results of the pro-
file fits for 10 systems with detected metal lines (labeled A-J),
and Table 2 lists the results for 13 H 1—only systems (labeled a—m).
Portions of the spectra near selected transitions of interest, together
with the VPFIT model fits, are reproduced in Figures 4—11. Again,
we refer the reader to Figure 2 for a schematic illustration of the
location of the various absorption systems along the two lines of

3 See http:/www.ast.cam.ac.uk /~rfc/vpfit.html.
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TABLE 2
H 1-ONLY SysTEMS IN PROXIMITY REGIONS
log N(H 1) b

System z (cm™?) (km s~ ")
everrereeereerennanns 2.5193 13.65 + 0.02 21.6 + 0.9
B 2.5240 13.71 4+ 0.06 157+ 1.4
Covtrrereeereereeennanns 2.5244 13.74 + 0.05 153+ 1.5
2.5393 14.42 + 0.04 56.8 + 2.8

2.5433 14.44 + 0.02 254+ 04

2.5485 13.63 + 0.05 255+ 1.7

2.5493 14.30 + 0.02 36.0 + 1.7

2.4556 13.56 + 0.02 71.0 £ 2.3

2.4591 13.76 + 0.01 33.1 £ 0.5

2.4634 14.07 + 0.01 29.4 £+ 0.6

2.4722 14.44 + 0.01 263 +0.2

2.4737 14.29 + 0.01 24.0 £ 0.3

2.4746 14.21 + 0.01 285+ 04

sight and to Figure 3 for an overall view of the Ly« forest within
the proximity regions. We now briefly discuss each metal-line sys-
tem in turn.

3.1. Systems A and B (z = 2.4554 and 2.4573)

These two systems are very close together, with a physical sep-
aration of less than 1 Mpc (assuming negligible peculiar motions);
each of them consists of multiple absorption components (see
Fig. 4). Associated C 1v and O v1 absorption is detected in both
A and B. In the latter, there is a good match in velocity between
C1v and O v1 in the two components at z = 2.4578 and 2.4583
(at —735 and —692 km s~! in Fig. 4). At more negative veloc-
ities, however, there is a single broad O vi component approx-
imately midway between the C 1v redshifts z = 2.4550 and 2.4564,
suggesting that this O v absorption has an origin in diffuse, col-
lisionally ionized gas, similar to the typical O vi systems discussed
by Simcoe et al. (2002, hereafter S02).

3.2. System C (z = 2.4655)

This system is highly unusual in that it consists of a pair of very
strong O v1 lines with a very weak associated Ly« line. No other
metal lines are detected, including N v and C v (see Fig. 5). It is
thus reasonable to question whether our identification is correct.
One complication is that the weaker member of the O vi doublet,
A1037, is partially blended with a lower redshift Ly« line (see
Fig. 6). However, VPFIT returns the same values of z, log N(O vi),
and b irrespective of whether we fit the unblended O vi1 41031
line on its own or simultaneously with the other member of the
doublet and the blended Ly« line. In either case, VPFIT estimates
the probability that the fit represents the data to be greater than
90%. This absorption system is very close in velocity to the sys-
temic redshift of KP 76 (Av = 60 km s™!). Its unusual proper-
ties, with strong O vi absorption, undetectable C 1v, and barely
detectable Ly« (at the S/N of our data), are consistent with the
gas being exposed to a greatly enhanced UV radiation field. We
return to this point in § 4.2.

3.3. Systems D and E (z = 2.4737 and 2.4773)

These two systems present clear and isolated Ly absorption
of moderate strength (see Fig. 7). We identify associated O v1 ab-
sorption in both systems, although the O vi lines are located in a
relatively crowded region of the spectrum. In particular, 11037 in
system D is masked by a strong, saturated absorption feature (pre-
sumably Ly« at a lower redshift). C 1v is barely detected in sys-
tem D and below our detection limit in system E.
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Fic. 4.—Spectra (histograms) and fitted Voigt profiles (solid lines) of selected absorption lines in systems A and B (z = 2.4554 and 2.4573), as indicated. The x-axis
velocity scale is relative to the systemic redshift of the foreground QSO, as in Fig. 3. [See the electronic edition of the Journal for a color version of this figure.]

3.4. System F (z = 2.5362)

H 1 absorption is strong in this system, with N(H 1) = 2 x
10" cm~2, based on a strongly saturated Ly« line and higher
Lyman series lines detected up to Lyé (see Fig. 8). We clearly
detect O vi A1031; although 41037 falls within a stronger fea-
ture (presumably Ly« at a lower redshift), the good redshift match
of 21031 with the Lyman lines lends support to our identification.
C v 41548 is very weak, below our detection limit. Again, this
system is very close in redshift to the foreground QSO KP 77 (see
Fig. 3); the velocity difference is only Av = +76 km s~ .

3.5. Systems G and H (z = 2.5406 and 2.5422)

These two systems, separated by only ~150 km s~!, have very
similar properties: weak Lya and C 1v but relatively strong O vi
(see Fig. 9). Such properties are unusual for most metal-line ab-
sorption systems but consistent with a significant enhancement in
the local ionizing radiation field.

3.6. System I (z = 2.5508)

This system is the furthest from the foreground QSO among
those considered here, with an inferred distance of ~5 Mpc from
KP 77. Its properties are much more typical of intervening metal-
line systems, with relatively strong C 1v and H 1; its column den-
sity N(H 1) = 8.6 x 10'5 cm™? is the largest among the absorbers
in the present sample. Only the stronger member of the O vi dou-
bletis detected (41037 is blended), but the proximity in velocity to
C 1v and H 1 supports the identification.

3.7. System J (z = 2.4575)

This is the only metal-line system in the proximity region of
KP 76 probed by the line of sight to KP 77 (see Fig. 3). C1v 11548
is marginally detected, while the O vi doublet lines are strong and
narrow (see Fig. 11). Interestingly, the b values of the H1 (z =
2.4571 component) and O vi lines (C 1v is too weak to provide a
reliable constraint on b) scale approximately in proportion to the
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Fig. 5.—Same as Fig. 4, but for system C (z = 2.4655). There is strong absorption in O vi and a weak H 1 line. No other metal-absorption lines are detected. [See the

electronic edition of the Journal for a color version of this figure.]

square root of the atomic mass, as expected from thermal broad-
ening alone (i.e., with no contribution to the line widths by large-
scale turbulence). The implied temperature is 7 ~ 3 x 10* K

4. THE EFFECTS OF THE QSO RADIATION FIELD
4.1. Inferences on the Radiation Field Intensity

Most of the metal-line systems within the proximity regions
of KP 76 and KP 77 exhibit strong O v1 and relatively weak C v
and H 1. In order to interpret these measurements quantitatively
and assess the impact of the ionizing flux from KP 76 and KP 77 on
their environments, we used the photoionization code CLOUDY
(Ferland et al. 1998) to model the ionization state of the gas in
systems A—J. The clouds were modeled as optically thin plane-
parallel slabs, illuminated on one side with a power-law radiation
field ranging from 0.1 to 100 ryd. Hydrogen number density and
metallicity were allowed to vary. Figure 12 shows the measured
column density ratios (or limits, where applicable) together with

the results of photoionization models for four values of the metal
abundance, from solar to 1/1000 of solar. The dashed lines show
the line ratios expected for a given value of the dimensionless
ionization parameter U, defined as
v M
nyc ny

(1)
where @ is the flux of photons capable of ionizing H, . is the
ionizing photon number density, and ny is hydrogen number
density. We assume that the cloud is homogeneous so that the
column density ratios are independent of cloud size.

From Figure 12 it can be readily appreciated that, for a given
value of the ionization parameter, the ratio N(O vi)/N(C 1v) does
not vary significantly with metallicity, provided of course that the
O/C ratio remains constant; in our modeling we have kept the rela-
tive abundance of the two elements at the solar value. Conse-
quently, the measured column density ratios N(O vi)/N(C 1v) and
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Fic. 6.—O v1 absorption in system C (in the spectrum of KP 78 near the red-
shift of KP 76). As in the other figures, the histograms show the observed ab-
sorption profiles. In the top panel, the solid line is the synthetic absorption profile
produced by VPFIT when fitting the O vi 21031 transition alone. The correspond-
ing theoretical profile to the weaker member of the doublet is shown in the bottom
panel (left dashed line). When combined with a lower redshift Ly« line (right
dashed line) it produces a satisfactory fit to the blend (solid line). The velocity scale
on the x-axis is the same as in Figs. 3 and 5. [See the electronic edition of the Journal
for a color version of this figure.]

N(O v1)/N(H 1) can be used to constrain the ionization parameter.
Values of log U for each of the 10 metal-line systems are listed
in column (8) of Table 3 and can be seen to be mostly between
log U ~ —1 and 0.* The typical uncertainties in log U given the
assumed radiation field shape are ~0.2—0.3. The implied metal-
licities of the clouds, constrained by the ratios N(O vi)/N(H 1) and
N(C 1v)/N(H 1), generally lie between a few tenths of solar and
1/1000 of solar, values that are typical of Ly« forest clouds (e.g.,
Simcoe et al. 2004, hereafter S04). One exception is system C,
which exhibits an unusually high column density of O vi com-
pared to H 1 and C 1v; its location on the diagram in Figure 12
cannot be reproduced even by the models with solar metallicity.
Also shown in Figure 12 are points drawn from a combination of
the samples of Bergeron et al. (2002, hereafter B02) and Carswell
etal. (2002, hereafter C02), consisting of systems selected by O vi
absorption only, without regard to N(H 1). In general, nothing is
known about the environment of the O vi systems in the B02 +
C02 comparison sample, although one of the systems from B02
is within 1500 km s~! of the published QSO emission redshift
and has only a lower limit on log N(O vi)/N(C 1v), implying that
log U > —0.5, similar to several of the proximate systems in our
sample. We also note that there are two systems (out of 16) from
the B02 + C02 sample with implied metallicities similar to that
of system C, albeit with inferred values of log U that are lower

“# For simplicity, here and in the following discussion we treat the upper limits
to N(C 1v) as detections. Thus, the values of Uand ny in Table 3 for systems C, E,
and F are, respectively, lower and upper limits to the true values of the ionization
parameter and hydrogen density.
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Fic. 7—Same as Fig. 4, but for systems D and E (z = 2.4737 and 2.4773).
[See the electronic edition of the Journal for a color version of this figure.]

by ~2 dex. We return to a comparison of the properties of the
proximate systems versus published “nonproximate” samples’
below.

Having determined the value of U for each metal-line system,
we can now deduce the density ny corresponding to a given value
of @ in equation (1). In particular, we are interested in examining
the consequences of assuming that the ionizing flux seen by each
cloud consists of the sum of two components: (1) the metagalactic
ionizing background and (2) the radiation field of the QSO in the
proximity zone of which the absorber is located. Specifically, we
consider the scenario whereby the metagalactic background to
which the cloud is exposed is boosted by the presence of the
nearby QSO by a factor g, given by

)

) 10~—0-4(48.60-+m912) {dL(z)] 2

(1 +Z)7TJbg(V0) ro

where d;(z) is the luminosity distance to the QSO from Earth,
and Jyg(10) is the background flux density at the Lyman limit;
we adopt Jpg (1) ~ 5 x 107 2(hv/13.6 ev) " ergss~Lem 2 sr !,
which is consistent with the inferred hydrogen photoionization
rate required to explain the mean Ly« forest optical depth (Bolton
etal. 2005) and is approximately equal to the measured sum of the
QSO and Lyman break galaxy contributions to the metagalactic
radiation field atz ~ 3 (Shapley et al. 2006; Hunt et al. 2004). It is
a factor of ~2 lower than the value of J,, inferred from the QSO
proximity effect (Scott et al. 2000) but is consistent within the un-
certainties. Clearly, our results depend on the assumed intensity
and spectral shape of the metagalactic radiation field, since we

5> We refer to these samples as “nonproximate,” meaning “not known to be
proximate.” It is possible that some systems in the comparison samples are being
ionized by more than the metagalactic radiation field.
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Fic. 8.—Same as Fig. 4, but for system F (z = 2.5362). Hydrogen absorption
is strong, as is O vi A1031. O vi 41037 is blended with hydrogen lines at lower
redshifts. C 1v 11548, on the other hand, is very weak and below our detection
limit. [See the electronic edition of the Journal for a color version of this figure.]

are seeking evidence for departures from these values produced
by local sources of ionizing photons. The normalization is prob-
ably uncertain by at least a factor of ~2, so that inferred values of
g should be viewed as similarly uncertain. The value of g is the
proper distance of the absorber from the nearby QSO, obtained
by combining the transverse distance implied by their angular sep-
aration on the sky and the distance along the line of sight inferred
from the redshift space velocity difference Aw:

Ay 12 1/2
’”Q{Rz(Z)JFL_I(Z)] } ) (3)

where R(z) is the proper distance on the plane of the sky be-
tween the foreground QSO and the sight line to the background
QSO and H(z) is the Hubble parameter; both quantities are eval-
uated at the redshift of the foreground QSO. As usual, the sec-
ond term is affected by uncertainties due to departures from the
Hubble flow caused by local density fields and by the systematic
uncertainties in the QSO redshifts; together they may amount to
less than ~1 Mpc (~260 km s~!; Adelberger 2004). Values of ro
for all 23 absorption systems (metal-line systems and H 1—only
systems) are given in column (5) of Table 3; given our choice of
maximum value of Av (see § 3) and the QSO separations, they
range from ~1 to ~5 Mpc.

It is important to recall at this point that, as discussed in detail
by Adelberger (2004), the geometry of the TPE is such that there
is a time difference between, on the one hand, the time we mea-
sure the physical conditions of an absorbing cloud in the spectrum
of'a background QSO and, on the other hand, the time we measure
the flux of the foreground QSO. The time difference A¢ depends
on both the redshift and the transverse separation. For a velocity
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Fic. 9.—Same as Fig. 4, but for systems G and H (z = 2.5406 and 2.5422;
H 1—only systems d and e are also included in the plots, near 300 and 700 km s !,
respectively, as well as several weaker Lya: components needed to fit the H 1 pro-
files; see Fig. 3). O vi lines are well defined and line up well with individual com-
ponents within a complex system of H 1absorption. As in the previous cases, C v
A1548 is weak. [See the electronic edition of the Journal for a color version of this

figure.]

difference Av between the foreground QSO and an absorption
system at proper separation r,

1 Av

At = c [I”Q + H(Z):| (4)
Note that this time difference is nof the same as the light travel
time between the foreground QSO and the gas giving rise to the
absorption, unless zaps = 2y, (Where zy, is the redshift of the fore-
ground QSO). The value of At for absorption systems with
Awv > 0 (i.e., systems redshifted relative to the foreground QSO)
will be nearly twice the light travel time rp/c, whereas At < rplc
for systems with Av < 0. In other words, absorption systems
within the proximity region of a foreground QSO but located
behind it (as viewed from Earth) probe physical conditions at times
up to ~30 Myr earlier than the time we receive the QSO light on
Earth. Conversely, systems in front of the QSO can provide a more
recent measure at a given rp. Values of At for all 23 systems
considered in the two proximity regions of the foreground QSOs
KP 76 and KP 77 are collected in column (6) of Table 3; they
range between 0.2 and 33.4 Myr.

Returning to the QSO boost factors g given by equation (2),
their values, listed in column (7) of Table 3, were calculated un-
der the assumption that the QSOs radiate isotropically and have
maintained near-constant luminosity for the corresponding time
intervals A ¢. The lifetimes of bright QSOs are notoriously uncer-
tain, but, as mentioned above, lifetimes of 1-100 Myr are believed
to bracket the typical values. For the time being, we use our naive
determinations of g and examine the results for consistency with
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Fic. 10.—Same as Fig. 4, but for system I (z = 2.5508). Unlike the previous
cases, C 1v absorption is very well defined and stronger than O v, as may be ex-
pected for a system near the edge of the proximity region. H i—only systems fand
g appear near 1100 and 1200 km s™!, respectively (see Fig. 3). [See the electronic
edition of the Journal for a color version of this figure.]

expectations. In particular, the calculated values of g and U lead,
via equations (1) and (2), to the volume densities ny listed in col-
umn (9) of Table 3; column (10) gives the corresponding over-
densities relative to the mean density of baryons atz = 2.5. From
the table we see that the clouds probed in the proximity regions of
KP 76 and KP 77 trace densities relative to the cosmic mean of
log p/py = 0.9-2.3; these are typical values for metal-line systems
of intermediate H 1 column density in the general IGM (e.g.,
S04).

With our photoionization modeling, we can further calculate
the column densities of H 1, C 1v, and O vi1 that absorption sys-
tems A—J would produce, given their volume densities ny, in the
absence of the radiation field from the nearby QSO. Using as in-
put a radiation field now reduced by the boost factors g given by
equation (2), we obtained the column densities collected in Table 4.
In Figures 13 and 14 we compare the ion column densities with and
without the boost factors with the values measured in Ly« forest
clouds by S04, supplemented by the smaller samples of B02 and
C02 mentioned above. Unlike the S04 sample, which measured
or placed limits on N(H 1) and N(O vi) for all systems with
log N(H 1) > 13.6, the latter studies searched for O vi detec-
tions independently of the associated N(H 1), and thus may be
more directly comparable to the sample of 10 proximate systems
in which O vi is detected. Out of 16 O v1 systems in the com-
bined B02 + C02 sample, two (12.5%) have log N(H 1) < 13.6.
Bergeron & Herbert-Fort (2005) have presented a larger sample
of O vi-selected systems, based on 10 QSO sight lines with col-
umn density sensitivity similar to B02 + C02 and to the prox-
imity regions in this paper. With a total survey redshift path of
Az ~ 2, these authors find that 7 of 51 (13.7%) of the O vi sys-
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Fic. 11.—Same as Fig. 4, but for system J (z = 2.4575). This system exhibits
narrow O vi absorption lines; their width, when compared to that of the H 1 lines,
indicates that they are formed in gas at T ~ 3 x 10* K. The velocity range shown
also includes H 1—only systems / and i (see Fig. 3). [See the electronic edition of the
Journal for a color version of this figure.]

tems at z = 2.3 £ 0.3 have log N(H 1) < 13.6. Of the 51 O v1
systems, all have detected lines of C 1v with log N(C 1v) >
12.30 (systems within 5000 km s~! of the QSO redshifts were
excluded from the sample). Note that, in contrast, 4 of the 10 prox-
imate systems in our sample (C, E, F, and J) have log N(C 1v) <
12.3. Although the actual column densities in the larger Bergeron
& Herbert-Fort (2005) sample are not yet published, the overall
distribution of N(O v1), N(C 1v), and N(H 1) appear similar to the
samples included in Figures 13 and 14.

Taking (for the moment) the observed properties of the prox-
imate systems as shown in Figures 13 and 14, one sees that many
of the systems lie simultaneously at the lower end of the distri-
bution of N(H 1) and the higher end of the distribution of N(O v1)
among all systems with detected O vi. Only systems A, B, and
I lie in regions inhabited by the main locus of general interven-
ing systems; system F, which is not anomalous in terms of its
N(O v1) compared to N(H 1), has significantly lower N(C 1v) com-
pared to any of the S04 systems with comparable N(H 1) (Fig. 13).
Systems C, D, E, G, and H all have log N(H 1) < 13.6, a trait
we have seen is shared by only ~13% of all systems with similar
N(O v1). Based on the statistics presented in Bergeron & Herbert-
Fort (2005), the expected number of such low—N(H 1)/strong—
O vi systems per unit redshift is dn/dz ~ 3.5, whereas in the prox-
imate regions we find five such systems within a total redshift
window of only Az ~ 0.10 (or dn/dz ~ 50). Figures 13 and 14
also include four O vi systems which S02 excluded from their
analysis of strong O vi1 systems because the absorption red-
shifts are within 5000 km s ! of the QSO emission redshifts. In
two of the four cases, we have accurate redshift and luminosity
information for the QSOs (Q1009+2956 and Q1700+6416),
indicating that the two proximate absorbers have Av = —2760



826 GONCALVES, STEIDEL, & PETTINI

Vol. 676

Log N(OVI)/N(HI)

Log N(OVI)/N(CIV)

FiG. 12.—Open symbols indicate N(O vi)/N(H 1) vs. N(O vi)/N(C 1v) for metal-line systems in the proximity regions of KP 76 and KP 77. Symbol size is proportional to
the logarithm of the boost factor g, listed in Table 3. Filled symbols indicate systems drawn from the O vi—selected samples of B02 and C02 for comparison (see text).
Limits on ratios are indicated with arrows. Also shown are the ion ratios calculated with the photoionization code CLOUDY for an assumed power-law radiation field
J(v) < v=*, with @ = 1.8, arange of ionization parameters U, and four different values of metallicity, as follows: [O/H] = —3 (dark blue), [O/H] = —2 (green), [O/H] = —1
(magenta), and [O/H] = 0 (cyan), with the usual convention whereby [O/H] = log (O/H) — log (O/H),,.. Vertical dashed lines join the loci of constant ionization parameter U,
with values as indicated. The dotted and dash-dotted lines refer to H i—only systems for which we determine upper limits log N(O vi) < 12.7 and log N(C 1v) < 12.1; the
dash-dotted line indicates systems with log N(H 1) = 13.5, while the dotted line indicates log N(H 1) = 14.5.

and —600 km s~! relative to the QSOs. Assuming negligible
peculiar velocities, the corresponding line-of-sight physical
separations are ~10.6 and ~2.2 Mpc, with implied boost fac-
tors g ~ 5 and ~120, respectively. These two systems were the
only O vi systems in the S02 sample which were not detected
in C 1v (see Fig. 13), and the latter system lies very close to sys-
tems D, E, G, H, and (especially) J in both N(H 1) and N(O vr)
(Fig. 14).

If the radiation from KP 76 and KP 77 is “switched off
(Figs. 13 and 14, red symbols),’ all of the proximate systems A—J
are predicted to be detected in C 1v and generally lie in the region
occupied by less extreme intervening metal-line systems with in-
termediate N(H 1). As seen in Figure 14, only 4 of the 10 prox-
imate systems (A, B, E, and J) are predicted to have detectable

© System F, which is only 1.4 Mpc from KP 77, has such a high boost factor
(g =~ 200) that it would give rise to a DLA in the absence of the radiation field
from KP 77; to improve clarity we have not plotted this system for the “QSO off”
case in Figs. 13 and 14.

O vi in the “QSO off” case. These numbers are consistent with
the N(H 1)—selected S04 sample; for example, in the range 14.0 <
log N(H 1) < 16.0, the S04 sample has 116 systems (an average
redshift path density dn/dz = 56.6 given the total path of the sur-
vey), of which 42% are not detected in O vr. In the total redshift
path of the proximity regions considered here, Az ~ 0.1, one
would then expect n ~ 5.6 systems in the same range of N(H 1)
if it has an average density of such systems (see § 5). Six of the
proximate systems are predicted to lie in this range of N(H 1) for
the “QSO off” case: A, D, E, G, J, and H, of which three (A, E,
and J) are predicted to yield O vi detections. Similarly, the reduc-
tion of the assumed QSO-enhanced radiation field intensities also
lowers the number of predicted O vi with log N(H 1) < 13.6 sys-
tems within the proximity regions from 5 to 0, consistent with the
expectation of only n ~ 0.35 in Az ~ 0.1 from above.

In terms of the predictions for individual systems, most move
to less extreme regions in both Figure 13 and Figure 14 in the
“QSO0 off ” case [including system F, which is not shown due to
its large predicted N(H 1)]. The exceptions are systems A and B,
which lie inside the locus of points from the literature for either
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TABLE 3
PROXIMATE ABSORPTION SYSTEM MODEL RESULTS

ro° Atd log ny® log p/poh
System z BQSO? FQSOP (Mpc) (Myr) I logU* (cm™3) (z=2.5)
@) 2 (3) “ 5) (6) @) ®) ©) (10)
2.4554 KP 78 KP 76 3.83 0.2 7.9 —1.05 —3.4 1.6
2.4573 KP 78 KP 76 3.28 1.2 12.4 —0.90 —3.4 1.6
2.4655 KP 78 KP 76 1.06 26 104.1 +0.55 -39 1.1
24737 KP 78 KP 76 2.69 16.8 16.1 —~1.20 -3.0 2.0
24773 KP 78 KP 76 3.86 245 7.8 —0.35 —4.1 0.9
2.5362 KP 78 KP 77 1.38 5.5 196.0 —0.35 —27 23
2.5406 KP 78 KP 77 2.20 12.9 76.3 —0.80 -2 23
2.5422 KP 78 KP 77 2.64 16.0 53.4 —0.75 -29 2.1
2.5508 KP 78 KP 77 5.23 33.4 13.5 —1.55 —27 23
2.4575 KP 77 KP 76 3.19 0.9 115 —0.50 -38 1.1
25193 KP 78 KP 77 5.33 0.5 13.1
2.5240 KP 78 KP 77 3.87 0.8 24.8
2.5244 KP 78 KP 77 3.75 0.8 26.4
2.5393 KP 78 KP 77 1.89 10.5 104.2
2.5433 KP 78 KP 77 2.95 18.1 42.7
2.5485 KP 78 KP 77 452 28.7 18.2
2.5493 KP 78 KP 77 4.76 30.3 16.3
2.4556 KP 77 KP 76 3.82 0.8 8.0
2.4591 KP 77 KP 76 2.69 1.0 16.2
2.4634 KP 77 KP 76 1.49 1.7 52.9
24722 KP 77 KP 76 2.30 13.9 222
24737 KP 77 KP 76 2.75 17.0 15.5
Moo 2.4746 KP 77 KP 76 3.04 18.9 12.7

# Background QSO spectrum in which absorption is measured.

® Foreground QSO within “proximity region.”

¢ Distance from foreground QSO.

4 Difference between the time corresponding to the observed QSO luminosity and the time at which the physical conditions in the gas are being

measured by the background QSO light (see text for discussion).

¢ Enhancement of the ionizing radiation field under the assumption that the foreground QSO is radiating isotropically and had the same luminosity

At Myr ago.

T Inferred ionization parameter based on photoionization models.
¢ Inferred hydrogen density, assuming that the radiation field intensity is produced by the foreground QSO and that it is a factor g larger than the

metagalactic background.

" Hydrogen density in units of the mean density, assuming £ = 0.04.

case, and possibly system I. The latter system, located at what we
have considered to be the “edge” of the QSO proximity region
(at a distance of 5.23 Mpc from KP 77), exhibits N(C v)/N(H 1)
and N(O vi)/N(H 1) ratios which may be more in line with those
typically encountered in nonproximate systems and actually ap-
pears slightly anomalous in both ratios when the contribution of

TABLE 4
CoLumMN DENSITIES WITH REDUCED RADIATION FIELD INTENSITIES

System N(H 1) N vi) N(C )

15.78 12.77 13.71

16.39 13.09 14.13

13.63 12.35 13.58

14.81 11.40 13.28

14.37 13.70 13.18

20.08 10.10 13.01

15.01 10.32 12.86

15.11 11.16 13.20

) SRR 17.21 10.68 13.38
T 15.11 13.22 13.32

Note.— Column densities of H1, O vi, and C 1v assuming the same
physical densities as in Table 3, but with the ionization parameter re-
duced by the boost factor g in each case.

KP 77 to the ionization rate is removed (see Figs. 13 and 14). It
may be significant that this system, at the largest A among those
considered here, reflects the QSO UV luminosity 33 Myr prior
to the time at which we observe KP 77. We return to this point
in § 6.

In summary, none of the individual proximate metal-line sys-
tems is such an extreme outlier [as compared to samples with sim-
ilar N(H 1) or N(O vi) from the literature] that explaining the
observations requires an enhanced radiation field from a nearby
QSO. However, taken together, several statistical anomalies among
the proximate sample are eliminated when the systems are mod-
eled using radiation field intensities reduced by the g-factors in
Table 3.

4.2. Plausibility of Enhanced Radiation Field Intensities

To summarize the main conclusions of the analysis above, we
have shown with the aid of photoionization models that the high
degree of ionization exhibited by most absorption systems within
the proximity regions of KP 76 and KP 77 can be explained in
terms of an enhanced radiation field and typical cloud densities
(and metallicities). The enhancements in the ionizing flux to which
the clouds are exposed are consistent with the values calculated
from the observed luminosities of the two QSOs at the Lyman limit
and the distances of the clouds from the nearby QSO, ignoring the
possibility that the QSO far-UV luminosities may have varied
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FiG. 13.—Comparison between nonproximate absorption-line systems from S04, B02, and C02 and the proximate systems considered in this paper. The members of
the B02 + C02 sample (green triangles) were identified as O vi systems without regard to their N(H 1), whereas the S04 sample measured all systems with log N(H 1) > 13.6.
Upper limits on column densities are indicated with arrows. Diamonds labeled with the proximate system names are plotted at the measured values of column density, while red
ellipses indicate the values which we calculate we would obtain if the incident radiation field were decreased by the boost factors g listed in Table 3. Blue triangles indicate four
systems from SO02 that lie within 5000 km s~! of the published QSO emission redshifts; the two outlined blue triangles indicate systems for which we have accurate QSO
redshifts. The blue triangle near the observed system J corresponds to a proximate system near Q1700+64 with an estimated g ~ 120 (see text).

significantly over the last ~107 yr and that their emission may
not be isotropic. In this section we examine more carefully a num-
ber of factors which may affect this interpretation.

First of all, we consider whether it is plausible that the relatively
high values of the ionization parameter indicated by the observed
ion ratios may result from unusually low densities ny rather than
abnormally high values of n, (refer to eq. [1]). The densities so
implied can be obtained straightforwardly by dividing the values
of ny and p/pp in columns (9) and (10) of Table 3 by the boost
factors in column (7). In this scenario all of the clouds except one
(system I) would be at the most mild overdensities relative to the
cosmic mean; in the most extreme cases (systems C, E, and F) the
absorption lines we see would arise in gas with a density lower
than the cosmic mean (i.e., in voids). As pointed out by S02, such
underdensities would imply proper sizes in excess of 1 Mpc; in
such circumstances it is difficult to understand how the O v1 absorp-
tion lines would remain so narrow, with b values of 25—35kms~!,
when the differential Hubble flow across such large volumes would
exceed vy ~ 250 km s~!. We thus consider it more likely, given
the presence of nearby bright QSOs, that many of the proximate

systems are exposed to an enhanced flux of ionizing photons,
rather than arising in structures of such low density.

One criticism which may be leveled at our photoionization
modeling is that it is rather simplistic in its underlying assump-
tions; we have assumed that H 1, C 1v, and O v1 absorption arises
in the same gas at a uniform temperature and that the ion ratios
are determined primarily by the balance between photoioniza-
tion and recombination. In contrast, SO2 found that the kinema-
tics of strong O vi absorption lines often differ from those of C 1v
lines at nearby velocities, and they drew the conclusion that much
of the O v1 absorption arises in collisionally ionized gas at a sig-
nificantly higher temperature than expected from photoionization
alone. When we examine the proximate systems studied here,
however, we find that in most cases where C 1v is detected the
velocity match with O vi1 is very good, consistent with our as-
sumption of photoionization in the same parcels of gas. One ex-
ception was noted above in system A (see Fig. 4), but in the other
systems the kinematics of the two ions are mutually consistent.

Another simplistic feature of our modeling has been the as-
sumption that the spectral shape of the ionizing radiation can be
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FiG. 14.—Same as Fig. 13, but for O vi. Red ellipses with arrows indicate the approximate detection upper limit for O vi in spectra similar to those used in this paper and
in S04 [instead of their predicted N(O v1) values, which are much lower in some cases] to facilitate comparison with the observed samples. As in Fig. 13, the blue triangle
nearest to (observed) system J indicates a known proximate system near Q1700+64 with g ~ 120.

adequately represented by a power law with spectral index o =
1.8 [Jbg(v) oc v~7; see § 4] and that the nearby QSOs change only
the intensity and not the shape of the radiation field to which the
gas in each absorption system is exposed. If the UV radiation field
from a single QSO dominates over the metagalactic background,
then variations in o with time, and between KP 76 and KP 77,
might result in different systems seeing radiation fields of different
shapes. Such variations may be the reason for the extreme ion ratios
measured in system C, which would imply a supersolar metallicity
with the ionization spectrum we have assumed (see Fig. 12). For
a given (O/H) ratio, the ratio N(O vi)/N(H 1) depends strongly on
the spectral shape of the radiation field, as can be appreciated by
comparing Figures 12 and 15. Changing the spectral slope o from
1.8 t0 2.2 has the effect of lowering the metallicities deduced from
photoionization modeling by factors of ~2-3, because the frac-
tion of oxygen which is 5 times ionized increases. On the other
hand, this also has the effect of increasing the ionization parameter
U required to reproduce the observed ion ratios, thus implying
lower values of ny for a given boost factor g.

We have also investigated the effects on the ion ratios of adopt-
ing the more realistic representation of the metagalactic back-
ground by F. Haardt & P. Madau (2005, private communication).
The radiation field calculated by these authors broadly resembles
the o = 1.8 power law over the wavelength range of interest, but

it also incorporates discrete spectral features resulting from radia-
tive transfer effects in the IGM. With the Haardt & Madau radia-
tion field, we found that N(H 1) remains approximately constant for
a given value of Ju,s(v), but that at a given metallicity log N(C 1v)
and log N (O vi) are reduced by ~0.2 and ~0.6, respectively. Thus,
if the proximate systems considered here were ionized by the meta-
galactic background rather than the nearby QSOs, their high values
of MO vi)/N(H 1) and N(O vi)/N(C 1v) would imply even more un-
usual physical conditions (in terms of ny and p/pg) than deduced
above under the power-law assumption.

Finally, we briefly discuss the 13 absorbers without associated
metal lines (systems a—m in Tables 2 and 3). The dotted and dash-
dotted lines in Figures 12 and 15 show the loci corresponding to
our detection limits log N(O vi) < 12.7 and log N(C 1v) < 12.1
for two values of the hydrogen column density that bracket those
measured in systems a—m, log N(H 1) = 13.5 (dash-dotted line)
and 14.5 (dotted line). The most straightforward interpretation of
the nondetections of O viand C 1v is that these are low-metallicity
systems, with [O/H] < —2. On the other hand, without the diag-
nostics provided by the O and C ion ratios, we cannot discern the
effects of an enhanced radiation field on these systems; it can be
readily appreciated from Figures 13 and 14 that the H 1—only sys-
tems are also entirely compatible with the values of N(C 1v)/N(H1)
and N(O vi)/N(H 1) commonly encountered in nonproximate



830 GONCALVES, STEIDEL, & PETTINI

Vol. 676

Log N(OVI)/N(HI)

Log N(OVI)/N(CIV)

Fic. 15.—Predictions of the CLOUDY photoionization models as in Fig. 12, but using a power-law exponent « = 2.2 for the incident radiation field. In this case, the
measured line ratios would imply lower metallicities and higher ionization parameters by factors of ~2—-3.

systems with the same values of N(H1) as we measure in the prox-
imity regions. In the S04 sample, 62% of the systems with the same
range in N(H 1) are not detected in O vi1 to similar limits.

5. THE LARGE-SCALE ENVIRONMENT OF THE QSOs
AND ITS IMPACT ON THE PROXIMITY EFFECT

5.1. Galaxies and AGNs in the Q1623+268 Field

One of the complications in the interpretation of the proximity
effect, which has been appreciated since the effect was first rec-
ognized, is the likelihood that QSOs are preferentially found in
overdensities in the matter distribution. Any such density en-
hancement relative to a more typical location in the IGM could
easily affect the statistics of H 1absorption on the physical scales
which are relevant to the proximity effect, whether transverse or
along the line of sight. In the present study, we have the advan-
tage of knowing the large-scale distribution of galaxies in the prox-
imity regions of KP 76 and KP 77 from the spectroscopic redshift
survey that we have been conducting in the Q1623+268 field; a full
description of the survey and its methods can be found in Steidel
et al. (2004) and Adelberger et al. (2005). To date we have cata-
loged ~300 objects—star-forming galaxies and AGNs—brighter
than R = 25.5 at redshifts z = 1.6-3.3 over an area of sky
~11’ x 15’ approximately centered on the KP 76, KP 77, and

KP 78 triplet. The redshift distribution of the galaxies and AGNs
is shown in Figure 16. The survey is far from complete; in particu-
lar, in choosing objects for spectroscopic follow-up we have given
preference to color-selected candidates at smaller projected dis-
tances from the QSOs on the plane of the sky. Nevertheless, from
the observed redshift distribution we can estimate the overdensity
of galaxies and fainter AGNs (in redshift space) compared to a
sample drawn randomly from the overall redshift selection func-
tion of the survey (also shown in Fig. 16).

Within the field where spectroscopic follow-up has been car-
ried out, there are 19, 19, and 20 objects with redshifts which
place them within 1500 km s~! of the systemic redshifts of
KP 76, KP 77, and KP 78, respectively.” For comparison, the

7 Among these objects, three are faint QSOs (R = 19.38, 22.70, and 23.95)
at redshifts near that of KP 76, and one is an R = 20.44 QSO at a redshift near
that of KP 77. This last one, Q1623-BX 603, is located 97" (780 kpc) from the
sight line to KP 78. With a redshift ze, =~ 2.530, estimated from its rest-frame UV
emission lines, its peak radiation would be expected to be near —425 km s~ (Fig.
3, middle) with a boost factor g ~ 7 relative to the background. If its redshift is
correct (we have not obtained NIRSPEC spectroscopy of this QSO), its contri-
bution to the local radiation field at —425 km s~! is ~10% of that of KP 77. None
of the other QSOs make a significant contribution to the radiation field in the
proximity regions considered.
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Fic. 16.—Redshift distribution of 298 spectroscopically confirmed star-forming
galaxies and AGNs in the Q16234268 field, selected by their rest-frame UV colors.
Galaxies have been grouped in redshift bins of width Av = +1500 km s~ so as
to match the QSO proximity regions we have been considering. The redshifts of
KP 76, KP 77, and KP 78 are indicated with vertical dashed lines. The light, smooth
curve in the background shows the overall redshift selection function of a random
sample of 298 objects selected using the same color selection criteria (in the ab-
sence of clustering), based on the full spectroscopic sample of ~2000 galaxies in
our ongoing survey. The three QSOs are located within moderate overdensities in
the underlying distribution of star-forming galaxies. [See the electronic edition of the
Journal for a color version of this figure.]

corresponding number of objects expected in the same redshift
intervals for an unclustered population are 10, 9, and 6, respec-
tively. Thus, the three QSOs appear to reside in moderate galaxy
overdensities: 6p/p =~ 1 for KP 76 and KP 77, while KP 78 lies in
the most significant redshift space overdensity with 6p/p ~ 2.
However, these are the overdensities relative to the population of
star-forming galaxies atz ~ 2.5 (the BX galaxies of Steidel et al.
2004), which themselves are significantly biased relative to the
underlying mass distribution at these redshifts; Adelberger et al.
(2005) measured a comoving correlation length o ~ 4 Mpc,
which corresponds roughly to a linear bias factor of b ~ 2. Thus,
even regions containing an average density of BX galaxies would
probably represent overdensities in the matter distribution. Of
course, what we are interested in is the overdensity in H 1 com-
pared to an average location in the universe at these redshifts.
While it is uncertain how to relate the overdensity of BX galaxies
to that of H 1 [the factor relating the two presumably depends on
the threshold N(H 1)], it seems reasonable to conclude from the
above that the Ly« forest near KP 76 and KP 77 is denser by a
factor of a few compared to an average location in the IGM.
KP 76, KP 77, and KP 78 are not unusual in being located in
galaxy overdensities; rather, their environments are consistent
with the galaxy-AGN cross-correlation function measured from
amuch larger sample by Adelberger & Steidel (2005). It is there-
fore not surprising that the small samples of QSO pairs used so
far to search for the TPE have found little evidence to support it
based on the expected decrease in H 1 optical depth; it is easy to
see how the overdensity of relatively high N(H 1) systems in the
QSO environments can more than compensate for the loss of ab-
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sorption from optically thin systems whose Ly« line equiva-
lent width would be most affected by an enhanced UV radiation
field.

Strong correlations between galaxies and high N(H 1) absorp-
tion systems are known to exist on scales of a few hundred (proper)
kiloparsecs at z ~ 2.5 (Adelberger et al. 2003, 2005; Simcoe et al.
2006). Figure 17 shows the locations of the three QSOs together
with the objects from the spectroscopic sample that lie within the
proximity regions (#1500 km s~!) of the foreground QSOs KP 76
and KP 77. Note that there are three galaxies within the prox-
imity region of each of KP 76 and KP 77 located within 60"
(~0.5 proper Mpc in the transverse direction at z = 2.5) of the
line of sight to KP 78. Similarly, there is one galaxy within the
proximity region of KP 76 located less than 0.5 Mpc from the sight
line to KP 77. The redshifts of the galaxies and their distances from
the QSO sight lines are listed in Table 5; the velocities of the gal-
axies relative to the foreground QSOs are also indicated with yel-
low shading in Figure 3. The galaxy redshifts were determined
from their rest-frame UV interstellar absorption lines and/or Ly«
emission after correcting for the systematic velocity offsets of
these spectral features from the systemic redshift; the error in this
procedure is £140 km s~! (C. C. Steidel et al., in preparation).
For two of the galaxies, BX 522 and MD 107, we were able to
measure the systemic redshift directly from NIRSPEC observa-
tions of their How emission lines with a reduced error of £60kms™!
(Erb et al. 2006).

Referring to Figures 3 and 17, it is interesting to try to associate
galaxies and absorption systems within the proximity regions of
KP 76 and KP 77. The galaxy within a proximity region which lies
closest to the sight line to a background QSO is MD 126 (within
the proximity region of KP 76 and only 133 kpc from the sight
line to KP 78). Its redshift matches that of system B very well (see
Fig. 3). As a matter of fact, systems A and B exhibit similar ion-
ization parameters and metallicities (from our photoionization
modeling in Fig. 12), so they could both be due to MD 126 (in
which case their velocity difference would be due to peculiar
motions rather than the Hubble flow, as was assumed in calcu-
lating their distances from the sight line to KP 78). The redshift
of the next closest galaxy, BX 522, 175 kpc from the KP 78 sight
line and also in the KP 76 proximity region, is intermediate be-
tween those of systems D and E, which are separated by Av ~
300 km s~! and have metallicities [O/H] = —1. The third gal-
axy within the proximity region of KP 76, BX 546, is within
120 km s~! of system C, at a transverse distance of 438 kpc.
Turning to galaxies close to the sight line to KP 78 but in the
proximity region of KP 77, MD 106 is within 130 km s~! of sys-
tems b and ¢, while MD 107 is within 100 km s~! of system F
(which in our modeling would have the properties of a DLA in the
absence of the radiation field from KP 77). Near the sight line to
KP 77, galaxy BX 435 is within 40 km s~! of system m, and
within the uncertainties it has the same redshift as systems / and m.
None of these possible associations between galaxies and absorp-
tion lines are particularly unusual or unexpected, compared to re-
gions lacking bright QSOs but having similar galaxy overdensities
(Adelberger et al. 2003, 2005). Similarly, given the level of incom-
pleteness of the spectroscopic sample, the lack of identified gal-
axies associated with other absorption systems in the proximity
regions should not be taken to imply that such galaxies are not
present.

5.2. Matter Overdensities and the Proximity Effect

Faucher-Giguere et al. (2008) have recently presented a theo-
retical investigation of how the environments which are likely to
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Fic. 17.—The u’-band image of the Q1623+268 field showing the locations of the three bright QSOs and spectroscopically confirmed galaxies within the +1500 km s~
proximity regions of the two foreground QSOs. The black circles are 60" in radius (corresponding to 0.48 proper Mpc in the transverse direction atz = 2.5). Galaxies and faint
QSOs in the proximity region of KP 76 are shown in blue, while those in the proximity region of KP 77 are labeled in red. North is up and east to the left.

host QSOs may bias the inferred value of the hydrogen photo-
ionization rate from the metagalactic background, I'yg, at redshifts
z = 2—4. These authors concluded that overdense environments
would lead to overestimates of I'yg by a factor of ~2.5 in determi-
nations of the proximity effect based on the distribution of Ly«
optical depths 7y1,. The bias arises from a combination of larger
IGM density (resulting in larger values of 731,) and the infall of
surrounding material onto the massive halos in which the QSOs
are likely to reside. Such effects would lead one to conclude that
the boost by the QSO radiation to the ionizing flux seen by nearby
clouds is smaller than it really is, thereby leading to an overesti-
mate of the metagalactic background.

TABLE 5
SPECTROSCOPICALLY IDENTIFIED GALAXIES IN fo PrOXIMITY REGIONS

J°

Galaxy BQSO FQSO A6* (kpc)  zg Avgy®
KP 76 16.6 133 2.458 —720 £ 180
KP 76 219 175 2.4757 +810 £ 90
KP 76 541 433 2465 +200 + 180
KP 77 462 370  2.547 —1000 + 180
KP 77 54.1 433 2.5373 +180 + 90
KP 77 602 482  2.530 —440 £ 180
KP 76 560 448 2474 +750 + 180

Note.— Galaxies within 60” (~0.5 Mpc) of background QSO (BQSO) sight
lines and within the proximity region of the foreground QSOs (FQSO); see Fig. 17.

# Angular separation (in arcseconds) between galaxy and BQSO sight lines.

® Projected physical distance between BQSO sight line and galaxy, at Zgal.

¢ Velocity difference (km s~!) between galaxy systemic redshift and that of
the foreground QSO (cf. Fig. 3). The quoted errors include estimates of the uncer-
tainties of both the galaxy and the QSO systemic redshifts.

An additional complication is that essentially all previous mea-
sures of the proximity effect have been based either on counting
the number of Ly« lines above a given equivalent width limit or
calculating the total transmitted flux near the redshift of the QSO,
and then comparing this statistic with expectations for the general
IGM at the same redshift. This approach has been dictated by the
fact that the resolution of most spectra used to search for the prox-
imity effect is too coarse to determine 7y, directly. The problem is
that the response of the line equivalent width to changes in 7y, is
nonlinear. The lines which are most sensitive to changes in 7y, are
those with 751, < 1 (on the linear part of the curve of growth),
with equivalent widths which are generally too small to be in-
cluded in the samples used to measure the proximity effect. On
the other hand, the Ly« lines which are included typically have
column densities in the range 14 < log N(H 1) < 17, where the
equivalent width is a highly insensitive measure of 74, (such
lines fall on the flat part of the curve of growth). Consequently,
the sensitivity of Ly« line counts to a boost in the ionizing ra-
diation field within the proximity regions depends sensitively on
line equivalent width. In spectra of moderate resolution and S/N,
a situation may arise whereby the detection limit for the Ly« line
equivalent width is sufficiently high that the increase in strong
Lya lines due to the local matter overdensity can mask an overall
reduction in 7y, due to the enhanced ionizing flux, except in very
small regions very close to the QSO. In cases where the QSO red-
shift has been underestimated by 1000—2000 km s~! from rest-
frame UV emission lines, the region most affected by the QSO ra-
diation field may not even be considered in typical proximity ef-
fect measurements!

In summary, the number per unit redshift of the relatively strong
Ly« lines that have been used in most previous measurements of
the QSO proximity effect is likely to be closely related to the matter
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overdensity in the surrounding volumes. While this gas will, of
course, be affected by the QSO radiation field, the presence of
the QSO could easily be secondary to the local environment in
dictating the statistics of such lines. Once a more secure relation-
ship is established between local galaxy density and the incidence
of relatively high N(H 1) systems, it may be possible to use the ob-
served galaxy density to calibrate out the environmental depen-
dence on a QSO-by-QSO basis. On the other hand, because QSOs
tend to inhabit relatively dense environments, one is more likely to
benefit from the presence of systems containing lines of highly
ionized metals which, as shown here, may offer the strongest ob-
servational constraints on the nature of the local radiation field.

6. SUMMARY AND DISCUSSION

Using high-resolution spectra of a triplet of QSOs with trans-
verse separations of ~1 Mpc at z =~ 2.5, together with accurate
determinations of the QSO systemic redshifts from rest-frame
optical emission lines and extensive spectroscopic observations
of galaxies and AGNs in the same field, we have conducted the
most detailed investigation to date of the transverse proximity
effect (TPE). By focusing on the regions of the IGM where the
QSOs should overwhelm the metagalactic radiation field by fac-
tors between ~10 and ~200—if they have radiated isotropically
and with similar luminosities over the past 0.2—-30 Myr—we have
examined the details of the ionization state of individual metal-
absorption systems, rather than counting Ly« lines above a given
equivalent width threshold, as has generally been done in previous
attempts to measure the TPE. We have shown that the 10 metal-
line systems within the proximity regions of the two foreground
QSOs have properties that are more easily explained if they are
being illuminated by a UV radiation field significantly more in-
tense than the metagalactic background. Using photoionization
models, we have shown that most of the observed absorption sys-
tems have properties consistent with normal (i.e., nonproximate)
intermediate column density [log N(H 1) ~ 14.5-16.5] metal-
line systems that have been ionized by QSO continuum radiation
with intensity consistent with that inferred from the observed
fluxes of the two foreground QSOs.

We have placed the observed QSOs in the context of the large-
scale distribution of galaxies in the same field, showing that all
three lie in regions of moderate galaxy overdensity, conditions
typical of high-redshift QSOs and AGNs. Even with accurate
QSO redshifts (which correct the published values for the same
QSOs by 10002000 km s~1), the naive expectation that there
should be a dearth of Ly« absorption systems in the proximity
regions of the foreground QSOs is not supported by the data. We
argue that the environments of the QSOs and an enhancement of
moderate column density H 1 absorption compared to average lo-
cations in the IGM can easily mask the effects of the TPE if one
relies on counting statistics rather than examining the details of
the gas-phase physical conditions.

6.1. OSO Lifetimes and Isotropy

In principle, it should be possible to use information on the
distribution of the gas that is clearly affected by QSO radiation
relative to the positions and redshifts of the foreground QSOs to
measure or set limits on both the lifetime and the isotropy of the
QSO radiation field. Each absorption system listed in Table 3 and
indicated in Figure 3 samples a different time interval At and boost
factor g under the simple hypothesis that the QSOs shine isotrop-
ically and at constant luminosity over their radiative lifetimes. By
comparing our sample to “proximate” and ‘“‘nonproximate’’ ab-
sorption systems from the literature, as in Figures 13 and 14, and
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from arguments based on cloud density and size, we have shown
that most of the systems in our sample—systems C, D, E, F, G,
H, and J—are probably being overionized by the nearby QSO,
while systems A and B are merely consistent with that hypothesis.
Taken at face value, the spread of values of At in Table 3 then
implies that the minimum QSO lifetime is ~25 Myr for KP 76
(from system E) and ~16 Myr for KP 77 (from system H). As
discussed above, system I, in the proximity region for KP 77, is
the only system whose properties may favor ionization by the
metagalactic field alone, without local enhancement; again, taken
at face value, this would indicate a radiative lifetime for KP 77 in
the range 16 Myr < At < 33 Myr. Radiative lifetimes of 20—
30 Myr are entirely consistent with He 1 TPE measurements by
Jakobsen et al. (2003) and with numerous estimates based on
QSO duty cycle arguments (e.g., Steidel et al. 2002) or the local
Myh-o relation between supermassive black holes and their host
galaxies (e.g., Martini & Weinberg 2001).

In reality, there are many other variables which potentially
could modify such conclusions, even accepting the evidence that
at least some of the absorption systems are overionized due to
their proximity to a bright QSO. For example, even if the lifetime
ofa QSO event is a well-defined quantity, it is unlikely that an ac-
creting supermassive black hole maintains a constant luminosity
throughout its active phase; rather, its accretion rate and UV out-
put could vary intermittently or grow (or decay) exponentially.
Because each absorption system samples a different time in the
QSO’s history, it is entirely possible that systems whose distances
from the QSO are larger (so that the g-factor is smaller) could have
experienced a more intense radiation field in the past, or that a sys-
tem at some intermediate value of A¢ happened to coincide with a
dormant period in the QSO’s radiative history. We have also seen
that the effects of an enhanced radiation field can be quite subtle. It
is not always possible to say with confidence, even with high-
quality data, whether or not a given absorber is experiencing an
enhanced ionizing radiation field, because we have no knowledge
of its environment or physical conditions prior to the time the
QSO began radiating at its present luminosity.

Given all these caveats, the strongest statement we can make
about the isotropy of the QSO radiation is that there is no evi-
dence for anisotropy in the present data. If the QSOs’ radiation
were significantly beamed, one might reasonably expect to find
absorption systems well within the proximity zones with prop-
erties that are inconsistent with the assumption of a radiation field
intensity significantly boosted over the metagalactic background.
Within the two proximity regions considered, the only absorption
system that seems marginally inconsistent with the assumption of
an enhanced radiation field (system I) also has the largest value of
At and a relatively small boost factor g.

As part of our survey of the Q1623+268 field, we obtained
deep Spitzer IRAC and MIPS images which include the QSO
triplet. We found that KP 76, KP 77, and KP 78 have nearly iden-
tical spectral energy distributions between 0.35 and 24 pym, with
flat spectra ( f;, ~ constant) between 0.35 and 4.5 um and with
vf,(0.36 um)/vf, (24 pm) ~ 4. QSOs that are heavily obscured
over a large solid angle would be expected to be very bright in the
thermal IR due to emission from heated dust. While modeling of
the QSO spectral energy distributions is beyond the scope of this
paper, the data suggest that the two foreground QSOs (as well as
KP 78, although it does not matter for the present purposes) are
not heavily obscured over a large fraction of 47 sr, given the rela-
tively weak 24 pym luminosity. This provides independent sup-
port for the hypothesis that these three QSOs would be seen as
UV-bright over a large fraction of a 4 sr solid angle.
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The results we have reported provide a counterexample to re-
cent claims of an excess of high N(H 1) absorption systems near
the redshifts of foreground QSOs in the spectra of background
QSOs compared to line-of-sight proximate absorbers with the
same characteristics (e.g., Bowen et al. 2006; Hennawi et al.
2006). These authors interpret such an excess as evidence for ani-
sotropy of the QSO radiation which presumably (over)ionizes the
clouds in the line of sight to Earth but is not seen (with the same
intensity) by gas at transverse distances. One difference that must
be borne in mind is that the analysis by Hennawi et al. (2006) re-
fers to absorption systems with column densities log N(H 1) >
19, more than 3.5 orders of magnitude higher than any in the sam-
ple considered here. Similarly, the work by Bowen et al. (2006)
targeted strong Mg it absorbers which are likely to be Lyman limit
systems with log N(H 1) > 17.5. While our data appear to be in-
consistent with significant beaming of the ionizing radiation from
KP 76 and KP 77, it is certainly possible that QSOs may differ in
the solid angle over which they radiate, and that the apparent dif-
ferences between our study and those referenced above is due to
such variations from QSO to QSO. Finally, while we cannot rule
out the possibility that there may be an anisotropic distribution of
gas (as opposed to anisotropic ionization) surrounding many QSOs,
it would be hard to understand if such anisotropy extended over
physical scales of ~1 Mpc, as would be required to explain some
of the observations.

A lingering concern is the uncertainty in the relevant distances
introduced by the systematic errors in the QSO systemic redshifts.
For example, it is debatable whether it is surprising or not to find
high N(H 1) absorbers near the redshift of a foreground QSO.
Even in cases where the projected sight lines pass within tens of
kiloparsecs of one another, if the uncertainty in the redshift of the
foreground QSO is ~1500 km s~! (equivalent to a distance of
46 Mpc at z = 2.5), the relevant g-factor could be uncertain by
up to 3 orders of magnitude. Many such ambiguities could be
addressed with more accurate redshifts for the QSOs, as well as
more accurate values of N(H 1) and other indicators of the phys-
ical conditions in the gas.

6.2. The Elusive Transverse Proximity Effect

In this paper we have used a particularly well-observed triplet
of QSOs in a concerted effort to test for the presence of the TPE.
We have shown that in spite of the absence of an obvious “clear-
ing” in the Ly« forest near the redshifts of bright foreground
QSOs, significant evidence for local enhancements in the ion-
izing radiation field is present when one examines the detailed
physical conditions of metal-line systems within 5 Mpc of the
foreground QSOs. Crucial to this analysis are (1) the ability to
measure accurate H 1 column densities (for which echelle spectra
extending to at least Ly(3 are required); (2) knowing as precisely
as possible where to expect the influence of the foreground QSOs
(for which the forbidden-line spectroscopy of the QSOs was es-
sential); (3) the ability to detect weak lines of highly ionized me-
tallic species, in this case C 1v and O vr; and (4) knowledge of the
large-scale environment inhabited by the foreground QSOs, since
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galaxy overdensities are likely to be accompanied by the presence
of appreciable H 1 absorption.®

Essentially, all previous searches for the TPE have been miss-
ing most or all of these ingredients. As discussed above, reliance
on relatively crude line counting or mean flux measurements in
the forest; the likelihood that the redshifts of the foreground
QSOs, even when taken from carefully compiled catalogs such
as SDSS, are incorrect by as much as 2000 km s~! (an error 6z >
1000 km s~! seems quite typical); and density enhancements of
galaxies and intergalactic gas local to the foreground QSOs could
conspire to mask the TPE. In view of our results, these effects
seem at least as plausible as anisotropic emission, short-timescale
variability, or very short QSO lifetimes in explaining the diffi-
culties experienced so far in detecting the TPE. Based on the case
investigated in this paper, the null hypothesis that bright QSOs
radiate isotropically over characteristic timescales of a few 107 yr
(timescales suggested by many less-direct arguments) is consis-
tent with the observations. Whether this is the rule rather than the
exception could be established using similar observations of other
fields with multiple QSO sight lines. Somewhat farther in the fu-
ture, the technique can be improved and extended using back-
ground galaxies which would provide much finer spatial and
temporal sampling of the response of the IGM to radiation from
QSOs (Adelberger 2004).
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8 Alternatively, as shown by Jakobsen et al. (2003) and Worseck & Wisotzki
(2006), using the He 1 transitions in concert with H1is a very powerful technique,
because the effects of an enhancement in the radiation field by a nearby QSO are
then much more evident than if one has access to H 1 lines only. However, the
downside of this approach is that, given the short rest-frame wavelengths of the
He 11 Lyman series, there is only a handful of sight lines known at present where
this technique can be applied in practice; in most cases optically thick intervening
absorbers in the H 1 Lyman continuum prevent measurement of the He 1 lines.
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