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A probabilistic approach for model updating and damage detection of structural systems
is presented using noisy incomplete input and incomplete response measurements. The
situation of incomplete input measurements may be encountered, for example, during
low-level ambient vibrations when a structure is instrumented with accelerometers that
measure the input ground motion and the structural response at a few instrumented
locations but where other excitations, e.g., due to wind, are not measured. The method is
an extension of a Bayesian system identification approach developed by the authors. A
substructuring approach is used for the parameterization of the mass, damping and
stiffness distributions. Damage in a substructure is defined as stiffness reduction estab-
lished through the observation of a reduction in the values of the various substructure
stiffness parameters compared with their initial values corresponding to the undamaged
structure. By using the proposed probabilistic methodology, the probability of various
damage levels in each substructure can be calculated based on the available dynamic
data. Examples using a single-degree-of-freedom oscillator and a 15-story building are

considered to demonstrate the proposed approach. [DOIL: 10.1115/1.2150235]

1 Introduction

The problem of identification of the model parameters of a
linear structural model using dynamic data has received much
attention over the years because of its importance in model updat-
ing, response prediction, structural control and health monitoring.
Many methodologies have been formulated, both in the time and
frequency domain, for the cases of known and unknown input.

Structural health monitoring has been attracting much attention
in the past two decades, including several workshops, e.g., Natke
and Yao [1]; Agbabian and Masri [2]; Chang [3]; and special
issues of journals, e.g., Journal of Engineering Mechanics (July
2000 and January 2004) and Computer-Aided Civil and Infra-
structure Engineering (January 2001). Many methods have been
developed. One such example is the class of direct methods using
pattern recognition techniques (Mazurek and DeWolf [4]; Hearn
and Testa [5]; Doebling et al. [6]; Lam et al. [7]; Smyth et al. [8]).
Another example is the class of structural model-based inverse
methods (Farhat and Hemez [9]; Pandey and Biswas [10]; Kim et
al. [11]; Topole and Stubbs [12]; Hemez and Farhat [13]; Katafy-
giotis et al. [14]; Doebling et al. [15]; Vanik et al. [16]; Beck et al.
[17]; Sohn and Farrar [18]; Ko et al. [19]; Ching and Beck [20]).

Recent interest has been shown in using Bayesian probabilistic
approaches for model updating and damage detection as they al-
low for an explicit treatment of all the uncertainties involved
(Geyskens et al. [21]; Beck and Katafygiotis [22]; Katafygiotis et
al. [14]; Vanik et al. [16]; Katafygiotis and Yuen [23]; Yuen [24]).
An advantage of the Bayesian approach is that it follows directly
from the probability axioms and so there are no ad-hoc assump-
tions that lead to loss of information. In Beck and Katafygiotis
[22], a methodology for model updating based on a Bayesian
probabilistic system identification framework was presented. Al-

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received July 11, 2004; final manuscript
received September 29, 2005. Review conducted by I. Mezic. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME
JOURNAL OF APPLIED MECHANICS.

Journal of Applied Mechanics

Copyright © 2006 by ASME

though the framework is general, their presentation is for the case
where the prediction error due to measurement noise and model-
ing error is modeled as Gaussian white noise.

In the present paper, the prediction error is modeled as the sum
of a filtered white noise process, representing the input error
(measurement noise plus unmeasured excitation) filtered through
the system, plus another independent white noise process, repre-
senting the response measurement noise and modeling error. A
Bayesian time-domain approach for modal identification by Yuen
and Katafygiotis [25] is extended to handle the case of model
updating with incomplete input measurements and with measure-
ment noises in both input and output measurements. The proposed
approach allows for the direct calculation of the probability den-
sity function (PDF) of the model parameters based on the data
which can be then approximated by an appropriately selected
multi-variate Gaussian distribution. By using data from the initial
undamaged state and a later possibly damaged state, the probabil-
ity of damage of various levels in specified substructures may be
calculated. The formulation is presented for linear multi-degree-
of-freedom (MDOF) systems. Examples using noisy simulated
data from a single-degree-of-freedom (SDOF) oscillator and a 15-
story building are given for illustration.

2 Model Formulation

2.1 Class of Structural Models. Consider a class of possible
models for a structural system with N, degrees of freedom (DOFs)
and equation of motion

Mx + Cx+Kx=Tg (1)

where M, C, and K are the mass, damping and stiffness matrix of
the system, respectively, g € Rs is the actual forcing vector and
T e RN*N is the forcing distribution matrix. The mass, damping
and stiffness matrices, M, C, and K, are defined in terms of mass,
damping and stiffness parameters 6,,, 6., and 6, by

Ngub

M= M6,), C=>C(60), K=2K(0) (2
j=1 j=1 j=1

N, N,

sub sub

where N, is the number of substructures and M, C;, and K are
the contributions to the mass, damping and stiffness matrix of the
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Jjth substructure, respectively. Note that it is not necessary to re-
quire classical normal modes.

2.2 Stochastic Input Model. Assume that discrete-time input
data {f[k]:k=1,... ,N} are available for the excitation where the
index k refers to time (k—1)A¢ with Az being the sampling inter-
val. Define the uncertain input error 7y by

glk]=1lk]+ nfk] 3)

The input error 7, is modeled as zero-mean Gaussian discrete
white noise with covariance matrix E,,f(H,,), where @, is the pa-
rameter vector defining the covariance matrices of the input and
output errors; this PDF maximizes the information entropy of the
input error for a specified mean and covariance matrix. The com-
ponents of f{k] that correspond to the unobserved excitation com-
ponents of g[k] are set equal to zero. Thus, 77, models the input
measurement noise for the observed components and it models the
unobserved excitation for the unobserved components. The advan-
tage of this formulation is that it can handle cases that include
complete excitation measurements, incomplete excitation mea-
surements and no excitation measurements (such as in ambient
vibration tests).

2.3 Stochastic QOutput Model. Assume that discrete-time re-
sponse data are available at N, observed DOFs where the mea-
sured response z[k] € RN is a linear combination of the model
state vector y[k]=[x[k]7,x[k]”]” and the actual force g[k], plus an
output error 7,[k] € R that accounts for modeling error and
measurement noise in the response measurements. This output
error is modeled as zero-mean Gaussian discrete white noise with
covariance matrix ,.(6,). Thus, the measured response is given
by

z[k] = Lyy[k] + Log[k] + n.[k] = L,y[k] + Lof{k] + L, 5[ k]
+ n,[k] (4)

where L; e RVe*2Nd and L, € R¥*Ng are observation matrices
that depend on the type of measurements (e.g., displacements or
accelerations), and y[k] is given by Eq. (1). Furthermore, the er-
rors 17, and 7 are modeled as stochastically independent.

2.4 Model and Damage Identification. The parameter vector
@ for identification from the excitation and response data is com-
prised of: (1) the mass, damping, and stiffness parameters 6, 6,,
and 6, that specify the mass matrix M, damping matrix C, and
stiffness matrix K; (2) the parameter vector @, specifying the
covariance matrices for the input and output errors 7y and 7,
respectively; and (3) the 2N, initial conditions for the structural
state. In practice, the system may often be assumed to start from
rest. In such a case, the initial conditions can be treated as known
and equal to zero and can be excluded from the vector @ of pa-
rameters for identification.

Let Z,,, and F,, , denote the response and the excitation mea-
surement matrix from time (m—1)Az to (n—1)At, with m<n, re-
spectively,

Z,,=[zlm],....z[n]] and F, , =[flm],... fn]],

msn
(5)

The approach to damage detection is to first use the Bayesian
framework presented in the next section to obtain the updated
PDF (probability density function) p(@|Z; y.,F, ) of the param-
eter vector @ given the measured input data F; 5 and output data
Z, y where N denotes the total number of points in time where
measurements are available. Then, this is used to compute the
probability of damage of the jth substructure exceeding damage
level d which is defined by

556 / Vol. 73, JULY 2006

PE™(d) = PLE < (1 - d) 0[RS 255 PR, 204} (6)

where subscripts “ud” and “pd” refer to undamaged and possibly
damaged cases. Equation (6) gives the probability that the sub-
structure stiffness parameter has decreased by a fractional amount
of more than d. Based on the Gaussian approximation of the up-
dated PDFs for ¢"¢ and ¢°, one can easily calculate the probabil-
ity damage as follows (Y]uen et al. [26])

1-d)6d - o
( V0~ 6 ) (7)

PY™(d) =~ @
7 (x’(l =~ d)X(67°) + (65)

where ®(-) is the standard Gaussian cumulative distribution func-

tion; @}’d and @;d denote the most probable values of the stiffness
parameters for the undamaged and (possibly) damaged structure,
respectively; and 64 and 6% are the corresponding standard de-
viations of the stiffness parameters determined from the inverse of
the Hessian matrix of the negative logarithm of the joint updated
parameter PDF (Beck and Katafygiotis [22]).

3 Bayesian Model Updating

3.1 Exact Formulation of Updating. Using Bayes’ theorem,
the expression for the updated (posterior) PDF of the parameters @
given the measured response Z; y and the measured input F y is

p(O1Z, . F, y) =cip(O)p(Z, 5| 0.F, ) (8)

where c; is a normalizing constant such that the integral of the
right hand side of Eq. (8) over the domain of @ is equal to unity.
We interpret p(60|Z, y.F, y) as giving a measure of the plausibil-
ity of the values of @ based on the data (Jaynes [27]). The factor
p(0) in Eq. (8) denotes the prior PDF of the parameters and it may
be chosen based on engineering judgment. It may be treated as
constant (noninformative prior) if all values of the parameters
over some large but finite domain are felt to be equally plausible
a priori. The likelihood p(Z; y| 8,F y) is the dominant factor on
the right hand side of Eq. (8). It reflects the contribution of the
measured data Z; y and F y in establishing the updated PDF of 6.
Also, in order to establish the most probable (plausible) value of

6, denoted by é one therefore needs to maximize
p(OP(Zy N 0.F, y).

Since linear systems are considered and both the uncertain in-
put and output measurement noise and unmeasured excitation are
modeled as Gaussian, it follows that the likelihood p(Z, x| 6,F) )
in Eq. (8) is an N,N-variate Gaussian distribution with appropri-
ately calculated mean and covariance matrix. Direct calculation of
this function for different values of @ becomes computationally
prohibitive for a large number N of data, as it requires repeated
calculation of the determinant and inverse of the corresponding
very high-dimensional N,N X N,N covariance matrices. Thus, al-
though Eq. (8) offers a theoretically exact solution to the model
updating problem, its computational implementation poses a chal-
lenge. In the next section, an approximation is presented which
overcomes this difficulty and renders the Bayesian model updat-
ing problem computationally feasible.

3.2 Proposed Approximation for the Likelihood. The PDF
p(Z, 5] 0.F, ) in Eq. (8) can be written as a product of condi-
tional PDFs

N
03FI,N)=P(Z1,NP‘05FI,N) H p(z[k]

k=N, +1

P(ZI,N 0vZI,k—laF1,N)

)

The following approximation is introduced [25]
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-1-Fiy)
k=N,+1

(10)

Here, each conditional PDF factor depending on all the previous
response measurements is approximated by a conditional PDF de-
pending on only the most recent N, response measurements. The
sense of this approximation is that response measurements too far
in the past do not provide significant information about the present
observed response. Of course, one expects this to be true if N, is
so large that all the correlation functions have decayed to very
small values. However, it is found that a significantly smaller
value of N, suffices for the approximation in Eq. (10) to be valid
for practical purposes. In particular, it is found that a value for N,
of the order of T,;/At is sufficient, where T is the fundamental
period of the system and At is the sampling interval. For example,
assuming At:zl—STl, it follows that a value of N,=25 is sufficient.
The advantage of the approximation in Eq. (10) will become ob-
vious in the subsequent sections where the expressions for com-
puting the factors on the right hand side of Eq. (10) are given. In
Sec 3.2.1, the expression for the first factor p(Z, N, |60.F, ) in
(10) is given. In Sec. 3.2.2, a general expression "for the con-
dmonal PDF p(z[k]|0,Z;_y i-1.F15) in Eq. (10) is derived.
Based on these results, p(Z; y|8,F; ) can be computed effi-
ciently from Eq. (10).
The most probable parameters 0 can then be obtained by mini-
mizing J(6)=-In[p(O)p(Z, y| 0,F, y)]. Also, the updated PDF of
the parameters @ can be well approximated by a Gaussian distri-

bution M (b,H(AH)") with mean @ and covariance matrix H(AO)",

where H(AB) denotes the Hessian of J(0) calculated at 8= 0 (Beck
and Katafygiotis [22]).

3.2.1 Expression for p(ZlN |60.F, ). Since the joint PDF
p(Z, N, A ) follows an N, N -variate Gaussian distribution, it
is spec1ﬁed by the mean and covariance matrix of Z; y. Expres-
sions for the mean and covariance are derived as a function of the
identification parameter vector @ as follows.

The equation of motion (1) can be rewritten in a state space
form for the structural state vector y=[x’,x"]"

(11)
where the system matrices A € R2V¢*?Na and B e R?Ve*Ns are
given by

|

0
and B=[MN,".]T. Here, ONd and INd denote the N;X N, zero and
identity matrix, respectively.
The continuous-time differential Eq. (11) is approximated by
the following difference equation

ylk+1]=A.y[k] + Bg[k] (13)
where y[k] denotes the structural state vector at time f#;,=(k
—1)Ar, Ay=e*Y and BdEA‘l(Ad—Isz)B. For notation conve-
nience, denote the relationship between the state vector and the
input of the above system using the function £

ylk] = L(k;0,G,y), k<N (14)

where @ is the vector comprised of the model parameters for iden-
tification described earlier and G, y denotes, in analogy to the
definition of Eq. (5), the matrix comprised of the actual input
force time history up to time (N-1)Az, ie, Gy
=[g[1].g[2].....g[N]].

It can be easily shown using Eq. (4) that the mean m[k]
=E[z[k]| 0.F, ] is given by

y=Ay+Bg

(12)

Oy, Iy,
MK -M"!C
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mlk]=L,L(k; 0.F, ) + Lof[£] (15)

Thus, m[k] is equal to the model response calculated assuming
that the only input is the measured excitation. The difference be-
tween z[k] and u[k] is the prediction error v[k]

v[k] =z2[k] - p[k] (16)

It is worth noting that m[k] in Eq. (15) can be simply calculated
using the function “Isim” in MATLAB [28]. Collecting all the terms
calculated by Eq. (15), E(ZLNP\ 0.F, ) is given by

- u[N T (17)

The covariance matrix EZN —E[[Zl N, -E(Z, N, |0.F, )]
x[Z, N, -E(Z, N, |6.F, 5)]"] is glven by

3,[1.1] S,[1LN,]

EZ’NI' S . (18)
3,[N,,N,]

where 3 [m,n], m<n, can be approximated by (see Appendix A)

sym

3, [mn] = LiS.(AQ)"™"LY + Lo, Bi(A)" " 'Li(1 - 5,,,)
+ (L% L +3) Oy (19)
where &, , is the Kronecker delta and the matrix S,, can be ob-

tained by solving the Lyapunov equation in discrete form (Lin
[29])

S.=AS.Al+B3, B} (20)
Furthermore, 3, [n,m]=2,[m,n]T, m<n, defines the elements in
the lower triangle.

The joint PDF p(Z, N, |0.F, y) is then the N,N,
ian distribution

-variate Gauss-

1
= (2 W)N"N"/Z |EZ,NP| 172

1
Xexp{— E[Zl,Np - E(Zl,Np|0vF],N)]T

XEZ}N,,[ZI,NP—E(ZI,N,,Io,Fl,N)]} 1)

3.2.2 Expression for p(z[k]| 0,Z,_ N k-1 ,F1 n). Define the vec-
tor W[k], k>N, as follows: W[k] [z[k]T k=117, ... ,2[k
- ,,]T]T which is comprised of all the response measurements
appearing in p(z[k]| 0,Z,_ N -1 .F ). Specifically, W[k] consists
of z[k] followed by all vector elements of Z,_ Nkl ordered in a
descending time index order. Next, the expressmns for the mean
value and the covariance of the Gaussian joint PDF
p(W[k]| 0,F, y) are derived.

Clearly, the expected value of the vector W[k] given @ and F,
is given by

’M[k_ 1]Tv v"‘[k_Np]T]T (22)
where u[k] is given by Eq. (15). The covariance matrix Xy[k]

= E{[WIK]- E(WIK] | 0,F ) IWLK]-E(WIK]|0,F, )1} given
F, y is easily shown to be
3, [k,k] sym
2ylk] = ‘ : (23)
2 [k=N,k] +++ 2 [k=N,k-N,]

where 3,[m,n], m=<n is given by Eq. (19) and 3 [n,m]
=3,[m,n]?, m<n. Therefore, the joint PDF p(W[k]|0,F, y),
N,+1<k<N, is an N,(N,+1)-variate Gaussian distribution with
mean given by Eq. (22) and covariance matrix %y[k] given by Eq.
(23) which is independent of k when the approximation for
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f@® y(0)
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Fig. 1 Single-degree-of-freedom oscillator model (Example 1)

3,,lm,n] in Eq. (19) is used. Then, the matrix .y, is partitioned as

follows:
[z zn]
EW‘[zﬁ S

where 21, %5, and 3, have dimensions N, X N,, N, X N,N,,, and
N,N, X N,N,, respectively.

The mean and covariance matrix for the N,-variate Gaussian
PDF p(z[k]|0,Z,_ Npke 1.F1 ) can be determined from the corre-
sponding mean and covariance matrix for WI[k] given @ and F y.
The mean e[k]=E[z[k]| 0, Zk_Np,k_] ,F| ] is given by

e[k]= p[k]+ 3350wk - 11 vk -2]", ... o[k -

24)

NI
(25)
where p[k] is given by Eq. (15) and the prediction errors v[m],

m k=N,,...,k—1, are given by Eq. (16). The covariance matrix
2 N, [k] of the error e k]=z[k]—e[k] is given by

Sen [kl = Ele[k]elk]" =32, - 21,3537,

which does not depend on k when the approximation for 2 [m,n]
in Eq. (19) is wused. Thus, the conditional PDF

p(z[k]|0,Z,_ Nk 1,F n) is given by the following Gaussian dis-
tribution

(26)

1 1
LF N = 55 exp) — = (z[k]
W QRIS p{ 2

—e[k)'SC) (2[k] - e[k])} 27)

where e[k] is given by Eq. (25) and EGN is given by Eq. (26). It
is of interest to note that this probability distribution is equivalent
to taking an auto-regressive model of order N, for the prediction
error v[k] in Eq. (16).

The advantage of the approximation introduced in Eq. (10) is
that all the conditional PDFs on the right hand side of Eq. (10) are
conditioned on exactly N, previous response measurement points
and follow an N,-variate Gaussian distribution with approxi-
mately the same covariance matrix EE,N) which, therefore, needs
to be calculated only once for a given parameter set 6. Thus, to
compute p(Z, N\ 0.F, y), one needs to calculate the inverse and
the determinant of only the matrices 3, N, 35, and 3 N, of
dimension N,N, X N,N,,, N,N, X N,N,, and N XN, respectlvely
This effort is much smaller than that requlred in an exact formu-
lation where one needs to calculate the inverse and the determi-
nant of a matrix of dimension N,N X N,N, where N>N,, in gen-
eral.

4 TIllustrative Examples

4.1 Example 1: SDOF Oscillator. Consider a SDOF oscilla-
tor of mass m=1 kg subjected to external force f(r) and base
acceleration X,(), as shown in Fig. 1. Here, f(r) is white noise
with spectral intensity S;=0.02 N2 s and the base acceleration is
taken to be the 1940 El-Centro earthquake record in the N-S di-
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Table 1 Identification results of the stiffness parameters of the
oscillator (Example 1)

Parameter Actual 6 Optimal 0 SD. o COV « B
k 100.00 100.32 1.3490 0.014 0.23
c 0.4000 0.5423 0.1391 0.348 1.02
Ty 2.5005 2.4476 0.0939 0.038 0.56
o 0.0036 0.0035 0.0001 0.016 1.24

7

rection. The parameters 0=[k,¢, Gy O
simulated data are: k=100.0 N/m, =0.04 N s/m (corresponding

to damping ratio of 2.0%), gm—O 02 N?s, 7,=2.5005 N and

0,,=0.0036 m. The chosen value of &, corresponds to the stan-
dard deviation combining the unmeasured input f and 10% mea-
surement noise of the measured input ¥,. Also, the chosen value of
&,]Z corresponds to a 10% rms output-error level, i.e., the noise is
10% of the rms of the noise-free response. The sampling time step
is taken to be 0.02 s and the total time interval is 7=50 s, about
80 fundamental periods, so that the number of data points is N
=2500.

Table 1 refers to the identification results using a single set of

)" used to generate the

displacement response measurements Z; y and base acceleration
measurements F, y. It shows the exact values of the parameters,

the most probable values @ [ =[k,¢, Gof» ,,Z:I the calculated stan-
dard deviations for the Gaussian approximation of the joint PDF
of k, ¢, o, and o, the coefficient of variation for each param-
eter and the value of a “normalized error” B for each parameter.
The parameter S represents the absolute value of the difference
between the identified value and exact value, normalized with
respect to the corresponding calculated standard deviation. Here,
the value N,=30 (corresponding to one period of the oscillator)
was used in Eq. (10). Note that the order of the square matrices
that need to be inverted by the proposed approach is N,=30 which
is much smaller than N=2500 in an exact formulation. Repeating
the identification with a value of N,=60 yielded identical results
to the accuracy shown, verifying that using N,=T,/Ar is
sufficient.

Figure 2 shows contours in the (k,c) plane of the marginal

updated PDF p(k,c|21’N,ﬁ‘]yN) calculated for the set of simulated
data used for Table 1. Figure 3 shows a comparison between the
itional  PDFs —
p(c|Z1,N,FLN,k,6’,”-,6',%), respectively, obtained from. (i) Egs.
(8) and (10) (crosses) and (ii) the Gaussian approximation

N(b,H(b)‘l) described in Sec. 3.2 (solid). It is seen that the pro-
posed Gaussian approximation is very accurate. Thus, the inverse

conditional p(k|Z1 N,Fl NGy O and

Hessian matrix H(AO)’] can be used to calculate the covariance
matrix for the uncertainty in the value of the parameter 6, given

the data iLN and lA?‘l’N. In particular, this gives the variance

ol(Bj\ilyN,le‘l’N) in Table 1 for each parameter 6; of 6.

Another set of data is simulated with the same parameters ex-
cept that the stiffness is reduced by 5%, i.e., k=95 N/m, to simu-
late damage. Identification results are shown in Table 2. By using
the posterior PDFs for the undamaged and damaged oscillator, the
probability of damage with respect to the fractional damage level
d can be obtained. Figure 4 shows the probability of damage for
different threshold levels d. It can be seen that it is almost with
probability 1 that there is stiffness reduction in the damaged case.
Furthermore, this damage is likely to be within the range from 0%
to 10%, with median 5.6% and standard deviation 1.7%. The pro-
posed approach is capable of indicating such a small level of
damage with only a small amount of response data and unmea-
sured excitation that contributes about 63% of the rms response.

Transactions of the ASME
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Fig. 3 Gaussian approximation for the conditional PDFs of the stiffness and damping coefficient of
the undamaged oscillator (Example 1)
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Table 2 Identification results of the stiffness parameters of the
damaged oscillator (Example 1)

Parameter Actual 6 Optimal 0 SD. o COV «a B

k 95.000 94.707 1.0805 0.011 0.27
c 0.4000 0.4099 0.1133 0.283 0.09
T 2.5005 2.5983 0.1059 0.042 0.93
Oy 0.0038 0.0039 0.0001 0.016 1.34

4.2 Example 2: Fifteen-Story Building Subjected to Earth-
quake and Wind Excitation. The second example uses simulated
response data from the 15-story building shown in Fig. 5. The
story height is 2.5 m. This building has uniformly distributed floor

mass (100 ton each) and uniform story stiffness (l;j=6.011
X103 kN/m, j=1,2,...,15), so that the first four modal frequen-
cies are 1.250, 3.737, 6.186, and 8.571 Hz, respectively. Rayleigh
damping is chosen so the damping matrix is given by C=ay,M
+agK, where @y,=0.1177 s™' and @x=0.0006383 s are used to
simulate the data. As a result, the damping ratios of the first two
modes are 1.0%.

For both undamaged and damaged cases, we assume that the
measured response corresponds to the absolute acceleration at the
2nd, 5th, 8th, 11th and 14th DOF over a time interval 7=60 s with
a sampling interval Ar=0.01 s. Therefore, the total number of
measured time points is N=6000 and corresponds to 48 funda-
mental periods.

The undamaged structure is subjected to stationary wind exci-
tation (unmeasured) which has a uniform spectral intensity, S
=5.0 kN?ss, at all DOFs and a correlation coefficient exp(—y/R),
where y denotes the distance between two DOFs and R is a cor-

l— k15 lc—lé > y5(t)

{_%2 E —>a(t)

——y(t)
W

- mﬁ

r“x““ﬁ

> 12(t)
[_ ks [_‘]J&
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]
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Fig. 5 Fifteen-story building model (Example 2)
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Table 3 Identification results of the undamaged structure (Ex-

ample 2)
Parameter Actual 6 Optimal 0 SD. o COV « B

0, 1.0000 0.9978 0.0175 0.018 0.13
0, 1.0000 0.9909 0.0161 0.016 0.56
0, 1.0000 0.9939 0.0131 0.013 0.46
0, 1.0000 1.0071 0.0159 0.016 0.45
05 1.0000 1.0224 0.0125 0.013 1.79
O 1.0000 0.9849 0.0119 0.012 1.26
0, 1.0000 0.9848 0.0133 0.013 1.14
0y 1.0000 1.0228 0.0127 0.013 1.79
0o 1.0000 0.9779 0.0119 0.012 1.86
610 1.0000 0.9987 0.0135 0.014 0.10
0,4 1.0000 1.0076 0.0112 0.011 0.68
6,5 1.0000 0.9812 0.0107 0.011 1.76
013 1.0000 1.0083 0.0139 0.014 0.59
04 1.0000 1.0187 0.0093 0.009 2.01
0,5 1.0000 1.0047 0.0082 0.008 0.57
6, 1.0000 1.0062 0.4969 0.497 0.01
HM 1.0000 1.0165 0.0236 0.024 0.70
R 10.000 10.370 0.3753 0.038 0.99

relation distance, which is taken to be 10 m in the simulation of
the data, but it is assumed unknown in the identification phase.
The measurement noise for the response is taken to be 5%, i.e.,
the rms of the measurement noise for a particular channel of mea-
surement is equal to 5% of the rms of the noise-free signal of the
corresponding quantity. Identification using the proposed ap-
proach is carried out with a value of N,=100, which corresponds
to using previous data points of just over one fundamental period

as the conditioning information at each time step in Eq. (10).
The stiffness and damping are based on the following non-

dimensional scaling parameters: stiffness parameters, 6;,j

=1,2,...,15 and damping parameters, GaM and GaK, that is, k;

=0k, ay=0q, @y, and ag=0, @x. Table 3 shows the identifica-
tion results for the undamaged structure. The second column in
this table corresponds to the actual values of the parameters used
for generation of the simulated measurement data; the third and
fourth columns correspond to the most probable values and the
calculated standard deviations, respectively; the fifth column lists
the coefficient of variation for each parameter; and the last column
shows the normalized error 8 described in Example 1. One ob-
serves that in all cases the actual parameters are at reasonable
distances, measured in terms of the estimated standard deviations,
from the most probable values, which confirms that the calculated
uncertainties are consistent.

Figure 6 shows the contours in the (6, 6,) plane of the mar-
ginal updated PDF of 6, and 6,. Figure 7 is a typical plot showing
comparisons between the conditional PDFs of 6, and 6, (keeping
all other parameters fixed at their most probable values) obtained
from: (i) Egs. (8) and (10) (crosses) and (ii) the Gaussian approxi-

mation NV(0,H(8)"") described in Sec. 3.2 (solid). It is seen that
the proposed Gaussian approximation is very accurate.

Next, damage is introduced by reducing the interstory stiffness
of the first and third story by 15% and 10%, respectively. The
damaged structure is subjected to wind excitation and earthquake
ground motion. The wind excitation is assumed to have spectral
intensity 2.5 kN2 s with the same correlation model as before and
the earthquake ground acceleration is taken to be equal to a 25%
scaled version of the 1940 El-Centro earthquake N-S record.

1.06 ] T T ] T
: : : 1 O Optimal
|| x Actual
|— 18D
: : , |-—- 2SDs
1.04F - ................. .................................................... -

1.02

0.98

086

1.06

Fig. 6 Contours of the updated PDF projected onto the (6, 6,) plane of the undamaged structure (Example

2)
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Fig. 7 Gaussian approximation for the conditional PDFs of the stiffness parameters 6, and 6,

of the undamaged structure (Example 2)

Again, the wind excitation is assumed not to be measured but the
earthquake ground motion is assumed to be measured with 5%
measurement noise by a sensor at the base.

Figure 8 shows the displacement time histories at the first floor
and the contribution from the earthquake only. Since the identifi-
cation is based on acceleration, these data are assumed not to be
available. It is shown here only for demonstration purposes. It can
be seen that the earthquake ground motion dominates the response
during the first 15 s but its contribution at later times is compa-
rable with that from the wind excitation. If only the earthquake
ground motion is considered, identification results will be poor,
especially for the damping parameters, because the earthquake
ground motion does not have much energy towards the end to
explain the corresponding relatively strong response at these later
times. Much smaller damping values, or even negative ones, will
be identified in such case.

Identification results for the damaged structure are shown in
Table 4. By using the posterior PDFs for the undamaged and
damaged building, the probability of damage with respect to the
fractional damage level can be obtained. Figure 9 shows the prob-
ability of damage with different threshold levels d. It can be seen
that it is almost with probability 1 that there is stiffness reduction
at the first and the third story. Furthermore, these damage levels
have medians 14.8% and 10.5% and standard deviations 2.2% and
2.1%, respectively. The proposed approach is able to identify suc-
cessfully both the location and severity of the damage. If a higher
precision for the damage severity is desired, one solution is to
obtain longer records of the structural excitation and response.

5 Concluding Remarks

A Bayesian approach to damage detection, location and assess-
ment is presented using noisy incomplete excitation and response
data. It is based on an approximate conditional probability density
expansion of the updated PDF of the model parameters of a linear
MDOF system using dynamic data. The updated posterior PDF
can be accurately approximated by a multi-variate Gaussian dis-

562 / Vol. 73, JULY 2006

tribution where the calculated mean and covariance matrix offer
an estimate of the most probable values of the model parameters
and their associated uncertainties. The updated PDFs from data in
the undamaged state and in a possibly damaged state are used to
calculate the probability of damage of different severity levels in
each substructure. The approach was shown to successfully deter-
mine the location and probable level of damage from noisy in-
complete data.
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Appendix A

Using Egs. (4) and (13)—(15), the prediction error v[k] can be
expressed as follows

vlk]=z2[k] - plk]
=L, L(k;0".[n{1], ..., g k- 1]]) + Lypdk] + n.[k]

k-1
=L, >, A"'Bym k- m]+ Loy k] + n.k]

m=1

(28)

where the parameter vector " has zero initial conditions and all
other parameters are equal to the corresponding parameters in 6.
The covariance matrix 3,[k,k+r]=E[v[k]JoT[k+r]], r=0, is
given by
k=1
3 [kk+r]=Ly| 2 AF'BE,BiAD"" |(ADL]
m=1
+ LZ2 nfBg(A;)'ilL{(l - 5r,0) + (L22 1]ng+ E?]z) 5;‘,0
(29)
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Fig. 8 Response time history (top) and its contribution from the earthquake only (bottom) at the first floor

of the damaged structure (Example 2)

The sum S;=S\""A%"'B,>, BI(AD)"! can be calculated by

m=

solving the following Lyapunov equation in discrete form [29]
Si=AsSiAs+ (B2, B) - Ay B, Bi(A) "] (30)
For dissipative dynamical systems, the two-norm of the matrix
A, is less than unity, ic., [|AJL<1. As a result, the term
Af,"leE,,fB(’i(Aﬂ’j)"‘l —0 for large k. Therefore, Eq. (30) can be
approximated by

Table 4 Identification results of the damaged structure (Ex-
ample 2)
Parameter Actual 6 Optimal 0 SD. o COV «a B
0, 0.8500 0.8495 0.0125 0.015 0.04
0, 1.0000 1.0103 0.0136 0.014 0.76
,9; 0.9000 0.8887 0.0110 0.012 1.03
0, 1.0000 0.9938 0.0142 0.014 0.44
65 1.0000 1.0074 0.0126 0.013 0.59
06 1.0000 0.9758 0.0117 0.012 2.06
6, 1.0000 1.0214 0.0149 0.015 1.43
6y 1.0000 0.9979 0.0124 0.012 0.17
6y 1.0000 0.9759 0.0116 0.012 2.07
610 1.0000 1.0293 0.0145 0.015 2.02
01 1.0000 0.9971 0.0115 0.012 0.26
61 1.0000 0.9981 0.0108 0.011 0.18
0,5 1.0000 1.0129 0.0140 0.014 0.92
6,4 1.0000 1.0062 0.0098 0.010 0.63
6,5 1.0000 1.0024 0.0081 0.008 0.29
6, 1.0000 1.0149 0.2823 0.282 0.05
HM 1.0000 1.0248 0.0234 0.023 1.06
RK 10.000 10.007 0.3649 0.037 0.02

Journal of Applied Mechanics

S.=AS.Al+B>, B] (31)

The advantage of this approximation is that the matrix S is no
longer dependent on k, which improves the computational effi-
ciency significantly.

Thus, the covariance matrix X,[k,k+r], r=0, is readily ob-
tained:

S [kk+r]=LSL(A)LT + L,3, BIA)'L{(1 - 8,)
+(Lo2 Ly + 3,8, (32)

Note that the right hand side of this expression does not depend on
k.
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Fig. 9 Probability of damage for the stiffness parameters 6 j
=1,...,15 (Example 2)
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