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Three-dimensional flows over impulsively translated low-aspect-ratio flat plates are
investigated for Reynolds numbers of 300 and 500, with a focus on the unsteady
vortex dynamics at post-stall angles of attack. Numerical simulations, validated by an
oil tow-tank experiment, are performed to study the influence of aspect ratio, angle
of attack and planform geometry on the wake vortices and the resulting forces on
the plate. Immediately following the impulsive start, the separated flows create wake
vortices that share the same topology for all aspect ratios. At large time, the tip
vortices significantly influence the vortex dynamics and the corresponding forces on
the wings. Depending on the aspect ratio, angle of attack and Reynolds number, the
flow at large time reaches a stable steady state, a periodic cycle or aperiodic shedding.
For cases of high angles of attack, an asymmetric wake develops in the spanwise
direction at large time. The present results are compared to higher Reynolds number
flows. Some non-rectangular planforms are also considered to examine the difference
in the wakes and forces. After the impulsive start, the time at which maximum lift
occurs is fairly constant for a wide range of flow conditions during the initial transient.
Due to the influence of the tip vortices, the three-dimensional dynamics of the wake
vortices are found to be quite different from the two-dimensional von Kármán vortex
street in terms of stability and shedding frequency.

1. Introduction
The Reynolds number at which micro-air-vehicles operate have reached O(104) and

will continue to decrease in the coming years (Pines & Bohorquez 2006). Due to the
operational and weight requirements, these aircraft have unique designs with low-
aspect-ratio wings, when compared to those of the conventional aircraft. Moreover,
these vehicles fly at low speed and often high angles of attack while experiencing large
perturbations such as wind gusts. Yet there are only few studies of low-Reynolds-
number aerodynamics around low-aspect-ratio wings under translation.

As micro-air-vehicles become smaller in size, they share some characteristics with
flying and swimming animals such as birds, insects and fishes. These animals have
low-aspect-ratio wings or fins that are operating at Reynolds numbers of order
102 to 105, often at post-stall angles of attack. However, separated flows have been
used to the advantage of the animals for enhanced performance. For example, it
has been observed that hovering insects can achieve added lift from the unsteady
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separated flows around the flapping wings. The leading-edge vortices are found to be
stably attached throughout each stroke and provide additional spanwise circulation
resulting in enhanced lift. Such forces applied by the unsteady vortex formation in two-
dimensional flows were investigated both experimentally by Dickinson & Götz (1993)
and numerically by Wang (2000a ,b, 2004) and Bos et al. (2008). Furthermore, the full
three-dimensional studies drawing attention to spanwise flows and tip effects around
the flapping wings were undertaken experimentally by Ellington et al. (1996), Birch &
Dickinson (2001), Usherwood & Ellington (2002), Birch, Dickson & Dickinson
(2004) and Poelma, Dickson & Dickinson (2006). Analogous numerical studies were
performed by Liu & Kawachi (1998) and Sun (2005).

Similar investigations have been carried out to analyse the efficient locomotion of
swimming animals. In particular, von Ellenrieder, Parker & Soria (2003), Buchholz &
Smits (2006) and Parker, von Ellenrieder & Soria (2007) have visualized the wake
vortices behind flapping low-aspect-ratio hydrofoils to understand the qualitative
dynamics. Numerical simulations of the three-dimensional flows over flapping foils
were also performed by Blondeaux et al. (2005) and Dong, Mittal & Najjar (2006)
at Reynolds numbers similar to the present study. Moreover, Drucker & Lauder
(1999) have experimentally visualized the flows around pectoral fins and Zhu et al.
(2002) have performed simulations around an entire fish to identify the wake
structures.

For purely translating low-aspect-ratio wings, Torres & Mueller (2004) have
experimentally measured the aerodynamic characteristics of low-aspect-ratio wings
at Reynolds numbers around 105. Aerodynamic performance (lift, drag, pitching
moment, etc.) of various planforms was considered over angles of attack (α) of 0◦–
40◦ and aspect ratios (AR) of 0.5–2 and was observed to be quite different from
that of low-aspect-ratio wings in high-Reynolds-number flows. They concluded that
the most important parameter that influences the aerodynamic characteristics is the
aspect ratio. Transient studies have also been conducted by Freymuth, Finaish &
Bank (1987) by using smoke to visualize the start-up flows around low-aspect-
ratio airfoils. A qualitative insight into the three-dimensional formation of wake
vortices was presented. The experiments by Ringuette, Milano & Gharib (2007)
extensively studied the wake vortices behind low-aspect-ratio plates but only at
α = 90◦.

On the numerical side, two-dimensional simulations around translating wings were
performed by Hamdani & Sun (2000). Also, studies by Mittal & Tezduyar (1995)
and Cosyn & Vierendeels (2006) considered the three-dimensional flows around
translating low-aspect-ratio planforms but focused mostly on those at low angles
of attack. For wings at post-stall angles of attack, unsteady separated flows and
vortex dynamics behind low-aspect-ratio wings in pure translation are still not well
documented.

To extend the previous studies, we use numerical simulations to examine the
aerodynamics of impulsively started low-aspect-ratio flat-plate wings under pure
translation at Reynolds numbers of 300 and 500. These Reynolds numbers are high
enough to induce separation and unsteadiness in the wake but low enough for the
three-dimensional flow field to remain laminar. The regime also includes, for a range
of angles of attack, the critical Reynolds numbers at which the flow first becomes
unstable to small disturbances. In the following section, we present the numerical
method and its validation. In § 3, results from separated flows around the airfoils are
presented. We call attention to the transient nature of the flow field and its influence
on the aerodynamic forces. The stability of the wake at large time is also investigated.
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Dynamics of the wake vortices and the corresponding lift and drag are considered
over a range of angles of attack and for various planform geometries.

2. Simulation methodology
2.1. Numerical formulation

Three-dimensional incompressible flow over a low-aspect-ratio flat-plate wing is
simulated with an immersed boundary method (Peskin 2002; Mittal & Iaccarino
2005; Taira & Colonius 2007). With this method, a body of arbitrary geometry can
be generated in a flow field by adding a boundary force to the momentum equation.
The continuous analogue of the immersed boundary formulation can be represented
by the following non-dimensional incompressible Navier–Stokes equations:

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u +

∫
s

f (ξ (s, t)) δ(ξ − x) ds, (2.1)

∇ · u = 0, (2.2)

u(ξ (s, t)) =

∫
x
u(x)δ(x − ξ ) dx = uB(ξ (s, t)), (2.3)

where u, p and f are the appropriately non-dimensionalized velocity, pressure and
surface force. The temporal variable is reported in terms of the non-dimensional
convective time unit (i.e. U∞t/c). The spatial variables in the computational domain
D and along the immersed boundary ∂B (in this case, surface of the plate) are denoted
by x and ξ , respectively, and are normalized by the mean chord of the plate. Reynolds
number is defined as Re ≡ U∞c/ν, where U∞, c and ν denote the free-stream velocity,
mean chord length of the plate and kinematic viscosity of the fluid, respectively.
The velocity vector (non-dimensionalized by the free-stream velocity) is set to uB , the
immersed boundary velocity, along ∂B.

In later discussions, forces on the flat plate (Fx, Fy, Fz) are described in terms
of the non-dimensionalized lift, drag and side forces defined by CL = Fy/(

1
2
ρU 2

∞A),

CD = Fx/(
1
2
ρU 2

∞A) and CS = Fz/(
1
2
ρU 2

∞A), respectively, where ρ is the density of the
fluid and A is the area of the flat plate. In the case of two-dimensional flows, the
force per unit span is normalized by the chord.

In the current work, we employ a particular immersed boundary method called the
immersed boundary projection method developed by Taira & Colonius (2007). This
method enforces both the incompressibility and no-slip constraints through a single
projection in a manner similar to the projection utilized to satisfy incompressibility in
the traditional fractional-step methods. Equations (2.1)–(2.3) are spatially discretized
through a second-order finite-volume formulation on a staggered grid. The convective
and viscous terms are integrated in time with the second-order Adams–Bashforth and
the Crank–Nicolson schemes, respectively. Further details on the method can be
found in Taira & Colonius (2007) and Taira (2008).

2.2. Simulation setup

Simulations are performed in a large rectangular box typically of size
[−4, 6.1] × [−5, 5] × [−5, 5] in the streamwise (x), vertical (y) and spanwise (z)
directions. Typical grid size ranges from 125 × 55 × 80 to 200 × 88 × 128 with the
smallest resolution of �x = 0.025 for the case of AR = 2 and much larger sizes were
used for simulations of flows around higher aspect ratio plates. Grid stretching is
applied in all directions with finer resolution near the plate to capture the wake
structure as illustrated in figure 1. Extensive studies have been performed in two and
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Figure 1. A typical computational domain showing the top-port side of the wake around a
rectangular flat plate of AR = 2. The spatial discretization of this computational domain is
shown for every five cells for the x- and y-directions and four cells for the z-direction.

three dimensions to ensure that the present choice of grid resolution and domain size
does not influence the flow field in a significant manner (previously reported in Taira
et al. 2007 and Taira 2008).

Boundary conditions along all sides of the computational boundary ∂D are set to
uniform flow (U∞, 0, 0) except for the outlet boundary where a convective boundary
condition (∂u/∂t + U∞∂u/∂x =0) is specified. Inside the computational domain, a
flat plate is positioned with its centre at the origin. This flat plate is instantaneously
materialized at t = 0+ in an initially uniform flow to model an impulsively started
translating plate. Computations are advanced in time with a time step such that the
Courant number based on the free-stream velocity obeys U∞�t/�x � 0.5. Both the
initial transient and the large-time behaviour of the flow are considered.

2.3. Validation

We compare results from the three-dimensional simulations and measurements from
an oil tow-tank experiment of flows over a rectangular plate of dimension 82 mm ×
164 mm × 3 mm (AR = 2). The experiment is performed in a tank (2.4 m × 1.2 m ×
1 m) filled with a blend of Chevron Superla R© white oil, Texaco Corporation. The
rectangular flat plate is translated in the tank while being rigidly mounted to a six-axis
force sensor at one-wing tip to limit lift due to backlash in the gearbox. This setup
is attached to a translation sled equipped with a servomotor providing control of the
translational velocity (Dickson & Dickinson 2004). A constant translation velocity is
maintained by the plate after a swift acceleration from rest. The temperature in the
laboratory is regulated at 18 ± 1◦C such that there is less than 5% variation in the
kinematic viscosity (ν = 115cSt). The variation in the translational velocity is much less
than that of the viscosity, with the presence of the velocity control mechanism. Hence,
the Reynolds number with estimated variation is Re =U∞c/ν =100 ± 5. During the
experiments, the flow field is captured with stereo digital particle image velocimetry
(DPIV).

Shortly after the initial transient, the flow achieves a steady state at this low
Reynolds number. Due to the spatial setup of the oil tank, the maximum travel
distance of the plate is limited to 13 chord lengths to avoid the interference of
wall effects. In figure 2, snapshots of the spanwise vorticity (ωz) contour are shown
for the simulation (with a grid size of 150 × 66 × 96) and experiment for the plate
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Figure 2. Snapshots of spanwise vorticity field at mid-span around a plate of AR =2 at
α = 30◦ from the experiment and the simulation. Free stream is directed from left to right and
the position of the plate is illustrated with the black solid line (for the experiment, the position
is approximate due to the deflection of the plate). The boxed regions in the simulated results
represent the fields of view for the DPIV measurements.

at α = 30◦. Following the impulsive start, the leading- and tailing-edge vortices are
formed (t = 1.5). Later in time, the trailing-edge vortex (starting vortex) detaches and
the leading-edge vortex moves upward. At this low Reynolds number, the vorticity
profile is very diffusive and the vorticity generated at the leading and tailing edges
forms a smeared steady distribution. This flow profile is reached by t =7.5 and is
indistinguishable from the last snapshot taken from the experiment at t = 13. As it
can be seen from figure 2, the simulated flow field is in good agreement with the
DPIV measurements. Three-dimensional flow past a plate of AR = 2 is found to reach
a stable steady state due to the stabilizing effects from the tip vortices and viscosity.
We note in passing that the analogous two-dimensional flow at Re = 100 exhibits
periodic shedding of the leading- and trailing-edge vortices.

For the purpose of validating our simulation, we also compare lift and drag forces at
t = 13 from both the simulation and experimental measurements. It is found from the
simulation that, past t = 13, forces decay to the steady value in a very slow manner.
Figure 3 compares measured lift and drag coefficients with the simulations based
on three different grid sizes for α ∈ [0◦, 90◦]. It can be observed that the two cases
with finer grid sizes of 150 × 66 × 96 and 200 × 88 × 128 are almost indistinguishable.
Similar grid resolution studies are performed for the cases investigated in the present
paper.

Lift coefficients from experiments and simulations are in agreement over the full
range of α. Drag coefficients show slight discrepancy between the experiment and
the numerical computation, due to the thickness of the flat plate. In experiments,
the thickness of the plate is 0.037c, while in the simulations, we attempt to model
an infinitely thin plate with regularized body forces dependent on the grid spacing.
However, the flow features are insensitive to our selection of grid spacing at the
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Figure 3. Lift and drag coefficients for a rectangular plate of AR = 2 at Re = 100. Data from
the oil tow tank experiments are shown with (�) and results from numerical simulations are
presented with (�), (�) and (�) for grid sizes of 125 × 55 × 80, 150 × 66 × 96 and 200 × 88 × 128,
respectively.

current Reynolds numbers of interest. The shape of the leading or trailing edge
(sharp or rounded) has been found to result in no important change in the lift and
drag coefficients aside from some difference in the momentum coefficient at higher
Reynolds numbers of O(104–105) (Pelletier & Mueller 2000; Torres & Mueller 2004).
We also note that the measured forces on the plate may be influenced by the presence
of the sting on one of the wing tips.

3. Separated flows around low-aspect-ratio flat plates
3.1. Dynamics of wake vortices behind rectangular planforms

We first consider the formation and evolution of wake vortices behind rectangular flat
plates of AR = 1, 2 and 4 at Re = 300. Snapshots in figure 4 show the corresponding
flow fields at a high angle of attack of α =30◦. The wake vortices are visualized
with two different iso-surfaces. First, constant vorticity surface (‖ω‖2 = 3) is shown in
light grey to capture the vortex sheets. Second, the second invariant of the velocity
gradient tensor (∇u), known as the Q-criterion or Q-value, is used to highlight
the vortex cores depicted by the dark grey surfaces (Q = 3). Positive Q-values give
prominence to regions of high swirl in comparison to shear to represent coherent
vortices (Hunt, Wray & Moin 1988). In incompressible flows, the Q-value is provided
by Q ≡ 1

2
(‖Ω‖2 − ‖S‖2), where Ω ≡ 1

2
[∇u − (∇u)T ] and S ≡ 1

2
[∇u + (∇u)T ].

Plates are impulsively translated in an initially quiescent flow, generating strong
vortex sheets on the top and bottom surfaces of the plates at t = 0+. Thereafter,
the flow separates from the leading edge and tips, which act as strong sources of
vorticity. Vorticity is then fed into the flow as vortex sheets that roll up into the
leading-edge, trailing-edge and tip vortices. As the leading-edge vortex forms and the
trailing-edge vortex advects downstream, the plate experiences a large increase in lift.
This enhanced lift is generated by the low-pressure core of the initial leading-edge
vortex and is an added effect on top of the lift achieved at large time (also observed in
two-dimensional flows by Dickinson & Götz 1993). Note that the initial topology of
the wake structures are the same for all finite AR considered here and the phenomena
resemble dynamic stall observed behind high-aspect-ratio wings undergoing a swift
pitch up (Carr 1988).
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Figure 4. Top-port views of the wake vortices behind rectangular plates of AR = 1, 2 and 4
at α = 30◦ and Re = 300. Shown are the iso-surface of ‖ω‖2 = 3 in light grey with vortex cores
highlighted by the iso-surface of Q = 3 in dark grey.
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As features from the initial transient lose their effect on the plate through advection
and diffusion, the wake behind the plate becomes strongly dependent on the aspect
ratio. At α = 30◦, the AR = 1 case slowly reaches a steady state with a pair of strong
counter-rotating tip vortices that cover the entire span of the plate. The vortex sheet
created from the leading edge is kept attached to the plate due to the downward
induced velocity from the tip vortices.

For a plate of AR = 2, the vortex sheet emanating from the leading edge rolls into
a leading-edge vortex that accumulates spanwise vorticity over time. The tip vortices
are not strong enough to keep the leading-edge vortex attached. Around t ≈ 8, two
consecutive leading-edge vortices start to pinch off from the plate. As the detachment
takes place, the disconnected vortices start to interact with the tip vortices. This
interaction results in the loss of the columnar structures initially maintained by the
tip vortices and reduces the downward induced velocity onto the vortical structure
residing above the top surface of the plate. Hence, once the initial leading-edge
vortices are separated, consecutive formation of the leading-edge vortices (hairpin
vortices) by the roll-up of the leading-edge vortex sheet occurs farther and at a higher
position. Additionally, weakening of the tip vortices allows the trailing-edge vortex
sheet to morph into hairpin vortices that shed. The nonlinear interaction of the wake
vortices results in an unsteady aperiodic flow at large time. While it is not apparent
from figure 4, there is slight asymmetry in the spanwise direction that contributes to
the aperiodic nature of the shedding. Discussion on this asymmetry is offered later in
§ 3.4.

For the largest finite aspect-ratio plate considered (AR = 4), the weaker influence
of the tip vortices across the span results in more strongly pronounced periodic
shedding of the leading- and trailing-edge vortices. The shedding frequency (non-
dimensionalized as the Strouhal number with the frontal projection of the chord)
for AR = 4 is found to be St ≡ f c sinα/U∞ = 0.12. In contrast, the two-dimensional
shedding frequency for the same Reynolds number and angle of attack is St = 0.16.

Around AR = 3, the vortical structures from the leading and trailing edges start to
separate into two cells across the span. The cellular pattern referred to as stall cells
becomes more apparent for AR = 4 where a pair of hairpin vortices are generated
from the leading edge and another pair is created from the trailing edge resulting
in a release of four hairpin vortices per shedding cycle. Such flow features were also
reported on the top surface of the airfoils with oil film and tuft visualizations by
Winkelmann & Barlow (1980) and Yon & Katz (1998), respectively, at Re = O(105).
While we do not notice features of the stall cells directly on the top surface, we find
qualitative agreement for the number of cells observed some short distance into the
wake.

Despite the interactions between the leading-edge and tip vortices, these vortices
remain distinct without merging for all three-dimensional cases. Due to the existence
of the right-angled corners on the rectangular plates, the vortex sheets thin out
near these regions and the sheets roll up into individual core structures of leading-
edge and tip vortices. The separation of the vortical structures indicates a lack of
convective vorticity flux in the spanwise direction (i.e. from the mid-span to the tips).
Such transport has been suggested to stabilize the leading-edge vortex for flapping
wings (Birch & Dickinson 2001; Birch et al. 2004). For the translating rectangular
wings, there is no mechanism to relieve the vorticity being fed into the leading-edge
vortex other than diffusion and shedding of the vortical structures. The effects of
removing sharp corners by using different planform geometries are discussed later in
§ 3.5.
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Figure 5. Top views of the wake vortices behind a rectangular wing of AR = 2 at α = 40◦

from smoke visualizations at Rea = 5200 and present results at Re =500 with iso-contour of
‖ω‖2 = 5. Smoke visualizations are from Freymuth et al. (1987); reprinted by permission of
the American Institute of Aeronautics and Astronautics.

3.2. Flows at higher Reynolds number

Flows behind rectangular plates at Re = 500 are also simulated and are found to be
similar to the ones presented here for Re = 300. With the larger Reynolds number,
the wake vortices are less diffused but the topology of the vortical structure are
qualitatively similar, which was also noted by Dong et al. (2006) for flows around
flapping foils for Re = 100–1000.

The geometries of the wake vortices in low-Reynolds-number flow (Re = O(100)) at
early times following the impulsive start also resemble those in flows of much higher
Reynolds numbers, due to the fact that the viscous time scale (tvis ∼ c2/ν) is much
larger than the time scale associated with advection or acceleration (tadv ∼ c/U∞ or
tacc ∼ c1/2/a1/2, respectively).

Impulsive flow over a plate of AR =2 at Re = 500 and α = 40◦ is simulated and is
compared to the smoke visualizations of vortices under a constant acceleration from
quiescent flow in a starting wind tunnel (Freymuth et al. 1987) as shown in figure 5.
Reynolds number for this experiment is defined with the constant acceleration,
the chord and the kinematic viscosity as Rea = a1/2c3/2/ν = 5200 following the non-
dimensionalization by Freymuth et al .

As acceleration of immersed boundaries contributes to the generation of vorticity
(Hornung 1989), the formation of vortices behind a plate under impulsive translation
and constant acceleration cannot be directly compared. However, the formation
of start-up vortices should be qualitatively similar at early times before viscous
effect significantly influences the flow and the induced velocity of each wake vortex
becomes large. The formation of the start-up vortices is illustrated by the snapshots in
figure 5 with smoke visualization and the vorticity norm iso-surface.

For the case of constant acceleration, a characteristic velocity of ua = a1/2c1/2 is
used to non-dimensionalize the temporal variable. Accordingly, the flow fields are
compared at the non-dimensional times of tU∞/c and ta1/2/c1/2 for the simulations
and the experiments, respectively. In figure 5, it can be seen that the formation
and evolution of leading-edge and tip vortices are in good agreement between the
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experiment and the numerical solution despite the difference in the Reynolds number
and the velocity profile to which the plate is subjected. The exact location of the
trailing-edge vortex from the smoke visualization is difficult to pinpoint but is found
to be in accord by its faint trail of smoke at earlier times. The simulation is able
to capture even the thin layer of vortex sheet emanating from the leading edge,
which would correspond to the region directly downstream of the leading edge that
is not visualized by the smoke. Dominant flow features at early times in high-
Reynolds-number flows are captured even with the present low-Reynolds-number
flow simulations.

3.3. Force exerted on the plate

Unsteady forces on accelerating airfoils at low Reynolds numbers have been
considered for two-dimensional flows by Dickinson & Götz (1993) and Pullin &
Wang (2004). In this section, we consider the forces exerted upon the plate with the
three-dimensional wake vortices both immediately after the impulsive start and also
at large times.

Representative lift and drag on rectangular plates from the present simulations are
presented in figure 6 for Re = 300. Here results for angles of attack of α ∈ [0◦, 60◦]
and aspect ratios of 2 and 4 as well as the two-dimensional cases are shown for
t ∈ [0, 70]. At t = 0+, the impulsive start imposes infinite acceleration on the airfoil in
the streamwise direction and results in infinite initial drag (not shown for graphical
clarity). Subsequently, lift starts to increase as accumulation of spanwise vorticity
instigates the formation of the leading-edge vortex. This increase in lift continues to
about t ≈ 1.7 to reach its maximum. The time to reach maximum lift is observed to
be fairly constant in the case of finite aspect ratio wings over most of the angles of
attack considered here at low Reynolds numbers. The universality of this number is
discussed in detail later on.

After the initial start-up, lift is reduced by as much as half of the maximum value
at large time, as shown in figure 6. Depending on whether the wake at large time
becomes steady or unsteady, the corresponding force coefficients reach constant or
fluctuating values.

It should be noted that the three-dimensional flows under consideration are vastly
different from the two-dimensional case, where one observes periodic shedding of
the leading- and trailing-edge vortices creating the von Kármán vortex street. Due
to the absence of the tip vortices, the two-dimensional flow exerts a strikingly larger
fluctuation in force per unit span as shown in figure 6.

The effect of aspect ratio on the forces is considered by comparing the maximum
lift during the transient and the time-averaged forces at large time. These values for
wings of AR = 1, 2 and 4, as well as the two-dimensional case, are presented in figure 7
accompanied by their inviscid limits. Stronger influence of downwash from the tip
vortices results in reduced lift for lower aspect-ratio plates. For the limiting case of
two-dimensional flow, the maximum lift is much higher due to the absence of tip
effects (figure 7a). It is interesting to note that the maximum lift achieved soon after
the impulsive start is comparable or higher than the three-dimensional inviscid limit
for low-aspect-ratio straight wings in incompressible flow (Helmbold 1942):

CL =
2πα√

1 + (2/AR)2 + 2/AR
. (3.1)

This limit is derived from the lifting surface theory for elliptic wings and is shown
to be in remarkable agreement with wings of AR < 4. Lift for rectangular wings of
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Figure 6. Force history on rectangular flat plates of different AR for a range of angles
of attack at Re = 300. Lift and drag coefficients are shown on the left and right panels,
respectively.

0.5 � AR � 6.0 is accurately predicted with this equation as shown in Anderson
(1999).

We observe agreement between the time-averaged low-Reynolds-number lift at
large time and the above inviscid model at low angles of attack (α � 10◦), where
the flows are still attached (figure 7b). The difference at low angles of attack can be
attributed to viscous effects. However, once the flow separates from the plate at higher
α, the inviscid approximation is no longer able to model the lift behaviour. The high
value of αCL max (angle of maximum lift) was also reported for low-aspect-ratio wings
at Re ∼= 105 by Torres & Mueller (2004). We mention that the difference between the
maximum (max CL) and the average (avg CL) lifts is the lift enhancement generated
by the initial leading-edge vortex.
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Figure 7. Characteristic coefficients for rectangular plates at Re = 300: (a) maximum lift; (b)
time-averaged lift coefficient at large time; (c) time-averaged drag coefficient at large time and
(d ) time-averaged lift-to-drag ratio at large time for AR = 1 (�), AR = 2 (�), AR = 4 (�) and
two-dimensional (�). Overlaid are the two- ( ) and three-dimensional ( ) inviscid lift
limits.

The average drag values at large time (avg CD) for pre-stall angles of attack increase
with decreasing aspect ratio (figure 7c). However for higher angles of attack, drag
coefficients are significantly smaller for finite-aspect-ratio wings in contrast to their
two-dimensional analogue. It is interesting to note that both average lift and drag
coefficients become larger past α = 20◦ for AR = 2 wings than those of AR = 1, most
likely due to the difference in the behaviour of the wake at large time (discussed later
in § 3.4).

At Re = 300, the viscous stress has a significant influence on the drag experienced
by the wing, especially at low angles of attack. In comparison, at Re = 105 and AR =1,
Torres & Mueller (2004) report CD = 0.025 and 0.11 for α = 0◦ and 10◦, respectively.
At α = 15◦, CD = 0.24 is recorded by Torres and Mueller, a value close to what is
measured in the current study also (figure 7c). Hence, we argue that past this angle
of attack, pressure drag is the main cause of drag.

Shown also in figure 7(d ) are the average lift-to-drag ratios at large time
avg (CL/CD), which are larger for higher aspect-ratio wings. The ratios peak at higher
angles of attack for low aspect-ratio plates. While the two-dimensional avg (CL/CD)
reaches its maximum around α = 10◦, that of AR = 1 is achieved near α = 20◦. This
may suggest favourable operating conditions at higher angles of attack for the low-
aspect-ratio wings. For high angles of attack (α > 40◦), the lift-to-drag ratio for
different aspect ratios coalesce to the same value.
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angles of attack at (a) Re =300 and (b) Re = 500. Symbols denote cases for AR = 1 (�),
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are shown with solid lines. The inset figures are the corresponding histograms.

While it is not shown in this section, forces measured at Re =500 are found to be
quantitatively and qualitatively similar to those at Re = 300. Interesting differences
between the two Reynolds numbers are observed in the stability of the wake, which
is described later in § 3.4.

Next, we call attention to the time at which the maximum lift is achieved. We denote
this time by t∗ and present its value in figure 8 for Re = 300 and 500. It is found
that, for the considered aspect ratios and angles of attack, t∗ is fairly constant around
1.7 (a value between 1.25 and 2.25) because the profiles of the leading-edge vortices
are similar among all cases. As the accumulation of spanwise vorticity generated
by the leading edge contributes to the growth of the leading-edge vortex, there is
reminiscence to the formation number used to describe the time at which vortex rings
can no longer grow larger in strength (Gharib, Rambod & Shariff 1998). Since the
formation number is found to be a universal quantity for a variety of flows (e.g.
Jeon & Gharib 2004; Milano & Gharib 2005), it is not surprising that t∗ is also
fairly constant for the three-dimensional cases considered here. In the case of the
two-dimensional flow, we observe a wider range of t∗ between 1.3 and 2.4 for α < 45◦.
At higher α, a second local maximum starts to emerge for the two-dimensional flow
lowering t∗ significantly.

The side force (Fz) remained zero for all cases that reached steady or periodic
unsteady flows. However, for aperiodic flow cases observed at high angles of attack,
the wake became asymmetric about the mid-span and exerted side forces upon
the plate. These unsteady side forces were an order of magnitude smaller than the
dominant lift and drag forces experienced by the plate. For all cases considered in
this paper (later summarized in figure 10), it was observed that side forces have small
magnitudes of |CS | = |Fz/(

1
2
ρU 2

∞A)| < 0.02. The genesis of these side forces is discussed
in the next section.

3.4. Large-time behaviour and stability of the wake

Here, we consider the behaviour of the wake behind rectangular plates at large
time. After the initial transient generated by the impulsive start settles down, the
wake reaches one of the three states: (i) a stable steady state, (ii) a periodic
unsteady state or (iii) an aperiodic unsteady state. Examples from each one of
these states were presented in § 3.1. In this subsection, we consider a wide range
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of parameters (α ∈ [0◦, 60◦], AR = {1, 1.5, 2, 3, 4} and Re = {300, 500}) as well as
the two-dimensional flows to survey the stability of the wake at large time. The lift
histories, such as the ones in figure 6, are analysed with Fourier transform to detect any
dominant shedding frequencies as shown in figure 9 for an example of Re =500 and
AR = 3. Depending on the angle of attack, the shedding can occur with a dominant
shedding frequency (periodic) or with no clearly recognizable frequency (aperiodic).
The dominant frequency in the case of figure 9 is found to be St = f c sinα/U∞ = 0.12
for all spectra of the periodic shedding cases. The corresponding Strouhal number
for the two-dimensional flow at Re = 500 is slightly higher at St = 0.14–0.16.

The wake stability is summarized in figure 10, which maps α against AR. These
two parameters were found to be the two most important parameters in determining
the stability of the wake at large time. Suggested boundaries between different flow
regimes are drawn based on the data points collected from numerical experiments.
The shaded regions correspond to flow conditions that would arrive at a steady state.
Such flow can be either attached at small α or fully separated at moderately high α.
The steady state is achieved over a wider limit with lower aspect ratios since the tip
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vortices are able to provide a downward induced velocity across a larger extent to
prevent the wake vortices from shedding.

As we consider higher angles of attack, the flow exhibits periodically shedding
hairpin vortices generated by the leading and/or the trailing edges. This flow profile
is observed for the white region at the left of the dashed line in figure 10. The change in
the dynamics between the shaded (sub-critical) and unshaded (super-critical) regions
can be viewed as an extension of the two-dimensional stability boundary. We claim
that the change in the dynamics is attributed to a Hopf-bifurcation, as shown by
Ahuja et al. (2007) for the two-dimensional case. For lower aspect ratios, the vortex
sheet emanating from the trailing edge forms and sheds hairpin vortices repeatedly.
The narrow region with AR � 2 in figure 10 corresponds to such flow states. The
same region with higher aspect ratio of AR � 2 shows shedding of both the leading-
and tailing-edge vortices alternately in a periodic fashion (for instance the case of
Re =300, AR = 4 and α = 30◦ in figure 4).

With further increase in the angle of attack, the tip vortices become more vertically
aligned. Essentially, the wake now is comprised of four vortices of similar strengths,
namely the leading- and trailing-edge vortices as well as a pair of tip vortices. The tip
vortices strongly interact with the leading- and trailing-edge vortices and suppresses
the dominant shedding frequency. The transition from periodic to aperiodic flow is
illustrated in figure 9 as the peak for the power spectrum at St =0.12 becomes no
longer observable for α > 30◦. In figure 10, this aperiodic unsteady state corresponds
to the region on the right side of the dashed line.

The aperiodic flows are found to be asymmetric in the spanwise direction with
respect to the mid-span plane. As the wake becomes asymmetric, the wake vortices
apply side forces onto the wing and the flow field. The combination of the asymmetry
and the nonlinear interaction among the leading-edge, trailing-edge and tip vortices
give rise to the aperiodic nature of the flow. An example of an asymmetric wake is
shown in figure 11 for a rectangular plate of AR = 2 at α =40◦ and Re = 500 (the
wake for the same case at earlier time is shown in § 3.2). The side force for this
case has a magnitude of |CS | < 0.01 with a frequency content (no dominant shedding
frequency) similar to those low-frequency contents shown in figure 9. Asymmetry is
not observed for steady or periodic unsteady flows.

For much larger aspect ratios than those considered here, the wake most likely
develops into either a stable steady state or a periodic shedding profile. However,
the actual three-dimensional flow with infinite span would probably not be purely
two-dimensional, as seen for three-dimensional flows around a circular cylinder of
infinite span (Braza, Faghani & Persillon 2001). Spanwise perturbations can induce
the creation of spanwise vorticity and the corresponding spanwise undulations. Hence,
formation of cellular vortical patterns (stall cells) can be observed directly above the
top surface, similar to the structures seen in the case with AR = 4 (figure 4) and those
previously reported by Winkelmann & Barlow (1980) and Yon & Katz (1998).

The stability of the wake is also influenced by the Reynolds number. In figure 10,
we notice that for Re = 500, the steady flow profile is achieved for a smaller range
of angles of attack and aspect ratios compared to the case where Re = 300. Similar
trend holds for the periodic shedding case. With increasing Reynolds number, it is
expected that the wake to exhibit strong interaction between the leading-edge and tip
vortices resulting in aperiodic/asymmetric flows for a wider combination of angles of
attack and aspect ratios. At higher Reynolds numbers, it may be possible to observe
changes in the shape of the stability boundary between the periodic and aperiodic
shedding regimes.
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Figure 11. Top view of the asymmetric wake at large time behind a rectangular plate of
AR = 2 at α = 40◦ and Re = 500. Vortices are highlighted with iso-contours of Q = 2.5. The
flow is directed from left to right and the wing is shown in black.

3.5. Non-rectangular planforms

Stable attachment of the leading-edge vortices on flapping wings has been observed
to provide enhanced lift for prolonged duration (Birch et al. 2004; Poelma et al. 2006).
Shedding of these vortices are prevented by releasing the spanwise vorticity through
convective transport from the root to the tip of the wings induced by wing rotation.
Hence, a continuously connected vortical structure formed by the leading-edge and
tip vortices are observed for flapping or revolving wings.

For rectangular plates in pure translation, we have shown earlier that the initial
leading-edge vortex detaches in a similar fashion to dynamic stall. The leading-edge
and tip vortices remain as separate vortical structures and do not provide a mechanism
for the spanwise vorticity to be released other than shedding. In order to prevent
or delay the shedding of the leading-edge vortex, we consider the use of curved or
angled leading edges to induce flows along the leading edge. Flows around elliptic,
semicircular and delta-shaped planforms are simulated at α =30◦ and Re =300 in
comparison to the flow around a rectangular plate of AR = 2 presented earlier. The
geometries of the elliptic, semicircular and delta-shaped planforms are chosen with
AR = 2, 4/π and 4, respectively, whose mean chord lengths (c ≡ A/b, where b is the
wing span) are used to non-dimensionalize all spatial variables. For the delta wing,
the sweep angle is set to 45◦.

Wake structures behind the non-rectangular planforms are shown in figure 12 after
the impulsive start with the corresponding forces in figure 13. For the elliptic and
semicircular cases, there are no discontinuities in the vortex sheet that emanates from
the leading edge to the tips, unlike the sharp separation of the vortical structures
around the corners on the rectangular planforms. The curved leading edge encourages
spanwise transport of vorticity into the tip vortices. Hence to some extent the shedding
of the leading-edge vortical structure is delayed. While the leading-edge hairpin vortex
first detaches around t ≈ 8 for the rectangular planform, such separation is observed
at a later time (t ≈ 15) for the elliptic and semicircular plates. This gentle detachment
allows the forces to decay smoothly instead of generating fluctuations, as seen for
the rectangular planform around t ≈ 8 due to the detachment of two consecutive
leading-edge vortices. At later time, both flows behind the elliptic and semicircular
wings exhibit periodic shedding, which is different from the rectangular case.

A steady state is achieved by the flow around the delta-shaped planform. There is
a clear distinction of the left and right vortex sheets from the nose of the plate, but
the roll-up of the vortex sheets forms a stable wake structure which in turn attains
steady lift and drag. The absence of wing tips for this planform allows the vortex
sheets from the leading edge to roll up and convect downstream in a very stable
manner (see figure 12). For Re = 300, the size of initial leading-edge vortices is larger
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Figure 12. Top-port views of the wake vortices behind different planform geometries at
α = 30◦ and Re = 300 with the iso-surface of ‖ω‖2 = 3 in light grey with vortex cores highlighted
by the iso-surface of Q = 3 in dark grey.

compared to the ones from higher Reynolds number flow (Gursul, Gordnier & Visbal
2005). One can observe transient behaviour of the wake until t ≈ 15. Beyond this
point in time, there is some unsteady shedding of small vortical structures behind the
rolled up vortices. However, the wake and the forces do not change much past t ≈ 15
approaching the steady state.

We observe a relative increase in transport of the spanwise vorticity around the
non-rectangular planforms in comparison to the rectangular planform as illustrated
by iso-surface of |u · ∇ωz| in figure 14. It should be noticed that there is an absence
of transport of ωz near the leading edge for the rectangular wing in contrast to the
semicircular and delta-shaped planforms. The force histories presented in figure 13
show that the time of maximum lift is somewhat delayed to t∗ ≈ 2 for the elliptic
and semicircular wings, in comparison to t∗ ≈ 1.7 for the rectangular plate of AR = 2.
Nonetheless, the plates experience a drop in lift due to the separation of the leading-
edge vortices later in time. This detachment is caused by the insufficient spanwise
transport (release) of spanwise vorticity to sustain a stable attachment of the leading-
edge vortex under pure translation.

While the vortical flows are different for various planform geometries, the lift and
drag exerted on the wings do not show significant variations in figure 13. This is
most likely due to the viscous nature of the flows at this low Reynolds number. In
addition, the similar aspect ratios considered here may be responsible for the similar
values in forces. We do also observe differences in the bahaviour and stability of the
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wakes. The stability diagram presented in figure 10 for the rectangular plate would
not carry over to the cases of non-rectangular planforms due the difference in the
influence of the tip vortices.

For flapping wing aerodynamics, the wing kinematics restricts the wing stroke and
periodicity. In such cases, the travel distance even at the wing tip is much smaller
and is about πARc. Even a small increase in aerodynamic performance or stable flow
features can be of benefit. Although the added effect of rotation or spanwise flows
are not taken into account in this study, the wing planform can be of importance as
we have discussed in the non-rectangular cases, at least without regard to structural
constraints or maneuverability. For purely translating flights, the initially formed
leading-edge vortex does not stay attached for most planform geometries as reported
around rotating wings. As discussed in previous studies, it is suspected that rotation
is one of the main mechanisms for the stable attachment.
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4. Conclusions
We presented results from numerical simulations of three-dimensional separated

flows around low-aspect-ratio flat-plate wings at low Reynolds numbers using an
immersed boundary method. Both the initial transient and long-time behaviour of
the flow was studied by simulating an impulsively started plate in pure translation.
The unsteady nature of the separated flow and vortex dynamics was highlighted.

A number of simulations were performed for Re = 300 and 500 with various aspect
ratios, angles of attack and planform geometries. The aspect ratio and angle of attack
were found to have a large influence on the stability of the wake profile and the
force experienced by the body. At early times, topologies of the wake vortices were
found to be the same across different aspect ratios and angles of attack. Behind
low-aspect-ratio rectangular plates, leading-edge vortices were found to form and
eventually separate as hairpin vortices following the initial impulsive translation. This
phenomenon was found to be similar to dynamic stall observed behind pitching
plates. The detached structure would then interact with the tip vortices, reducing the
downward velocity induced by the tip vortices acting upon the leading-edge vortex.
At large time, depending on the aspect ratio and angles of attack, the wakes reached
one of the three states: (i) a steady state, (ii) a periodic unsteady state or (iii) an
aperiodic unsteady state. The aperiodic unsteady state was found to be asymmetric
in the spanwise direction and was caused by the strong interaction between the
leading-edge, trailing-edge and tip vortices.

Lift achieved the maximum value soon after the impulsive start and decreased
afterwards to approximately half of the maximum value at large time. It was observed
that for most of the cases maximum lift in time was achieved at a non-dimensional
time around t∗ ≈ 1.7 regardless of the aspect ratio, angle of attack and planform
geometry. We remarked on the reminiscence to the formation number and its possible
universality of this non-dimensional time.

Elliptic, semicircular and delta wings were also considered. By providing curvature
along the leading edge, convective transport of vorticity from the mid-span to the tip
somewhat delayed the separation of the leading-edge vortex. However, the curvature
for these planforms could not induce sufficient transport of spanwise vorticity to
prevent the shedding of the leading-edge vortices. The wakes behind non-rectangular
wings were observed to be different from the cases of rectangular planforms in terms
of the shedding pattern (stability) and the influence of the tip vortices. However, the
overall trend for the lift and drag histories were found to be similar to those of the
rectangular case.

Three-dimensional separated flows behind low-aspect-ratio plates were found to be
vastly different from the analogous two-dimensional flows. We have observed that the
tip effects in three-dimensional flows can stabilize the flow and also exhibit nonlinear
interaction of the shedding vortices. Even when the aspect ratio is increased to 4, the
flow along the mid-span does not approach the two-dimensional von Kármán vortex
shedding since spanwise cellular structures (stall cells) emerge. Asymmetric wakes
about the mid-span were also observed for aperiodic flows around rectangular wings
at high angles of attack. Furthermore, the tip vortices and their interaction with the
other wake vortices were significantly influenced by the planform geometry.
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