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�-Factorization Conjecture
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Abstract—The existence of a perfect �-factorization of the com-
plete graph with � nodes, namely, ��, for arbitrary even number
�, is a 40-year-old open problem in graph theory. So far, two infi-
nite families of perfect �-factorizations have been shown to exist,
namely, the factorizations of ���� and ���, where � is an ar-
bitrary prime number �� � ��. It was shown in previous work
that finding a perfect �-factorization of�� is related to a problem
in coding, specifically, it can be reduced to constructing an MDS
(Minimum Distance Separable), lowest density array code. In this
paper, a new method for shortening arbitrary array codes is intro-
duced. It is then used to derive the ���� family of perfect �-fac-
torization from the ��� family. Namely, techniques from coding
theory are used to prove a new result in graph theory—that the
two factorization families are related.

Index Terms—Array codes, error-correcting codes, graph
theory, �-factorization, perfect �-factorization.

I. INTRODUCTION

A RRAY CODES are erasure-correcting codes, represented
by an array of bits. Erasures correspond to the loss of

columns. A two-erasure correcting array code, for example, is
capable of recovering any two lost columns. For a survey on
array codes see [4]. For recent results in array codes see [1]–[3],
[6].

Example 1 (Simple Array Code): A simple two-erasure cor-
recting array code of length four is shown below:

The first row consists of four information bits , , and .
The second row contains four parity bits. The “+” sign indicates
bitwise exclusive-OR, so that . One can verify that
any two columns can recover all four information bits. Suppose,
for example, that columns three and four are lost:
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Fig. 1. � , the principal factor of the perfect �-factorization of � . It is the
factor that contains edge ��� �� or in the general case of the perfect �-factoriza-
tion of � it is the factor, � , that contains edge ��� ��.

can be recovered by adding to

can be recovered by adding to :

Similar decoding chains are used for other erasure patterns.
An example of a family of array codes that are Maximum Dis-

tance Separable (MDS), and have optimal update complexity, is
the -Code [8]. As in the case of Example 1, the code is rep-
resented by an array, each column corresponding to a symbol
in the codeword. Thus, every symbol contains both information
and parity, and the code is therefore nonsystematic.

In general, the -Code is a two-erasure correcting array code
of length , represented by an by array. It can recover the
erasure of any two out of the columns. The constructions
of the B-Codes, the even case and the odd case ,
are based on the perfect -factorization of the complete graph,

. In fact, the infinite family of B-Codes was de-
scribed using binary generator matrices in [10]. In [8], the con-
nection between -code and perfect -factorization of was
established and both and families were derived using
this connection.

Definition 1 (Perfect -Factorization): A perfect -factoriza-
tion of a graph is a partitioning of the set of its edges into subsets,
called factors, such that each factor is a graph of degree one, and
the union of any two factors forms a Hamiltonian cycle.

Example 2 (A Perfect -Factorization of ): A perfect
-factorization of , is shown in Figs. 1–3. It consists of nine

degree-one subgraphs of , called factors. The union of any
two factors is a Hamiltonian path (complete cycle). The factors
are presented in three groups. The first group consists of only
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Fig. 2. Even factors of the perfect �-factorization of � . The factors labeled � , where � is even. Factor � is defined as the factor that contains edge ��� ��. Notice
that for even factors nondiagonal edges have even length—the length being the difference between the edge’s endpoints.

Fig. 3. Odd factors of the perfect �-factorization of � . The factors labeled � , where � is odd. Factor � is defined as the factor that contains edge ��� ��. Notice
that for odd factors all edges have odd length.

one factor: the principal factor, shown in Fig. 1, which con-
tains the edge (or in the general case the edge ). The
second group consists of so called “even” factors (Fig. 2), which
contain edges where is even. The last group are the “odd”
factors, (Fig. 3), which contain edges , where is odd.

A procedure introduced in [8] is used to derive the -Code
of length , , from a perfect -factorization of . An
example of this procedure is shown in Example 3, below.

In the case of the complete graph of even size, , it is still
unknown whether or not a perfect -factorization exists for all
values of [5], [7]. The following was conjectured in 1963 by
Kotzig [5].

Conjecture 1 (Perfect -Factorization): A perfect -factor-
izations of the complete graph exists for all values of ,

.

So far, two infinite families of perfect -factorizations have
been shown to exist, namely, the factorizations of and

, where is an arbitrary prime number .
The contributions of this paper are twofold.

• A method for shortening the B-Code is introduced. It
could be used in general to shorten an arbitrary array code.

• The above method along with additional manipulation
(separation) is used to derive the perfect -factorization of
the complete graph from the perfect -factorization
of . The derivation consists of the following steps.
1) : perfect 1-factorization of , obtained by

known construction ([5], [7]). Shown in Section II-A.
2) : extended B-Code of length ,

by known construction from [8]. Section II-B.
3) : generalized X-Code of length , by

shortening : new construction. Section IV-A .
4) : extended B-Code of length , by separa-

tion: new construction. Section IV-B.
5) , by [8, Theorem 5].

The above steps are illustrated, in Section III, by examples for
. Proofs are provided for arbitrary , for Steps 3 and 4

(Section IV-A and Section IV-B).

II. CONSTRUCTIONS

In this section, we summarize two known constructions
needed for Section III and Section IV, namely the perfect

-factorization of , from [7] and the B-Code construction
from [8].

A. : Perfect 1-Factorization of

For any prime number the complete graph of vertexes,
, has a perfect -factorization, .

Construction 1 (General Case: ): The construction of
is as follows: there are a total of factors, denoted

by . They are organized in three groups.
1) The principal factor , defined as the factor that contains

edge (shown in Fig. 1 for )
2) even numbered factors, (labeled with even, shown

in Fig. 2 for )
3) odd numbered factors, (labeled with odd, shown

in Fig. 3 for )

Below is the formal definition of the construction. Note that
a factor is labeled if it contains edge .

for

for
for even,
for odd,

for even
for odd

where is the edge between vertexes and . One can
verify that factor contains edge , as stated above. In-
deed, in the case of it is the first edge in the list. For
even, it is the edge . For odd, , it is .
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The following tables show as a list of edges per factor.
All entries are modulo . Principal factor (shown in Fig. 1,
for ):

...

Even factors , even (shown in Fig. 2, for ) as shown in
the first table at the bottom of the page. Odd factors , odd,

(shown in Fig. 3, for ) as shown in the second table
at the bottom of the page. Notice that the odd factors have edges
of odd length, while the principal factor and the even factors
have even-length edges, with the exception of exactly one edge
per factor, the first one, which is of length .

For the proof that is perfect see [7].

B. Erasure-Correcting Code Based on

To each perfect -factorization of size , correspond two era-
sure-correcting array codes: the B-Code, of size , and the
extended B-Code of size , and , respectively
[8].

Construction 2 (From to ): The construction of
is as follows: there are a total of columns, of

which one is a column of pure information bits corresponding
to the edges of the principal factor, , of . The remaining

columns correspond to even factors and
odd factors. They each contain one parity bit, corresponding to
vertex , and information bits, corresponding to the other
edges in ( and are omitted). The parity bit is the sum of all
information bits corresponding to edges connected to vertex .
Here is the formal definition of the construction

for where:

for

even,

odd,

if
if
otherwise

for even
for odd

where are the edges of . and are the information
bits. They correspond to the edges minus edges connected
to vertexes and . is the parity bit in column . It is defined
as the sum of all information bits , such that , that
is all information bits represented by an edge containing vertex
. Notice that by this definition every information bit appears in

exactly two parity bits.

III. EXAMPLES

Example 3 ( : B-Code of Size 8): We construct from
by deleting the principal factor , as well as vertexes

and and all edges connected to them. Here are the resulting
factors in graph format as follows:

...
...

...

...
...

...
...

...
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Vertexes correspond to parity bits, while edges are information
bits. Black vertexes are the ones that were connected to vertex

. They indicate the placement of parity bits relative to columns
of information bits. Notice that the union of any two factors
forms a graph such that starting at the black nodes and following
edges one can uniquely traverse all remaining nodes (this is the
erasure-recovery path). Here follows the array representation of
the above graphs as shown in the first table at the bottom of the
page. The are information bits. The are parity bits. They
are related by

In other words, parity bit is the sum of all information bits
that have as one of their two indexes. Notice that by definition
every information bit appears in exactly two parity bits.

Example 4 (Extended B-Code of Size 9, ): can be ex-
tended by the addition of a column of information bits. Those
are the bits corresponding to the edges of the principal factor
(which was deleted in the construction of ):

And see also the second table at the bottom of the next page.

Example 5 (Shortening Into ): In the array repre-
senting (from Example 3), we set all information bits in
the last four columns to zero. We obtain the following array
shown in the third table at the bottom of the page. Notice that
the zeroed columns correspond to parities with odd indexes:

Notice that each equation has exactly one information bit, ,
with an even index. Rewriting the above equations, we get

Renaming , , , and as parities and , , ,
and as information bits, we set the information bits to zero
and relabel the table shown at the bottom of the following page.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 16, 2009 at 14:22 from IEEE Xplore.  Restrictions apply. 



BOHOSSIAN AND BRUCK: SHORTENING ARRAY CODES AND THE PERFECT -FACTORIZATION CONJECTURE 511

Notice that because of the change of variables, the even-indexed
parity bits depend on two extra information bits. This fact will
be ignored in the graphical representation, but will be taken into
account in the final proof (Section IV-B). As part of the proof
those information bits will be set to zero.

Rearranging and removing the zeroed columns, we get the
array representing :

In the graph domain each factor has two edges and two black
vertexes:

Example 6 (Shortening Into ): has an extra column
of information bits. Those bits are of the form where and

are either both odd, or both even. Therefore they do not inter-
fere with the choice of information bits that are substituted with
parities. The resulting array for is

Example 7 (Separation of ): Notice that the arrays for
and above contain edges in which either both indices are odd
or both indices are even. We color gray all even nodes and edges
touching them. All odd nodes and edges—black:

Taking the union and identifying the connected components of
the graph:

IV. THEOREMS AND PROOFS

In this section, we present the contributions of the paper,
namely, the following.

• A method for shortening array codes. While it is easy to
shorten systematic error-correcting codes, in the case of
array codes, which are not systematic, shortening is not
obvious. The reason is that every symbol contains both
information and parity bits.

• A method for separating an array code. Given an array code
with array of height , we produce two arrays of height
each corresponding to an array code.

• A procedure that uses the above two constructions to derive
one family of -Codes from another one.

• Based on that, and a result from [8], that relates -Codes
to perfect -factorizations of the complete graphs, , we
present a procedure that derives the perfect -factorization
of from the perfect -factorization of .

A. Shortening:

Let . is represented by a array. By
setting information bits to zero, the array can be shortened
into a array corresponding to a new, square-shaped array
code of size . It has the dimension of the X-Code [9] of same
length. We call this new code “generalized” X-Code of size
and denote it by .

Construction 3 (Shortening and ): Referring to
the construction of namely Construction 2.

1) In the columns corresponding to odd factors set all infor-
mation bits to zero:

for odd

2) For the parity bit in each zeroed column identify an infor-
mation bit in a non-zeroed column and exchange them by
a change of variables:

where is interpreted as a new parity bit, and a new
information bit. is the sum of the remaining information
bits in the original .

3) Set the new information bits to zero:
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Theorem 1 ( and are MDS): The shortened
B-Codes, and , obtained by the construction described
above are MDS.

Proof: The proof consists of two parts. We first show that a
single change of variables between a parity bit and an informa-
tion bit preserves the MDS properties of the array. We then show
that to the parity bit, , in every zeroed column uniquely corre-
sponds one non-zeroed column, and an information bit, , in
it, such that

Part 1: A single change of variables described in the construc-
tion above corresponds to adding a row to another row of the
parity check matrix of the B-Code, thus preserving the MDS
property of the code.

Part 2: Consider the information bit indexed by

(see Construction 2). One such bit appears in each even num-
bered column ( even) of the array. being and odd prime im-
plies that either is odd or is odd, but not both. Therefore

the bit indexed by edge , appears in exactly one parity bit
, odd, i.e., in exactly one of the zeroed columns.

B. Separation: From to

Because of the particular shortening used in Section IV-A, we
show that each column, , of divides into two sets of bits

and , such that the parity bit of set only depends on
information bits in sets (and not on information bits of any
of the sets). We can therefore extract a new array based on
the , which turns out to be the array representing the B-Code,

. Here follows the formal theorem and proof.

Theorem 2 (Separation of ): can be separated into two
arrays, of which one corresponds to .

Proof: By examining Construction 2, notice that after
shortening the extended B-Code, , we are left only with
edges of even length. In other words, all information bits in
are indexed by pairs of the form:

Therefore, half of the information bits of every column in are
of the form where both and are odd. For the other half
both and are even. By definition, the even-indexed parities in

depend only on information bits with at least one even
index. That is true also for the new parities of , defined by
the change of variable during the shortening process. Therefore,
all even-indexed bits form an independent array such
that every information bit appears in exactly two parity bits.
As mentioned in Example 5, the even parities depend on some
odd-indexed information bits. Those are set to zero. As a result

the odd-indexed subarray is set to zero, and the even-indexed
subarray is used to define the new code. The resulting code is
MDS since is MDS. A counting argument shows that such
a code can only be . Indeed the number of parity bits (nodes)
is and the number of information bits (edges) is

Those are all the edges over vertexes.

V. CONCLUSION

The perfect -factorization of is a 40-year-old open
problem in graph theory. Two infinite families of solutions are
known, indexed by prime number , namely, for and for

. In [8], the extended B-Code, an erasure correcting code
introduced in [10], was shown to be equivalent to a perfect

-factorization of the complete graph.
In this paper, we presented a general method for shortening an

array code and applied it to the B-Code. The resulting procedure
allows one to derive the perfect -factorization of the complete
graph from the perfect -factorization of . The pro-
cedure consists of the following steps.

1) : perfect -factorization of , obtained by known
construction ([5], [7]). Shown in Section II-A.

2) : extended B-Code of length , by
known construction from [8]. Section II-B.

3) : generalized X-Code of length , by short-
ening: new construction. Section IV-A.

4) : extended B-Code of length , by separation:
new construction. Section IV-B.

5) , by [8, Theorem 5].
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