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desirable features both at the level of the lattice calculations as well as in the construction

and implementation of the low energy mixed action effective field theory. In this work we

show that when such a mixed action effective field theory is projected onto the valence

sector, both the Lagrangian and the extrapolation formulae become universal in form

through next to leading order, for all variants of discretization methods used for the sea

fermions. Our conclusion relies on the chiral nature of the valence quarks. The result

implies that for all sea quark methods which are in the same universality class as QCD, the

numerical values of the physical coefficients in the various mixed action chiral Lagrangians

will be the same up to lattice spacing dependent corrections. This allows us to construct

a prescription to determine the mixed action extrapolation formulae for a large class of

hadronic correlation functions computed in partially quenched chiral perturbation theory

at the one-loop level. For specific examples, we apply this prescription to the nucleon

twist-2 matrix elements and the nucleon-nucleon system. In addition, we determine the

mixed action extrapolation formula for the neutron EDM as this provides a nice example

of a θ̄-dependent observable; these observables are exceptions to our prescription.
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1 Introduction

There has recently been a rapid growth in the use of mixed action or hybrid lattice QCD [1,

2] in the numerical computation of hadronic matrix elements [3–18]. In response, there have

been significant complementary developments in our theoretical understanding of mixed

action (MA) lattice QCD through the use of mixed action effective field theory (EFT) [19–

31]. Mixed action calculations allow one to use fermion discretization methods which

respect chiral symmetry in the valence sector during the construction of the hadronic source

and sink operators. This is done in the background of numerically cheaper discretization

methods in the sea sector (which generally explicitly violate chiral symmetry) during the

generation of the gauge field configurations which contain the dynamical quark-antiquark

polarization loops. The main motivation stems from the significant numerical cost [32, 33]

of simulating either dynamical Kaplan (domain-wall) fermions [34–36] or dynamical overlap

fermions [37, 38] in the chiral regime as compared to Wilson fermions [39] (including

clover [40] and twisted mass [41]) or staggered fermions [42, 43]. Kaplan and overlap

fermions are often referred to as Ginsparg-Wilson (GW) fermions as they (approximately)

satisfy the GW relation [44] and thus retain chiral symmetry on the lattice [45] (modulo
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the quark masses). The cost of these MA calculations employing GW valence fermions

is then only the cost of propagator generation in the background of the dynamical gauge

configurations (which presumably use one of the numerically cheaper varieties of fermions

for the sea sector). The most popular MA scheme [4–12, 15–18] was developed by the

LHP Collaboration [1, 2] in which domain-wall valence propagators are generated on the

asqtad-improved [46, 47] publicly available MILC configurations [48].

In a recent paper [29], we showed that the chiral symmetry of the valence fermions

suppresses sources of chiral symmetry breaking arising from the sea sector such that for

many mesonic observables, there are no lattice spacing dependent counterterms through

next-to-leading order (NLO) in the MA EFT. Furthermore, this valence chiral symmetry

is strong enough to suppress all explicit lattice spacing dependence of these mesonic ob-

servables, with the exception of modifications to the correlation functions arising from the

unphysical hairpin contributions. This exception is due to the lack of unitarity inherent in

MA or partially quenched (PQ) calculations [49, 50]. These properties are only transpar-

ent when one uses an on-shell renormalization scheme, expressing correlation functions in

terms of lattice-physical parameters measured directly in the calculation, such as the pion

mass or decay constant, mπ or fπ; in much of our discussion below we will assume that

this renormalization scheme has been utilized.

In this paper, we build on these results and extend them such that we can formulate a

convenient prescription for converting quantities computed in partially quenched theories

to expressions valid in mixed action theories. Our prescription is valid for a wide range of

observables in a range of mixed action theories. To be clear, we state our requirements here

and will discuss them more extensively throughout this work. In terms of the mixed action

theory, we require that the hairpin structure in the mixed action theory is the same as in

the partially quenched theory, and we require that the valence quarks are chiral. In terms

of the observables, we require that there is no dependence on the CP violating θ̄ parameter.

We will discuss these requirements below and later in section 3.1 we will describe how the

neutron EDM, which of course depends on θ̄ requires a modification of our prescription.

We begin by observing that mixed action EFTs describing the light mesons have one

unphysical operator appearing at leading order (LO) which is universal in form, regardless

of the discretization used in the valence or sea sector, with only the numerical value of the

coefficient depending on the actions used; the coefficient is known as CMix in the literature.1

In section 2 we prove that for vertices with 2N mesons from this operator, for which two

of the mesons are of a mixed valence-sea type, and the rest are purely valence (or sea), this

operator functions identically to the LO operator involving the quark mass term. Also in

section 2, we construct the most general MA Lagrangian projected onto the valence sector

of the theory. This is particularly relevant because for correlation functions computed with

valence fermions, we only need the counterterms of the valence sector.

Our results imply that a large cancellation of potential lattice spacing dependent coun-

terterms occurs in MA theories. This means that MA extrapolation formulae have a con-

1This parameter, or equivalently the mixed meson mass renormalization has recently been calculated

for domain-wall valence and the coarse MILC staggered fermions [17].
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tinuum functional form with only slight modifications, when expressed in lattice-physical

parameters. Combined with our work in section 2, this allows us to construct the general

prescription we alluded to above. The prescription converts PQ chiral extrapolation formu-

lae through the one-loop level into the corresponding MA extrapolation formulae, allowing

one to make use of the extensive literature on partial quenching. As we will discuss in

some detail in section 2, our prescription requires three key components to be valid; the

valence fermions are (approximately) chirally symmetric modulo the quark masses, the

hairpin structure of the theory is the same as in partially quenched chiral perturbation

theory (PQχPT) [49–52] and the θ̄ term is negligible.

In section 3, we explicitly determine the MA formulae of several observables which

are non-trivial examples of our prescription and are of current interest; section 3.1, the

neutron EDM which provides a nice example and requires a slight modification of our

prescription, in section 3.2 nucleon twist-2 matrix elements and in section 3.3, nucleon-

nucleon scattering. In section 4 we comment on our results and conclude. In the appendix,

we describe why mixed action theories involving a twisted mass sea satisfy the requirements

of our prescription.

2 MA effective field theory

Mixed action EFT is a natural generalization of PQχPT [49–52] reducing to it in the contin-

uum limit.2 Partially quenched χPT is constructed from the underlying theory, partially

quenched QCD (PQQCD), analogously to how χPT [53–55] is constructed from QCD.

Partially quenched QCD exhibits an approximate graded chiral symmetry (for light quark

masses, mQ ≪ ΛQCD), with Nv valence and Nv ghost quarks and Ns sea quarks,3

SU(Nv +Ns|Nv)L ⊗ SU(Nv +Ns|Nv)R ⊗U(1)V ,

which is explicitly broken by the quark mass terms, mQ. It is then assumed, as with

QCD, that the vacuum of PQQCD spontaneously breaks this symmetry down to the vec-

tor subgroup, giving rise to the PQ pseudo-Goldstone modes. The PQχPT Lagrangian is

then constructed with a spurion analysis such that all operators respect the symmetries of

PQQCD. These symmetries are further broken explicitly by mixed action effects. At finite

lattice spacing, a, there is no symmetry which mixes the valence and sea quarks, breaking

the symmetry to a direct product of valence and sea sectors,

SU(Nv +Ns|Nv)L ⊗ SU(Nv +Ns|Nv)R

−→
︸︷︷︸

a6=0

SU(Nv|Nv)L ⊗ SU(Nv|Nv)R ⊗ SU(Ns)L ⊗ SU(Ns)R . (2.1)

For sufficiently small lattice spacing compared to the non-perturbative scale, these effects

are perturbative and can be treated in an EFT framework. All operators in the MA La-

grangian which do not explicitly depend upon the lattice spacing are given by their PQ

2For an introduction to MA EFT see refs. [19–24, 29].
3See ref. [52] for a complete discussion of the PQ symmetry group.
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equivalents, with the same value of the corresponding low energy constants (LECs). There

will be new operators with explicit lattice spacing dependence, some of which arise from the

mixed action effects and break the PQ symmetry, and whose exact form depends upon the

lattice actions used. These new unphysical operators will contribute to correlation functions

of observable quantities, for which the extrapolation formulae can be determined from the

appropriate mixed action EFT and then used to remove these unphysical contaminations

from MA lattice QCD calculations.

However, mixed action theories that have chirally symmetric valence fermions, such

as domain-wall fermions in the infinite 5th dimension limit, or overlap fermions with a

perfect overlap operator, give rise to chiral extrapolation formulae for a large class of

valence observables which are identical in form through next-to-leading order, with any

and all discretization methods used for the sea fermions. Provided the various sea quark

discretization methods are in the same universality class as QCD, and that the lattice

spacing dependent chiral symmetry breaking is perturbative,4 that is, the lattice spacing a

is small compared to the scale of chiral symmetry breaking Λχ in the sense that aΛχ ≪ 1, in

the same way that the quark masses mq give rise to perturbative chiral symmetry breaking

since mq ≪ Λχ, the only difference between these various mixed action theories will be in

the numerical value of the unphysical counterterms which enter the chiral extrapolation

formulae. Furthermore, these extrapolation formulae are sufficiently continuum like, due

to the good chiral properties inherited by the chiral symmetry of the valence fermions, that

they can be determined from the corresponding formulae in partially quenched χPT. In

the rest of section 2, we present the formalism necessary to understand this claim and then

provide our mixed action prescription.

2.1 Matching the O(a2) operators

To construct the mixed action effective Lagrangian, one must first construct the continuum

Symanzik quark level Lagrangian [56, 57] which respects all the symmetries of the under-

lying lattice action. Then one performs a spurion analysis on this continuum Lagrangian

to determine the operators in the mixed action EFT [58].5 A specified power counting

orders the infinite tower of operators entering the low energy Lagrangian. In this work we

consider the general small parameter to be

ε2 ∼ m2
π

Λ2
χ

∼ a2Λ2
χ . (2.2)

The order at which the LO lattice spacing dependent operators appear depends upon

the specific action used. However, to determine the counterterm structure of the chiral

Lagrangian relevant to valence quantities through NLO in the mixed action EFT, we only

4Notice that if the lattice spacing dependent sources of chiral symmetry violation are too large, then

chiral perturbation theory is simply not the correct effective field theory describing the low energy dynamics

of the underlying lattice theory. Similarly, chiral perturbation theory would not be relevant in nature if

quark masses were all large compared to the scale of chiral symmetry violation.
5We note that it is unnecessary to consider the color structure of these effective continuum quark level op-

erators as this does not play a role in the pattern of symmetry breaking used to construct the EFT operators.
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need to understand the quark level operators of the valence and mixed sectors of the

theory. The sea quark operators will be important for determining the additive mass

renormalization of the sea-sea mesons, which is important for understanding the hairpin

interactions, but otherwise the sea quark Symanzik operators will only lead to trivial

renormalizations of counterterms relevant to valence quantities. This will become more

clear in our discussion below. We also stress that this only holds through the leading loop

order in the EFT, after which the extrapolation formulae for valence quantities will become

dependent upon the details of the underlying lattice action in the sea sector.

The chiral symmetry of the valence sector prohibits operators of dimension five in the

Symanzik action [19, 20, 22]. Therefore, we begin with the dimension-6 operators which mix

the valence and sea fermions, and are therefore necessarily four quark operators. There will

be O(a2) operators in the valence sector but they will not break chiral symmetry because

of the good chiral properties of the valence fermions. These will then be indistinguishable

from the operators already in the chiral Lagrangian and will amount to renormalizations

of the physical operators. There are also operators which break Lorentz symmetry, but are

singlets under the hypercubic group which we do not consider here as they are generally

higher order than we are working to. In ref. [21], these Lorentz violating operators have been

analyzed for the baryons. As we mentioned above there will also be O(a2) operators in the

sea-sector,6 but these transform as singlets under chiral rotations of the valence fermions,

and thus can be absorbed into genericO(a2) operators needed to renormalize purely valence

correlation functions.7 Therefore, to construct the mixed action chiral Lagrangian we only

need to consider the mixed valence-sea operators at this order. Much of this discussion can

be found in refs. [19–22, 24, 29].

The valence-sea mixing Lagrangian at dimension six for chirally symmetric valence

fermions and any type of sea fermion is given by four-quark operators which are products

of valence and sea quark-bilinears that independently respect chiral symmetry in the valence

and sea sectors respectively [19–22, 24]. However, because these operators explicitly break

the partially quenched symmetry relating the sea and valence fermions, despite the fact

that they are constructed from chirally symmetric quark-bilinears, they give rise to additive

mass corrections for mixed hadrons composed of both valence and sea fermions. This, for

example, is how a mixed pion of domain-wall valence and sea quarks, but with different

values of the Wilson-“r” parameter, or different 5th dimensional extent, are subject to

additive lattice spacing dependent mass corrections. In the non-mixed action limit, these

operators are no longer allowed by the symmetries of the lattice action and must vanish.

At dimension-6, there are only two allowed mixed action operators which are both 4-quark

6For unimproved Wilson sea fermions, there will be O(a) operators. This leads to an extra complication

with the hairpin interactions, but otherwise does not modify our prescription. We will address this in more

detail in section 2.2.
7Of course there are exceptions to this rule, but these occur only in special cases which are related to

the class of quantities which do not follow our discussion and prescription. We will postpone the discussion

of these special cases to section 3.1, where we will discuss them in the context of the neutron EDM.
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operators,

L(6)
Mix = a2CV

Mix

(
QγµPV Q

) (
QγµPS Q

)
+ a2CA

Mix

(
Qγµγ5PV Q

) (
Qγµγ5PS Q

)

= a2CLL
Mix

(
QL γµPL

V QL

) (
QL γµPL

S QL

)
+ a2CLR

Mix

(
QL γµPL

V QL

) (
QR γµPR

S QR

)

+ [L←→ R] , (2.3)

where PV and PS are valence and sea projection operators respectively. The coefficients

CLL
Mix = CRR

Mix and CLR
Mix = CRL

Mix due to parity conservation. The introduction of PL
V (S) and

PR
V (S) is convenient for spurion analysis after which one can set PL

V (S) = PR
V (S) = PV (S).

Under chiral transformations, QL → LQL andQR → RQR. Equation (2.3) will be invariant

under these transformations if

PL
V (S) → LPL

V (S) L
†, PR

V (S) → RPR
V (S)R

†. (2.4)

In MAχPT, the hadronic fields transform as in PQχPT under the chiral transformations,

which are [59–62],

Σ(x)→ LΣ(x)R† , ξ(x)→ Lξ(x)U †(x) = U(x) ξ(x)R†

Bijk → (−1)ηl(ηj+ηm)+(ηl+ηm)(ηk+ηn)U(x) l
i U(x) m

j U(x) n
k Blmn , (2.5)

where Σ contains the meson fields, ξ =
√

Σ, B is a spin-1/2 baryon field and U(x) is a

complicated transformation which depends upon the mesons, and thus on spacetime. The

chiral transformations of the spin-3/2 fields, T are identical to those of B and the heavy

meson transformations can be found in ref. [60]. The grading factors, ηi keep track of the

(anti)commuting nature of the different quark fields, where the sea and valence quarks are

anti-commuting and the ghost quarks are commuting. For our discussion we will be mostly

interested in products of fields with purely valence fermions as these will be the relevant

degrees of freedom to construct the counterterms for valence quantities at NLO. With this

restriction, it is often more convenient to think about how the valence fields transform.

The valence-nucleon field NV , for example, can be related to the valence projected B field

and transforms more simply under the reduced chiral transformations

Bijk =
1√
6

(εijNk + εikNj) for i, j, k ∈ valence (2.6)

NV → U(x)NV . (2.7)

The projection operators transform as in eq.(2.4) and thus we also have

(

ξ†PL
V (S)ξ

)

−→ U
(

ξ†PL
V (S)ξ

)

U †,
(

ξPR
V (S)ξ

†
)

−→ U
(

ξPR
V (S)ξ

†
)

U † , (2.8)

which allows us to define the projectors

P±
V (S) =

1

2

(

ξ†PL
V (S)ξ ± ξPR

V (S)ξ
†
)

, (2.9)
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with

P±
V (S) → UP±

V (S)U
† , (2.10)

which are even (+) and odd (-) under parity. Now we can construct the set of O(a2)

operators in the MA chiral Lagrangian relevant for valence quantities, which must have

the same chiral symmetry properties as eq. (2.3),

LMix
a2 = a2

(
VMix

φ + VMix
N + VMix

NN

)
. (2.11)

The mixed action meson potential was first determined in ref. [20]. We will deduce the

potential here on the basis of symmetry considerations in order to emphasize its universality.

The symmetry breaking of eq. (2.1) enlarges the number of operators which we can form

from the meson field Σ, and which are invariant under the symmetry. These operators occur

at order O(a2), which we take to be of order mq in our power counting. Consequently, the

lowest order operators which are invariant under the reduced symmetry are

O1 = a2str(PSΣPSΣ†), O2 = a2str(PV ΣPSΣ†), (2.12)

O3 = a2str(PSΣPV Σ†), O4 = a2str(PV ΣPV Σ†). (2.13)

However, using the identities PS + PV = 1 and Σ†Σ = 1, it is easy to see that these

operators are equal up to constant numeric factors, so that there is only one non-trivial

operator invariant under the reduced symmetry group at this order. Thus, the mixed action

meson potential is conventionally given by

VMix
φ = CMix str

(

T3ΣT3Σ
†
)

(2.14)

with

T3 = PS −PV . (2.15)

Of course, the quark level Lagrangian given in eq. (2.3) is universal by the same reasoning.

Note, this also applies to unimproved Wilson sea fermions as well.

There are additional O(a2) mixed contributions involving the sea quarks. These op-

erators are singlets under chiral rotations of the valence quarks so they can be absorbed

into the PQ coefficients and, in general, will give additive a2 contributions to the PQ

coefficients. For example,

VMix
N = C ′

N

(
NV P+

V NV

)
str[P+

S ]

−→ CNNVNV , (2.16)

which we see is an additive correction the valence nucleon mass.8 Therefore, we can just

focus on the O(a2) contributions of the valence fields from now on as the contributions from

the mixed terms are indistinguishable under valence-chiral rotations. If we are interested

in matrix elements with no pions in the external states, the nucleon counterterms behave

as if ξ = ξ† = 1 and therefore

P+
V (S) → PV (S), P−

V (S) → 0 , (2.17)

8The operator
`

NV P+

S NV

´

str[P+

V ] does not contribute because str[P+

V ] = 0.
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immediately eliminating all operators with insertions of P−
V (S) from our consideration. Sim-

ilarly, operators of the form NV P+
V P+

S NV also vanish by projection. The above discussion

generalizes to any single nucleon O(a2) counterterm of the form

NVOPVNV str[PS ] , (2.18)

and therefore we can parameterize the single nucleon counterterms relevant at NLO with

the one operator given in eq. (2.16). It is important to note that this term, str[PS ], respects

chiral symmetry.

The mixed action two-nucleon (two-baryon, two-heavy meson) Lagrangian can be con-

structed in a similar fashion. The mixed two-nucleon potential contains only two operators

relevant at NLO,

VMix
NN =Ca

NN

(
NVNV

)2
+Cb

NN

(
NV S

µNV

)2

=D
(1S0)
2a

(

NT
V P

(1S0)
i NV

)† (
NT

V P
(1S0)
i NV

)

+D
(3S1)
2a

(

NT
V P

(3S1)
i NV

)† (
NT

V P
(3S1)
i NV

)

, (2.19)

where P
(j)
i are the S-wave projection operators for channel–j in the two nucleon system [63].

Through the order we are working, there are no counterterms for the other angular momen-

tum projections because only the S-wave two-nucleon wavefunctions are non-vanishing at

the origin, and so counterterms for the higher partial waves must also contain derivatives

pushing the mixed action counterterms beyond the order we are working.

From the above construction, one observes that the leading O(a2) effects in VMix
N and

VMix
NN appear to additively renormalize the sea quark mass dependent terms

NVNV str[mQ] , (2.20)

and

D
′(j)
2

(

NT
V P

(j)
i NV

)† (
NT

V P
(j)
i NV

)

str[B0mQ] , (2.21)

in the PQχPT Lagrangians [61, 62] and [64] respectively. However, it is important to stress

that these lattice spacing dependent operators do not break chiral symmetry, and will differ

from the sea quark mass dependent operators at higher orders. These terms are allowed

because the nucleon mass and the NN interactions are not protected by chiral symmetry.

As discussed in ref. [29], the O(a2) correction in VMix
φ only gives additive renormaliza-

tion to the valence-sea meson masses while the subleading O(a2mq) corrections only give

additive renormalization to the LO meson decay constant f and the chiral condensate,

B0. Thus one can obtain the mixed action EFT results at O(a2) from the PQχPT results

almost effortlessly.9 We re-emphasize that this entire discussion and the prescription we

present in section 2.5 is dependent upon these very benign mixed action lattice artifacts.

9This entire discussion can also be extended to heavy mesons as well as baryons with a heavy quark.

These fields also transform with U(x) under chiral transformations and so the construction of the Lagrangian

is very similar to that of the nucleon presented here. The relevant partially quenched Lagrangians can be

found in ref. [60] for the heavy mesons and in refs. [65–67] for the baryons with heavy quarks.
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This simple behavior does not hold beyond the leading loop order except in special cases.

With these caveats in mind, we now provide the mixed action Lagrangian relevant for

determining the chiral extrapolation formulae for all mixed action theories with chirally

symmetric valence fermions.

2.2 The mixed action Lagrangian

For no reason other than author bias, we present the Lagrangian in Minkowski space-time,

despite the lattice theories being constructed in Euclidean space-time. The LO mixed

meson Lagrangian is10

L(MA)
φ =

f2

8
str
(

∂µΣ∂µΣ†
)

+
f2B0

4
str
(

mQΣ†+Σm†
Q

)

+a2CMixstr
(

T3ΣT3Σ
†
)

+a2Vsea. (2.22)

We have assumed that the sea-quark action is either O(a) improved, or has scaling vi-

olations (lattice spacing artifacts) beginning at O(a2) or O(αsa
2). This is not essential

for our discussion, but as we will briefly discuss below, it simplifies the structure of the

hairpin propagators such that to the order we are working, they are identical to those of

PQχPT [49–52]. We will nevertheless adopt this assumption below.

The LO Lagrangian, eq. (2.22), gives rise to the masses of the various pseudo-Goldstone

mesons, with the LO masses for a meson composed of valence quarks, v, sea quarks s or

an admixture given by

m2
v1v2

= B0(mv1
+mv2

) ,

m̃2
vs = B0(mv +ms) + a2∆Mix ,

m̃2
s1s2

= B0(ms1
+ms2

) + a2∆sea , (2.23)

with

a2∆Mix = a2 16CMix

f2
, (2.24)

and a2∆sea determined from a2Vsea. The LO Lagrangian also leads to the well known

double-poles or hairpin propagators amongst the flavor diagonal mesons [49–52]. The mo-

mentum space propagator between two flavor diagonal mesons of quark type a and b is

given by

Gηaηb
(p2)=

iǫaδab

p2−m2
ηa

+iǫ
− i

Nf

∏Nf

k=1(p
2 − m̃2

k + iǫ)

(p2−m2
ηa

+iǫ)(p2−m2
ηb

+iǫ)
∏Nf−1

k′=1 (p2−m̃2
k′+iǫ)

, (2.25)

where

ǫa =

{

+1 for a = valence or sea quarks

−1 for a = ghost quarks .
(2.26)

In eq. (2.25), k runs over the flavor neutral states (φjj, . . . , φrr) and k′ runs over the

mass eigenstates of the sea sector, including the additive lattice spacing mass corrections,

10See refs. [25, 29] for our conventions labeling the meson fields and quark masses.
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eq. (2.23). To help quantify the unitarity violating corrections arising from these dou-

ble pole propagators, we have introduced partial quenching parameters [29], which are

differences between the pole masses of the sea-sea and valence-valence mesons,

∆̃2
ju ≡ m̃2

jj −m2
uu = 2B0(mj −mu) + a2∆sea + . . . ,

∆̃2
rs ≡ m̃2

rr −m2
ss = 2B0(mr −ms) + a2∆sea + . . . , (2.27)

where the dots denote higher order corrections to the meson masses. Using these PQ

parameters, one can rewrite the hairpin propagators in a particularly simple form allow-

ing for a transparent identification of the unphysical unitarity violating contributions to

correlation functions arising from the hairpin interactions [25, 29].

For discretization errors in the sea sector which begin at O(a), such as Wilson

fermions [39], there are two modifications we need to make to ∆̃2
ju and ∆̃2

rs. First, the

lattice spacing corrections to the sea-sea meson mass begin at O(a). Second, there are ad-

ditional hairpin interactions whose coefficients depend upon the lattice spacing [23]. This

is not problematic to our prescription because these extra hairpins can be treated as an

additional additive O(a2) correction to our partial quenching parameters [23],

∆̃2
ju −→ m̃2

jj −m2
uu + a2γssNs

= 2B0(mj −mu) + aW + a2γssNs ,

∆̃2
rs −→ 2B0(mr −ms) + aW + a2γssNs . (2.28)

If we work consistently to O(a2), we must include these extra hairpin effects, even though

they are formally subleading to the O(a) term in the partial quenching parameters. How-

ever, determining γss is difficult because it is an additive mass correction to the η′ mass.

This shift in partial quenching parameters will also invariably cause a shift in the numeri-

cal value of unphysical lattice spacing dependent counterterms but this is accommodated

without changing the structure of the extrapolation formulae. We will generally assume

that the sea fermion scaling violations begin at O(a2) or higher as this is most relevant

for lattice calculations of the present and future. We will also commonly use the partial

quenching parameters in the continuum limit to denote strictly differences in the sea and

valence quark masses,

∆2
ju = ∆̃2

ju

∣
∣
∣
a=0

, ∆2
rs = ∆̃2

rs

∣
∣
∣
a=0

. (2.29)

Mixed action single baryon Lagrangian. The mixed action Lagrangian for the single

nucleon (baryon) and interactions with the pions (mesons) is given by

L(MA)
Nφ = i

(
B̄v ·DB

)
+ 2α

(PQ)
M

(
B̄BM+

)
+ 2β

(PQ)
M

(
B̄M+B

)
+ 2σ

(PQ)
M

(
B̄B
)
str(M+)

−
(
T̄ µ [iv ·D −∆]Tµ

)
+ 2γ

(PQ)
M

(
T̄ µM+ Tµ

)
− 2σ

(PQ)
M

(
T̄ µTµ

)
str (M+)

+ 2α(PQ)
(
B̄SµBAµ

)
+ 2β(PQ)

(
B̄S · AB

)
+ 2H

(
T̄ ν SµAµ Tν

)

+

√

3

2
C
(
T̄ µAµB + B̄Aµ T µ

)
+ a2CN

a

(
B̄B
)
− a2CT

a

(
T̄ µTµ

)
. (2.30)

Notice that there are only two new operators in the mixed action Lagrangian as compared

to the partially quenched Lagrangian for either SU(6|3) [61] or SU(4|2) [62]. If we were not
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projecting onto the valence sector of the theory or we were interested in working to higher

orders, we would need additional lattice spacing dependent operators. For example, there

are B-field operators similar to those with the mass spurion fieldM+ with chiral symmetry

breaking a2 spurions instead. However, for extrapolation formulae of valence quantities,

these operators all collapse into the form given in eq. (2.30) at the order we are working.

The flavor structure and contractions of these fields, defined with the braces, ( ), can

be found in ref. [61] for the three flavor EFT and in ref. [62] for the two flavor EFT. One

often encounters formulae expressed with the more familiar χPT couplings instead of the

PQ couplings, for example the SU(4|2) couplings can be related to the SU(2) couplings,

gA =
2

3
α(PQ) − 1

3
β(PQ), g1 =

1

3
α(PQ) +

4

3
β(PQ)

H = g∆∆, C = −g∆N (2.31)

The mass spurion field is given by

M+ =
1

2

(

ξ†mQξ
† + ξm†

Qξ
)

, (2.32)

and the axial-meson field is

Aµ =
i

2

(

ξ∂µξ
† − ξ†∂µξ

)

. (2.33)

Mixed action two-nucleon Lagrangian. Following the normalization and conventions

of ref. [63], the mixed action two-nucleon Lagrangian also involves simple modifications to

the continuum two-nucleon Lagrangian [68–73] and is given by

LMix
NN =− C(j)

0

(

NT
V P

(j)
i NV

)† (
NT

V P
(j)
i NV

)

+
C

(j)
2

8

(

NT
V P

(j)
i NV

)† (
NT

V P
(j)
i (
←→∇ )2NV

)

−
(

NT
V P

(j)
i NV

)† (
NT

V P
(j)
i NV

) [

D
(j)
2B str(BmQ) + a2D

(j)
2a

]

−D(j)
2A

(

NT
V P

(j)
i NV

)† (
NT

V P
(j)
i 2BmQNV

)

, (2.34)

where there is an implicit sum over j =
{

1S0,
3S1

}
. There are additionally operators with

the j = 3D1 projectors as well as the coupled 3S1–
3D1 system necessary for understanding

the deuteron, but as we discussed in section 2.1 the lattice spacing counterterms for these

channels are suppressed beyond the order we are considering.

In all of these MA Lagrangians, we see there are only very benign lattice spacing de-

pendent operators. This is crucial to the universal nature of the mixed action extrapolation

formulae and a key component that allows us to construct our universal prescription. Even

though the detailed form of the Lagrangian at NLO depends upon the type of sea fermions

employed, when we project onto the valence sector of the theory, all that is necessary to

discuss the renormalization of valence quantities, we see this remarkable simplification of

the relevant Lagrangian, as has been discussed in this section. It is also clear that the sim-

ple form this Lagrangian takes depends crucially upon the chiral symmetry of the valence

fermions, without which there would be several additional operators as is seen with the
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Wilson [20, 21, 58, 74, 75] twisted mass [76–79] and staggered [80–83] chiral Lagrangians.

We postpone a discussion of the class of observables we know to not follow our prescription

until section 3.1, where we use the neutron EDM as an example to highlight both the

reasons this discussion fails to accurately describe this quantity as well as how to modify

the prescription we provide in section 2.5 to account for this class of observables which is

more sensitive to the sea-sector.

2.3 Mixed action meson operator as a mixed meson mass

To complete our discussion on MA Lagrangians at the one loop level, we prove that the

mixed action meson operator functions exactly as the LO quark mass operator for a process

with two valence-sea mesons, and 2N−2 valence-valence mesons. Let us consider the mixed

lattice potential of eq. (2.22). Making use of eq. (2.15) and the equality ΣΣ† = 1, one can

show that up to a constant this is equal to

a2CMixstr
(

T3ΣT3Σ
†
)

= 4a2CMixstr
(

PSΣPSΣ†
)

= 4a2CMix

∞∑

N=0

(
2i

f

)2N 2N∑

n=0

(−)nstr(PSφ
nPSφ

2N−n)

n!(2N − n)!
. (2.35)

The only terms in the sum which contribute to vertices with two mixed valence-sea mesons

come from either n = 0 or n = 2N , for which one can show

a2CMixstr
(

T3ΣT3Σ
†
)

−→ 8 a2CMix

∞∑

N=0

(
2i

f

)2N

str

(PSφ
2N

(2N)!

)

= 4 a2CMixstr
[

PS

(

Σ + Σ†
)]

, (2.36)

and therefore the ratio of this mixed meson operator restricted to vertices involving two

valence-sea mesons and 2N − 2 valence-valence11 mesons to the valence-sea quark mass

contribution of the same vertices is

a2CMixstr
[
T3ΣT3Σ

†]

(f2/4)str[B0mQ(Σ + Σ†)]

∣
∣
∣
∣

2φvs

(2N−2)φvv

=
16 a2CMix

f2
= a2∆Mix . (2.37)

This is evident in previous determinations of mixed action extrapolation formulae [25–30].

Thus, the effects of this operator at one-loop act simply as a shift in the mixed valence-sea

meson masses in all vertices and propagators.

2.4 Mixed action EFT at one loop

The symmetry structure of the underlying mixed lattice action determines the operators in

the mixed action chiral Lagrangian. The symmetries enjoyed by the valence fermions are

different from those enjoyed by the sea fermions. In the class of mixed action theories we

consider here, the valence fermions only break chiral symmetry through the explicit quark

mass term. Therefore, in the meson Lagrangian at NLO, the purely valence spurions are

11This also holds for vertices with 2N − 2 sea-sea mesons and two mixed valence-sea mesons.
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identical to the spurions in continuum, unquenched chiral perturbation theory, and so the

valence-valence sector of the NLO mixed action chiral Lagrangian is the Gasser-Leutwyler

Lagrangian. This is not the case for baryons which have LO lattice spacing operators as we

have seen in eq. (2.30). The sea sector is different. At finite lattice spacing, the sea sector

has enhanced sources of chiral symmetry violation — for example, there are additional

spurions associated with taste violation if the sea quarks are staggered, or in the case of a

Wilson sea, the Wilson term violates chiral symmetry. Consequently, there are additional

spurions in the sea sector. Of course, these spurions must involve the sea quarks and must

vanish when the sea quark fields vanish.

In this paper, we work consistently to NLO in the mixed action χPT power counting

which we have defined in eq. (2.2). For meson observables, the NLO operators in the La-

grangian are only used as counterterms; that is, at NLO one only computes at tree level

with the NLO operators. Since the in/out states used in lattice simulations involve purely

valence quarks, we can project the NLO operators onto the valence quark sector of the

theory. Consequently, all of the spurions which involve the sea quark fields vanish. Since

the remaining spurions involve the valence quarks alone, we only encounter the symmetry

structure of the valence quarks as far as the NLO operators are concerned. These spurions

only depend on quark masses and the quark condensate itself, and so there can be no depen-

dence on lattice discretization effects arising in this way. The exception to this argument

arises in the case of double trace operators in the NLO chiral Lagrangian; in these cases the

valence and sea sectors interact in a flavor-disconnected manner, unlike the mixed opera-

tor in eq. (2.14). If one trace involves a valence-valence spurion while the other involves a

sea-sea spurion, then the trace over the sea may still contribute to a physical quantity, for

example the meson masses and decay constants. Note that the valence-valence operators

which occur in these double trace operators must be proportional to one of the two operators

present in the LO chiral Lagrangian, eq. (2.22). Thus, as it was argued and demonstrated

in ref. [29], for meson scattering processes, the dependence upon the sea quarks from these

double trace operators can only involve a renormalization of the leading order quantities

f and B0. Both the explicit sea quark mass dependence and the explicit lattice spacing

dependence are removed from the scattering processes expressed in terms of the lattice-

physical parameters since they are eliminated in favor of the decay constants and meson

masses which can simply be measured on the lattice. When expressed in lattice-physical pa-

rameters, there can be no dependence upon the sea quark masses leading to unphysical PQ

counterterms and similarly there can be no dependence upon an unphysical lattice-spacing

counterterm. This argument generalizes to all meson quantities which are protected by

chiral symmetry. For completeness, we summarize the discussion in ref. [29] here.

The NLO Lagrangian for mesons describing the valence and sea quark mass dependence
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is the Gasser-Leutwyler Lagrangian with traces replaced by supertraces:

LGL = L1

[

str
(

∂µΣ∂µΣ†
)]2

+ L2 str
(

∂µΣ∂νΣ
†
)

str
(

∂µΣ∂νΣ†
)

+ L3 str
(

∂µΣ∂µΣ†∂νΣ∂
νΣ†

)

+ 2B0 L4 str
(

∂µΣ∂µΣ†
)

str
(

mqΣ
† + Σm†

q

)

+ 2B0 L5 str
[

∂µΣ∂µΣ†
(

mqΣ
† + Σm†

q

)]

+ 4B2
0 L6

[

str
(

mqΣ
† + Σm†

q

)]2

+ 4B2
0 L7

[

str
(

m†
qΣ− Σ†mq

)]2
+ 4B2

0 L8 str
(

mqΣ
†mqΣ

† + Σm†
qΣm

†
q

)

. (2.38)

Having a concrete expression for the Lagrangian, we can show explicitly how the sea quark

mass dependence disappears. The key is that when constructing NLO correlation functions

of purely valence quarks, we can replace the mesonic matrix Φ in the NLO Lagrangian by

a projected matrix

Φ→ PV ΦPV (2.39)

where PV is the projector onto the valence subspace. The only sea quark mass dependence

comes from two operators

δLGL = 4B0 L4 str
(

∂µΣPV ∂
µΣ†PV

)

str(mq)

+ 16B2
0 L6 str

(

mqΣ
†PV + PV Σm†

q

)

str(mq) , (2.40)

which leads to a renormalization of the LECs f and B0

f2 → f2 + 32L4 B0 str(mq), f2B0 → f2B0 + 64L6 B
2
0 str(mq). (2.41)

Since the parameters f and B0 are eliminated in lattice-physical parameters in favor of the

measured decay constants and meson masses, we can remove the dependence on the sea

quark masses by working in lattice-physical parameters. Analogously, we can remove all the

explicit lattice spacing dependence. The general MA Lagrangian involving valence-valence

external states at O(ε2mε
2
a) can be reduced to the following form

δLMA = a2 L
mq

a2 str
(

mqPV Σ†PV + PV ΣPVm
†
q

)

str
(

g(PSΣPS) g′(PSΣ†PS)
)

+ a2L∂
a2 str

(

∂µΣPV ∂
µΣ†PV

)

str
(

f(PSΣPS) f ′(PSΣ†PS)
)

+ h.c., (2.42)

where the f ’s and g’s are functions dependent upon the sea-quark lattice action. These

then lead to renormalizations of the LO constants,

f2 → f2 + 8a2 L∂
a2 str

(
f(PS1PS) f ′(PS1PS)

)
,

f2B0 → f2B0 + 4a2 L
mq

a2 str
(
g(PS1PS)g′(PS1PS)

)
, (2.43)

and just as with the sea quark mass dependence, expressing physical quantities in terms of

the lattice-physical parameters removes any explicit dependence upon the lattice spacing.

Together, these results show that at NLO, the only counterterms entering into the

extrapolation formulae for mesonic observables protected by chiral symmetry are the same

as the continuum Gasser-Leutwyler counterterms entering at NLO. This lack of unphysical
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counterterms is desirable from the point of view of chiral extrapolations, but it also has

another consequence. Loop graphs in quantum field theories are frequently divergent; there

must be a counterterm to absorb these divergences in a consistent field theory. Since there

is no counterterm proportional to a2 or the sea quark masses, loop graphs involving these

quantities are constrained so that they have no divergence proportional to a2 or the sea

quark masses. This further reduces the possible sources of sea quark or lattice spacing

dependence. For example, mixed valence-sea meson masses have lattice spacing shifts, so

there can be no divergence involving the valence-sea meson masses.

2.4.1 Dependence upon sea quarks

At NLO in the effective field theory expansion, mesons composed of one or two sea quarks

only arise in loop graphs. In particular, the valence-sea mesons can propagate between

vertices where they interact with valence-valence mesons; these interactions involve the LO

chiral Lagrangian (2.22). Because the mixing term, eq. (2.14) is universal, these interaction

vertices are the same for all discretization schemes provided LO chiral perturbation theory

is applicable. The sea-sea mesons only arise at NLO in hairpins. Therefore, we see that

our NLO extrapolation formulae only depend on the LO chiral Lagrangian to quadratic

order in the sea-sea sector and the LO chiral Lagrangian (with the mixing term) in the

valence-sea sector. The mixed meson splitting has recently been computed for domain-wall

fermions on the coarse MILC lattices [17] and was found to be

a2∆Mix ≃ (314 ± 4 MeV)2 (2.44)

for a = 0.125 fm [17]. It has also been determined on the fine MILC lattices as well [84].

Note that the impact of using different sea quark discretizations in our work comes

only from the value of the LECs of the unphysical operators in the Lagrangian. Therefore,

the same NLO extrapolation formulae can be used to describe simulations with different

sea quark discretizations, provided that the appropriate mass shifts are taken into account.

In the case of staggered sea quarks, the sea-sea mass splitting which occurs in the MA

formulae is that of the taste-identity, which has been computed [85], and for the coarse

MILC lattices, is given by

a2∆sea = a2∆I ≃ (450 MeV)2 , (2.45)

for a ≃ 0.125 fm. These mass shifts can only appear through the hairpin interactions at this

order. These terms will generally be associated with unphysical MA/PQ effects which give

rise to the enhanced chiral logarithms as well as additional finite analytic dependence upon

the sea-sea as well as valence-valence meson masses (and their associated lattice spacing

dependent mass corrections).

For heavy baryon and heavy meson observables, the leading loop corrections are typi-

cally non-analytic in the quark mass, for example the mass corrections are O(ε3). There-

fore, the only counterterms needed to renormalize the NLO corrections to heavy baryon

and heavy meson quantities will be those which appear in the LO Lagrangian, eq. (2.30).

The NLO loop contributions for these observables will typically involve all types of mesons,
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valence-valence, valence-sea and sea-sea. Therefore, working to NLO, we only need to know

the mass corrections to the valence-sea and sea-sea mesons.

2.5 Prescription for mixed action extrapolation formulae

We now have all the ingredients to construct a prescription to determine all MA extrap-

olation formulae at the one loop level from the corresponding PQχPT expressions, for

mixed actions with chirally symmetric valence fermions and any type of sea fermion. This

prescription is more useful if one expresses the extrapolation formulae with on-shell renor-

malization. We also restate that this prescription is relevant for theories with chirally

symmetric valence fermions and the hairpin structure of PQχPT. Given a PQ extrapola-

tion formula make the replacements:

1. Meson and quark masses: exchange the one-loop valence-valence meson masses with

the lattice-physical meson masses, muu → mπ, where mπ is the lattice-physical pion

mass (or appropriate meson mass for other valence quark flavors). Replace tree-level

meson masses (equivalently quark masses) with the lattice-physical pion mass at the

appropriate value of the quark mass, with NLO adjustments as needed for consistency

in the chiral expansion; for example 2B0mu → m2
π − δm2

π(NLO); 2B0ms → 2m2
K −

m2
π − 2δm2

K(NLO) + δm2
π(NLO).

2. Decay constants: for the LO decay constant f → fπ − δfπ(NLO) where fπ is the

lattice-physical pion decay constant measured on the lattice and δfπ(NLO) is the

one loop correction to this LO value which is entirely determined in terms of the

lattice physical parameters. Obviously for expressions which are already expressed

in the on-shell renormalization, fNLO → fπ. Equivalently, use fK or some linear

combination of fπ and fK with appropriate NLO adjustments.12

3. Mixed mesons: m2
ju → m̃2

ju = 1
2m

2
uu + 1

2m
2
jj + a2∆Mix, for a meson composed of a

valence and sea quarks u and j.13

4. Sea-sea mesons: m2
jr → m̃2

jr = m2
jr + a2∆sea for a sea-sea meson composed of sea

quark flavors j and r with the appropriate additive mass renormalization for a given

sea quark discretization method.14

12This replacement also holds for all couplings which appear in a given formula. For example, LHPC

has determined the coupling gA which appears in the nucleon-pion Lagrangian. For an extrapolation of the

nucleon mass with the same lattice action, one should use this value of gA in the extrapolation formula.
13There is no unique way to define the mixed meson mass renormalization; however, the different methods

only differ at NLO and higher in the mixed meson mass, and therefore this difference will be NNLO or higher

for all other quantities. As an alternative, for the mixed “kaon” mass, one could make the replacement,

m̃2
ru = 1

2
m2

K + 1

2
m2

jr + a2∆Mix at the degenerate sea-valence quark mass point.
14For a Wilson sea, the mass correction will be linear in the lattice spacing, δm2 = aW . For a clover-

improved Wilson sea [40], the mass correction is quadratic in the lattice spacing and is given in ref. [20].

For a twisted mass sea at maximal twist [41], it is the π± meson mass which enters this expression and

the mass correction can be found in ref. [78], see the appendix for details. For a staggered sea it is the

taste-identity meson mass which enters at this expression, which has been measured on the coarse MILC

lattices [85], a2∆I ≃ (446 MeV)2.
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5. Lattice spacing dependent counterterms/ higher dimensional operators: Add lattice

spacing dependent counterterms (higher dimensional operators) when necessary. Of-

ten, this can be determined by enforcing the renormalization-scale independence of

a given observable.

3 MA extrapolation formulae

To demonstrate the ease with which our prescription can be applied to the existing partially

quenched literature, we determine the mixed action extrapolation formulae for several

physical quantities which are currently of significant interest to the physics community. We

note that there are several mixed action EFT papers already in existence which provide

further non-trivial examples of this prescription [24, 25, 27–29, 31].

3.1 Neutron electric dipole moment

The neutron electric dipole moment (EDM) is of great interest both theoretically as well as

experimentally. A non-vanishing neutron EDM would be direct evidence of CP violations

which could stem from the θ̄-term in the QCD Lagrangian. There have been several

lattice calculations of the neutron EDM over the years [86–90] with continually improving

techniques and precision. All the calculations to date and the foreseeable future require

extrapolations to the physical point and given the strong possibility of a mixed action lattice

calculation of this quantity, it is very relevant to determine the mixed action extrapolation

formula for the neutron EDM.

Furthermore, the neutron EDM is interesting because it is an example of a quantity

which does not follow our prescription. The reason for this is straightforward; the neutron

EDM is directly proportional to the QCD θ̄-term and therefore is a quantity which is

sensitive to the axial U(1) chiral anomaly which so to speak “lives” in the sea-sector. This

is simple to understand in PQχPT. Upon performing a chiral U(1)A rotation on the valence

fermions, one must perform an equal rotation upon the ghost “fermions”. In this manner,

the change in the measure of the anti-commuting valence fields is exactly cancelled by

a change in the measure of the commuting ghost fields, leaving the theory invariant.15

However, a chiral U(1)A rotation of the sea-fermions is connected to the desired θ̄-term of

QCD, hence the abuse of language, “the chiral-anomaly lives in the sea-sector.”

This has non-trivial consequences upon the structure of the extrapolation formula for

the neutron EDM. We can conclude that in the continuum limit, the neutron EDM must be

proportional to the sea-quark masses (strictly speaking a product of the sea-quark masses),

because if one of the quark masses were zero, the θ̄-term is non-physical and thus the EDM

must vanish in this limit. This rules out counterterms to the neutron EDM which are

proportional to only the valence quark masses. Away from the continuum limit, things are

more involved and in fact we will need additional operators which we did not include in

eq. (2.30). We begin with the QCD Lagrangian including the θ̄-term,

L = q̄
[
i /D −mq

]
q − 1

4
FµνF

µν +
g2θ̄

32π2
Fµν F̃

µν . (3.1)

15This is equivalent to the discussion in ref. [91].
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In the continuum limit, the theta-term can be rotated into the quark mass matrix with an

axial U(1) transformation and then mapped into the chiral Lagrangian. However, at finite

lattice spacing, this U(1)A transformation will also modify the irrelevant operators in the

Symanzik action which break chiral symmetry, for example the chromo-magnetic term in

the Symanzik Wilson Lagrangian will pick up a phase,

q̄σµνF
µνq −→ q̄Le

iφσµνF
µνqR + q̄Re

−iφσµνF
µνqL , (3.2)

with the flavor matrix φ = diag(φu, φd, . . . ), similar to the quark mass matrix, and θ̄ = −
∑

j φj . This will then give rise to lattice spacing dependent operators in the nucleon

Lagrangian which contain this complex phase. For example, the heavy baryon Lagrangian

for the nucleon fields will have an operator [75],

Lθ̄
W ⊃ 2αaN̄aW

θ̄
+N , (3.3)

with

aW θ̄
+ =

aW0

2

(

ξe−iφξ + ξ†eiφξ†
)

. (3.4)

The aW+ field is parity even and therefore in the absence of the θ̄-term, only contains

even numbers of pions. However, with the complex phase present, this spurion field also

contains pions of an odd number, and in particular can contribute to the neutron EDM in

the one-loop graphs displayed for example in figure 1 of ref. [92], in place of the quark mass

spurion of the nucleon Lagrangian. With mixed action theories, the four quark operators

of eq. (2.3) do not break chiral symmetry and are therefore invariant under the U(1)A
transformation. Therefore these mixed operators do not contribute to the neutron EDM.

In our construction of the mixed action chiral Lagrangian, we have not included certain

operators which are important in the study of the neutron EDM or any other quantity

sensitive to the chiral anomaly, which do not generally contribute to observables at this

order. They stem from four-quark operators constructed from sea-quarks and in this case

which also break chiral symmetry. To understand these operators, it is convenient to

construct chiral symmetry breaking spurions of definite parity

P±,θ̄
χ,S =

1

2

(

ξ†PSe
iφξ† ± ξPSe

−iφξ
)

. (3.5)

In particular, for an O(a) improved sea fermion action, there are two additional operators

we should add to the Lagrangian which are important at this order in the presence of the

θ̄-term,16

L(MA)
Nφ → L(MA,θ̄)

Nφ +
2a2αa

Ns

(

B̄P+,θ̄
χ,SB

)

str(P+,θ̄
χ,S ) +

2a2βa

Ns

(

B̄BP+,θ̄
χ,S

)

str(P+,θ̄
χ,S ) . (3.6)

We can immediately understand why these operators are not important in general. In

the absence of the θ̄-term, because they are parity even they only create an even number

of pion fields, and therefore will only contribute to valence quantities beyond NLO. The

16For Wilson sea fermions, there will be similar operators but which only scale linearly in the lattice

spacing. These are the generalizations of eq. (3.3) to the mixed action theory.
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term with no pions from P+,θ̄
χ,S gives rise to a mass correction of baryons with at least one

sea quark. These are also higher order than we are working. However, these operators will

contribute to vertices in the one-loop graph contributing to the neutron EDM, replacing

the mQ spurion insertions in figure 1 of ref. [92].

The LO contribution to the neutron EDM comes from a loop diagram in χPT [93],

with one interaction given by the LO HBχPT Lagrangian [94–97], or eqs. (2.30) and (3.6)

in the MA theory. After performing the U(1)A rotation to remove the θ̄-term from the

QCD Lagrangian, the quark mass term becomes (for SU(4|2))

m
(θ̄)
Q = diag(mue

iφu ,mde
iφd ,mje

iφj ,mle
iφl ,mue

iφu ,mde
iφd) , (3.7)

with the operators in eq. (3.6) picking up similar phases, and thus provide new contributions

to the loop graphs for the neutron EDM. This is not the entire story however. The values

of the phases, φu, φd etc., are determined by the vacuum stability of the pion potential,

requiring there to be no single pion vertices, which in the partially quenched theory leads

to the relations in the small angle limit [92]

muφu = mdφd = mjφj = mlφl , (3.8)

φu =
−θ̄mjml

mu(mj +ml)
, φd =

−θ̄mjml

md(mj +ml)
, φj =

−θ̄ml

(mj +ml)
, φl =

−θ̄mj

(mj +ml)
. (3.9)

At finite lattice spacing, there will be additional contributions to the sea-sea meson poten-

tial arising from chiral symmetry breaking operators which will also pick up phases under

the above mentioned U(1)A rotation. These will be the same operators which provide

additive mass corrections to the sea-sea mesons and their contributions to the neutron

EDM (and vacuum stability) can be easily accommodated with additive corrections to the

sea-quark masses in eq. (3.8), which will depend upon the particular lattice action used in

the sea-sector. For example, with Wilson fermions, the pions receive an O(a) mass shift.

Requiring there to be no single pion terms from the LO pion potential leads to

mW
j,l = mqj,l

+ aW0/2B0 , (3.10)

where W is related to the chromo-magnetic condensate, which appears in eq. (3.4) for ex-

ample. This is defined in a similar fashion to the chiral condensate, B. For improved Wilson

fermions, there will be a similar additive correction at O(a2) which can be determined from

the meson potential given in ref. [20] of a similar form,

mIW
j,l = mqj,l

+ a2W̃/2B0 . (3.11)

The staggered sea quark masses are protected from multiplicative mass renormalization

by the taste-5 chiral U(1)A symmetry of the staggered action. However, the staggered

meson potential is not invariant under a taste-singlet U(1)A rotation and therefore there

will be additive shifts to the vacuum stability condition proportional to the taste-Identity

meson mass splitting, similar to the additive corrections to the topological susceptibility

with staggered fermions [98]. This amounts to a correction of the sea quark mass of eq. (3.8)

for staggered fermions of,

mstag.
j,l = mqj,l

+ a2∆I/2B0 . (3.12)
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Putting this all together, and specializing to the case of degenerate sea quark masses

and lattice spacing corrections which begin at O(a2), the MA extrapolation formula for the

neutron EDM determined with our modified prescription and ref. [92] is then given by17

d
(PQ)
N =− eθ̄ m̂sea

(4πfπ)2

[

4Fπ ln

(
m2

π

µ2

)

+ 4Fju ln

(

m̃2
ju

µ2

)

+
1

2
c(µ)

]

− eθ̄ a2

(4πfπ)2

[

4F a2

ju ln

(

m̃2
ju

µ2

)

+
1

2
c̃a2(µ)

]

. (3.13)

In this equation, the sea quark mass, m̂sea is given by eq. (3.11), (3.12), or the appropriate

variation thereof for a given sea quark discretization method. Furthermore, it is simple to

accommodate non-degenerate sea quark masses as in PQQCD [92], in which case m̂sea is

really proportional to the product of sea quark masses included in the chiral Lagrangian,

including the appropriate additive mass renormalizations discussed above. For the case of

Wilson sea fermions, the only difference is that the second line of eq. (3.13) scales linearly

in the lattice spacing, as opposed to the quadratic scaling given, and m̂sea is given by

eq. (3.10). These contributions arise from the mixed action generalization of eq. (3.3).

In eq. (3.13), Fπ and Fju are combinations of the coefficients of the operators in

eq. (2.30) and can be found in eq. (30) of ref. [92] and the new mixed action contribution

has a coefficient

F a2

ju = gAαa

(
1

3
+
qj + ql

2

)

− g1
[
βa

3
− (qj + ql)

(
αa

4
+
βa

2

)]

. (3.14)

The sea quark electromagnetic charges are given by qj and ql. We see that even with these

new considerations, the form of this extrapolation formula is still independent of the type

of sea fermions used, provided the leading lattice spacing effects are O(a2). There will

be similar modifications to the extrapolation formula relevant to all quantities which are

sensitive to the chiral anomaly.

3.2 Twist-2 matrix elements of the nucleon

Twist-2 matrix elements are related to moments of generalized parton distribution func-

tions [99–101]. Chiral perturbation theory was first applied to forward twist-2 matrix ele-

ments in [102–104] then applied to off-forward matrix elements [105]. The quenched [106]

and partially quenched [61] versions followed subsequently. Our approach can be used to

convert the leading meson, single nucleon and multiple-nucleon twist-2 matrix elements to

their mixed-action versions. One of the more important twist-2 matrix elements is that

related to the axial charge of the nucleon, which has recently been computed by the LHP

Collaboration using a mixed action scheme [6]. This is part of a more ambitious program

to determine the structure of nucleons with lattice QCD and provides an important bench-

mark for the calculation of other twist-2 matrix elements [15, 18]. The nucleon axial charge

17Using our arguments above regarding the vanishing of the neutron EDM if one of the sea-quark masses

is zero, allows us to uniquely determine two of the counterterms in ref. [92], those being d = f = 0. Also

note the opposite sign convention of our Lagrangian, eq. (2.30) as compared to that used in ref. [92].
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can be calculated with the nucleon matrix element of the axial-vector current

jaµ,5 = q̄γµγ5τaq , (3.15)

which can be mapped into the heavy baryon chiral Lagrangian [94, 95]. To determine the

extrapolation formula for the calculation performed by LHPC, one can use the partially

quenched formula worked out in ref. [62], with the particular choice of extending the axial-

charge matrix to

τ̄3 = diag(1,−1, 0, 0, 1,−1) . (3.16)

Recently, the mixed action extrapolation formula for the neutron to proton axial matrix

element was determined [31], which in the isospin limit is equivalent to the proton-proton

matrix element with the τ3 current, and relevant for ref. [6]. In the mixed action EFT, the

extrapolation formula is given at NLO by

〈N(p) | (MA)j3µ,5 |N(p) 〉 = 2ūp Sµ up

[
(MA)Γpp + (MA)cpp

]

, (3.17)

where

(MA)Γpp = gA −
1

(4πfπ)2

[

L(m̃ju)
1

6

(
12gA + 24g3

A + 16g2
Ag1 + 17gAg

2
1 + g3

1

)

− L(mπ)
g1
6

(
16g2

A + 17gAg1 + g2
1

)
+ 2gA(gA + g1)

2 ∆̃2
ju

∂

∂m2
π

L(mπ)

− 4

9
(4gA + g1)g

2
∆NK(mπ,∆, µ)− 4

9
(4gA − g1)g2

∆NK(m̃ju,∆, µ)

+ 2g2
∆N

(

gA+
10

27
g∆∆

)

J(mπ,∆, µ)+2g2
∆N

(

gA+
20

81
g∆∆

)

J(m̃ju,∆, µ)

]

, (3.18)

and
(MA)cpp = m2

πCm + ∆2
juC

(PQ)
m + a2Ca , (3.19)

is given by local counter terms. Our formula is in agreement with that in ref. [31], however

as we will explain shortly, we have a slight disagreement with the analysis presented

in ref. [31] in the estimation of the size of the lattice spacing dependent corrections.

Before discussing the relevance of this formula to the LHPC calculation, first we contrast

this formula with the continuum χPT formula which was used to perform the chiral

extrapolation in ref. [6],

Γpp = gA −
1

(4πfπ)2

{

2(gA + 2g3
A)L(mπ)

+
4g2

∆N

81
(81gA + 25g∆∆)J(mπ,∆, µ)− 32

9
gAg

2
∆N K(mπ,∆, µ)

}

, (3.20)

and

cpp = m2
πCm . (3.21)

In both the χPT and MA formulae, L, J and K are chiral logarithm functions defined in

the literature, with

L(m) = m2 ln

(
m2

µ2

)

, (3.22)
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and J and K can be found for example in Eqs (62) and (69) or ref. [62] respectively, and

their finite volume equivalents in ref. [107]. There are two important distinctions between

the MA and χPT formulae. The MA extrapolation formula has two more counterterms

than the continuum formula, as seen by eqs. (3.19) and (3.21), however with the tuning

used by LHPC, ∆ju ≃ 0 and therefore they require only one more counterterm. The

lattice spacing dependent counterterm in eq. (3.19) is required by scale invariance and also

simply follows from the spurion analysis presented in section 2.1 or from the arguments

in ref. [31]. Additionally, the loop corrections in the MA formula depend upon two

different pion-nucleon axial couplings, gA and g1 as opposed to the one coupling, gA in the

continuum χPT formula, eqs. (3.18) and (3.20). The MA formula also depends upon the

mixed valence-sea mesons as well as the taste-identity staggered pion mass. However, the

staggered taste splittings are well known [85] and the mixed meson mass renormalization

has recently been calculated and is also known well [17]. Therefore the MA extrapolation

of the nucleon axial charge calculated by LHPC requires the determination of two

additional unknown, unphysical terms as compared to the continuum χPT formula.

Given the presence of these two unphysical LECs, and the limited amount of mass

points in the LHPC calculation, one would like to estimate the size of the corrections to

the continuum extrapolation formula due to the mixed action artifacts, to determine the

impact these unphysical effects have in the extraction of the nucleon axial charge. This

was taken up in ref. [31], and we do not repeat the analysis here, but we highlight a point

of disagreement we have regarding the size of the lattice spacing dependent corrections. In

ref. [31], the lattice spacing counterterm, Ca of eq. (3.19), was varied in an uncorrelated

fashion with the partially quenched pion-nucleon coupling, g1 and the mixed meson mass

renormalization, which was not known at the time. This lead to a predicted error band

of O(200%) of the value of the nucleon axial charge, gN
A as measured at mπ ∼ 350 MeV

by LHPC (table 1 of ref. [6]) which was almost entirely due to the mixed action lattice

spacing dependent corrections, see figure 3 of ref. [31]. This signals either a breakdown in

the mixed action expansion for this observable or an overestimate of the errors in ref. [31].

Given the quality of the lattice results and extrapolation performed by LHPC [6] and the

small corrections the mixed action effects contribute to other quantities [25, 29] we find

the latter to be the more plausible explanation.

At a fixed lattice spacing, by performing the chiral extrapolation there is no way to

distinguish between the lattice spacing dependent counterterm, Ca, the pion-mass indepen-

dent contributions from (MA)Γpp and the LO contribution to the axial charge. Therefore,

when LHPC performed their chiral extrapolation and determined a best fit value for chiral

Lagrangian parameter gA, they were actually determining the linear combination

g̃A = gA + a2C̃a (3.23)

where C̃a is a linear combination of the lattice spacing dependent counterterm, Ca and loop

contributions to (MA)Γpp which do not vanish in the chiral limit and are proportional to

either a2∆I from the hairpin contribution or a2∆Mix from the mixed meson mass contribu-

tions. If we then assume a perturbative expansion (which breaks down for light enough pion

masses, as the hairpin interaction diverges in the chiral limit [31, 62]), the uncertainty in
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this extracted parameter is a much better estimate of the size of the lattice spacing artifacts

in LHPC’s calculation of the nucleon axial charge, and this is already contained in the error

band presented in figure 1 of ref. [6]. In support of this estimation, it has been found with

other quantities, that the general size of the mixed action artifacts with the LHPC mixed

action scheme [1, 2] have been at the 1–5% level [25, 29]. A full analysis of the mixed action

corrections will involve the determination of the coupling g1 as well as making use of both

the staggered taste-identity pion mass splitting [85] and the recently determined mixed me-

son mass renormalization [17] which is beyond the scope of this work. We finally note that it

was show in ref. [31] that it is the uncertainty in the partially quenched parameter g1 which

dominates the uncertainty in the mixed action corrections to the nucleon axial charge.

More important to the LHPC program of calculating the structure of the nucleon [15,

18], one can use our prescription, the lattice spacing mass shifts calculated in refs. [17, 85]

and the extensive use of the work of Detmold and Lin in ref. [108], in which the partially

quenched extrapolation formulae for all the forward twist-2 matrix elements has been

determined to NLO in both finite and infinite volume, to determine the corresponding

mixed action formulae.18 Using the spurion analysis presented in section 2.1, one can show

that each twist-2 matrix element will have its own lattice spacing dependent counterterms

which can be treated as a2C
(n)
a at NLO, as in eq. (3.19). As with the nucleon axial charge,

the partially quenched pion-nucleon coupling g1 will likely play the largest role in the

mixed action corrections because it is precisely the linear combination (gA + g1)
2 which is

the coefficient of the hairpin interaction contributions to all the twist-2 matrix elements.

Therefore it will be important to determine this coupling to have good control of the mixed

action lattice artifacts.

3.3 NN scattering

One of the greatest challenges facing the nuclear physics community is to determine the

properties of nuclei from QCD. Given the success of lattice QCD with the meson and single

nucleon sector calculations, it is natural to use lattice QCD to study nuclear systems.

One of the complications however, is that nuclear physics is a finely tuned system. The

deuteron binding energy for example Bd ≃ 2.24 MeV, is much smaller than the scale set

by pion physics. This makes it quite formidable to extract the deuteron binding energy in

a lattice calculation out of the approximately 2 GeV rest mass of the proton and neutron.

It turns out that by using heavier than physical light quark masses (corresponding to

mπ ∼ 300 MeV), the two nucleon scattering lengths, which can be related to binding

energy, tend to be a natural size and measurable with a box of L ∼ 2.5 fm per side [7].19

18We note that the iso-vector twist-2 matrix elements were first determined in refs. [61, 62] for SU(6|3)

and SU(4|2) partially quenched theories respectively.
19There is some subtlety here. When determining the two-particle energy levels from the spatial volume

dependence of the four-point correlation function, commonly referred to as Lüscher’s method [109–112], it is

not the scattering length which determines the required size of the volume for the method to be applicable,

but the effective range, generally set by the inverse pion mass in QCD. Therefore, even with unnaturally

large scattering lengths as with the two-nucleon system at the physical quark masses, one can determine

the infinite volume scattering parameters from the two particle interaction energy even when the scattering

length is much larger than the finite spatial extent of the lattice [113]. A smaller scattering length in the 3S1
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To further extract the physical scattering lengths, extrapolations to the continuum infinite

volume limit and the physical quark masses are required.

Recently, the NPLQCD Collaboration has determined the nucleon-nucleon scattering

lengths in the 1S0 and 3S1 channels using a MA lattice calculation with domain-wall valence

quarks and the asqtad improved staggered MILC gauge configurations [7]. It is therefore of

considerable interest to understand how the MA artifacts pollute the correlation functions.

In ref. [73], Beane and Savage have developed the partially quenched version of the two

nucleon systems based on BBSvK power counting [116]. In BBSvK, the 1S0 channel follows

the KSW power counting [71, 72] with one pion exchange entering as a perturbation at NLO

while the 3S1 channel follows Weinberg’s power counting [68–70] with one pion exchange

entering non-perturbatively and being resumed to the LO one pion exchange potential. The

PQ effects (∆ju 6= 0) in the two-nucleon system arise from several important sources: the

one pion exchange diagram also includes a hairpin interaction modifying the long-distance

part of the potential [73], the PQ corrections to the masses and couplings of the particles;

gA, fπ, mπ and mN , as well as two new PQ NN couplings, D
(1S0)
2B and D

(3S1)
2B .

Using the prescription described above, we can easily incorporate the MA effects in

two nucleon quantities once the corresponding PQ effects are known. Now we go through

the list of PQ effects listed above and modify them to include the MA effects. The one

pion exchange potential (OPE) is20

V MA
OPE(r) =

1

8πf2
π

~σ1 · ~∇~σ2 · ~∇
[

g2
A

~τ1 · ~τ2
r
− (gA + g1)

2
∆̃2

ju

2mπ

]

e−mπr . (3.24)

in the 1S0 channel. The only modification from the partially quenched potential determined

in ref. [73] is ∆ju → ∆̃ju.21 The formula for the pion decay constant has been worked out

in several places and we list it here for convenience,

fπ = f

[

1−
2m̃2

ju

(4πf)2
ln

(

m̃2
ju

µ2

)

+ 2ℓ4(µ)
m2

π

f2
+ ℓ

(PQ)
f (µ)

∆2
ju

f2
+ ℓ(MA)

a (µ)
a2

f2

]

. (3.25)

The MA formula for the nucleon mass can be found in ref. [24] and gA, which we showed

in the previous section, can also be found in ref. [31]. The NN counterterms, following the

spurion analysis presented in section 2.1, should be replaced by

D
(j)
2 m2

π → D
(j)
2 m2

π + ∆2
juD

(j)
2B + a2D

(j)
2a . (3.26)

channel is indicative of a larger binding energy for the deuteron making it easier to determine on the lattice.

Also, the inverse box size, L−1 determines the splitting in energy levels of the two-particle system which

is important for having well separated eigenstates. And lastly, one needs to make sure the exponentially

suppressed volume modifications, which generically scale as e−mπL are under control in the two-nucleon

system [114], which is not as straight forward as with the two pion system [115].
20The hairpin modification to eq. (3.24) appears different to that in refs. [64, 73], however this is simply

a different convention for labeling the pion-nucleon couplings. Our convention is consistent with ref. [62].
21Recall that ∆ju = ∆̃ju|a=0.
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Making use of the work in ref. [64], we then find that in a MA theory with Ginsparg-Wilson

valence fermions, the 1S0 scattering length and effective range extrapolation formula are

1

a(1S0)
= γ − MN

4π
(µ− γ)2D(1S0)

2 (µ)m2
π

+
g2
AMN

8πf2
π

[

m2
π ln

(
µ

mπ

)

+ (m2
π − γ)2 − (µ− γ)2

]

−
(

∆2
juD

(1S0)
2B (µ) + a2D

(1S0)
2a (µ)

)MN

4π
(µ− γ)2

+ ∆̃2
ju

(gA + g1)
2MN

8πf2
π

[

ln

(
µ

mπ

)

+
1

2
− γ

mπ

]

, (3.27)

and

r(
1S0) =

MN

2π
(µ− γ)2 C2(µ) +

g2
AMN

12πf2
π

(

3− 8
γ

mπ
+ 6

γ2

m2
π

)

+
∆̃2

ju

m2
π

(gA + g1)
2MN

6πf2
π

(

2
γ

mπ
− 3

γ2

m2
π

)

, (3.28)

where γ is a µ-independent linear combination of µ and C
(1S0)
0 (µ), the LO NN interaction.

Compared to the PQ case, the 1S0 scattering length has one new lattice spacing dependent

counter term at this order, D
(1S0)
2a (µ) while the effective range does not depend upon

any new counterterms. The results in 3S1 channel unfortunately do not have an analytic

form because it requires solving the 3S1-
3D1 coupled Schrodinger equation. However, the

difference in the PQ and MA potentials follows the description given above, and can be

determined from ref. [64] with our prescription.

Lastly, we comment that this discussion naturally extends to the hyperon-nuclear

interactions as well, for which the partially quenched theory has been developed in ref. [117].

This is also very relevant as the first lattice study of the hyperon-nucleon interaction has

recently been performed in a MA scheme as well [16].

4 Discussion

In this work, we have proven that the new leading order meson operator allowed by mixed

action theories, which is independent of the mixed lattice action, functions exactly as a

meson mass operator for all vertices with (2N − 2) valence-valence mesons and 2 mixed

valence-sea mesons. This proof, combined with the very nice features of mixed action

effective field theories with chirally symmetric valence fermions [29] has allowed us to

construct a prescription to determine many mixed action extrapolation formulae for valence

quantities, through the leading loop order given the corresponding formulae determined in

partially quenched chiral perturbation theory. Our prescription works immediately for

quantities which do not depend on the θ̄ term; we have further assumed that the mixed

action theory has the same hairpin structure as the partially quenched theory, and that the

valence quarks are chiral. In the case of a mixed action theory with more involved hairpin

structure than the partially quenched theory, a more general prescription is undoubtedly
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possible. We have used the neutron EDM as an example which requires a modification

of our prescription as it depends critically upon the θ term, and have discussed how to

modify our prescription for this quantity. With the recently measured mixed meson mass

renormalization [17] and the well known staggered meson mass taste splittings [85], these

mixed action extrapolation formulae can readably be applied to a host of physical quantities

covering a broad range of hadronic physics: pion and kaon physics [25, 27–29, 49–52, 118,

119], baryon observables [31, 61, 62, 120–122], heavy meson observables [60], heavy hadron

observables [65–67], parity violation [92, 123], electromagnetic properties and transition

matrix elements [124–127], structure functions [108, 128], two nucleon systems [64, 73],

hyper-nuclear systems [117] and constraints on beyond the standard model physics from

hadronic contributions of ∆b = 2 and ∆c = 2 observables [129].
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A Chiral valence fermions on twisted mass sea fermions

Here we present a few technical details of the mixed action chiral Lagrangian corresponding

to chiral valence fermions and twisted mass sea fermions alluded to in the main text.

We focus on the chiral theory for two degenerate valence and ghost flavors as well as a

degenerate pair of twisted sea flavors. We will demonstrate that this theory behaves nicely

in the following sense; the O(a2) mixed valence-sea fermion mass shift is given entirely

by the CMix-term at maximal twist; the hairpin structure of the theory is the same as in

partially quenched χPT at maximal twist to the order we are working. These two facts

follow naturally from the properties of graded algebras and the behavior of two flavor

twisted mass QCD. We first summarize the discussion for twisted mass χPT which is

relevant to our discussion.

The Euclidean Symanzik Lagrangian for twisted mass lattice QCD [41] is [130]

Leff = Lglue + ψ̄
[

/D +m+ iγ5τ3µ
]

ψ + b1a ψ̄ iσµνFµν ψ , (A.1)

where L is the gluon action, m = Zm(m0 − m̃c)/a is the standard quark mass and µ =

Zµµ0/a is the twisted quark mass. From here one can construct the low energy chiral

Lagrangian which is given at LO by [76–78]

Lχ =
f2

8
tr
(

∂µΣ∂µΣ†
)

− f2

8
tr
(

χ†Σ + Σ†χ
)

− f2

8
tr
(

A†Σ + Σ†A
)

, (A.2)
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where

χ = 2B0(m+ iτ3µ) ≡ m̂+ iτ3µ̂ and A = 2W0a ≡ â . (A.3)

The first observation to make is one can define a shifted spurion field such that the La-

grangian takes its continuum form, with

χ′ = χ+A ≡M ′eiω0τ3 , (A.4)

where M ′ =
√

(m̂+ â)2 + µ̂2. The second observation is that because of the twisted mass

term, the vacuum will no longer be aligned with the identity, which can be determined by

minimizing the vacuum energy. One finds

Σ0 ≡ 〈0|Σ|0〉 = eiω0τ3 , (A.5)

such that the physical fields are given by an axial rotation from Σ,

Σ = eiω0τ3/2Σphyse
iω0τ3/2 . (A.6)

Expanding the LO and NLO Lagrangians about the vacuum, one then finds the automatic

O(a) improvement of physical observables [76–78]. We now extend this analysis to the

mixed action theory. Working in the isospin limit of the valence and sea sectors, the mixed

action Lagrangian including the leading O(a2) operators is

L =
f2

8
str
(

∂µΣ∂µΣ†
)

− f2

8
str
(

χ†Σ + Σ†χ
)

+
1

2
m2

0Φ
2

− a2CMixstr
(

T3ΣT3Σ
†
)

−W ′
[

str
(

A†Σ + Σ†A
) ]2

(A.7)

where here the mass spurion includes the lattice spacing mass shift to the twisted sea

mesons and is given by

χ =






m̂v12×2

M ′
se

iω0τ3

m̂v12×2




 while A =






02×2

â12×2

02×2




 , (A.8)

with

M ′
s =

√

(m̂s + â)2 + µ̂2,

m̂v = 2B0mval, m̂s = 2B0msea, µ̂ = 2B0µ, â = 2W0a, (A.9)

The singlet field is defined as

Φ ≡ f

2i
ln sdetΣ = strφ . (A.10)

Ultimately the singlet will be integrated out of the theory but it is convenient to keep

around to determine the structure of the neutral propagators [52].
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A.1 Vacuum angle and meson masses

We first address the shifted vacuum caused by the twisted mass term. It is straightforward

to check that the vacuum energy is minimized by expanding about

Σ = ξ0 Σphys ξ0 with ξ0 =






12×2

eiω0τ3/2

12×2




 . (A.11)

Expanding eq. (A.7) around this vacuum, one then finds the valence-valence, valence-sea

and sea-sea pion masses are given at arbitrary twist and LO by (we have neglected terms

of O(mqa) here which are proportional to cosω)

(mvv
π±,0)

2 = m̂v,

(mvs
π±,0)

2 =
1

2
m̂v +

1

2
M ′

s + a2∆Mix +
32W ′

f2
â2 cos2 ω,

(mss
π±)2 = M ′

s +
64W ′

f2
â2 cos2 ω,

(mss
π0)

2 = M ′
s −

64W ′

f2
â2 sin2 ω +

64W ′

f2
â2 cos2 ω . (A.12)

We then see at maximal twist, the valence-sea mesons only receive lattice spacing correc-

tions from the a2∆Mix term, in agreement with eq. (2.23).

A.2 Hairpin interactions

We must also address the hairpin interactions. In ref. [23] it was shown that in addition

to the Lagrangian, eq. (A.7), there are additional hairpin interactions which arise from

the operators

δL = −(af)2

32
γss

[

str
(

Ps(Σ− Σ†)
)]2

. (A.13)

Expanding about the twisted vacuum, eq. (A.11), this leads to an interaction

δL =
1

2
γssa

2 cos2 ω str (PSφ) . (A.14)

Away from maximal twist, this interaction acts like a shift in the partial quenching param-

eters, eq. (2.28), although the coefficient γss would need to be determined. However, we see

that at maximal twist, this extra hairpin interaction is absent. In the notation of ref. [51],

we can derive the form of the flavor neutral propagators at arbitrary twist. First ignoring

the extra hairpin, one can show the valence-valence neutral propagators are given by

Gv1v2
= G0

v1v1
− G0

v1v1
VvalGv2v2

1 + tr (VseaG0
ss)

, (A.15)

where

Vval =
m2

0

2

(

1 1

1 1

)

, (A.16)
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and

Vsea =
m2

0

2

(

1 1

1 1

)

+
16W ′â2

f2

(

2 cos2 ω − sin2 ω sin2 ω

sin2 ω 2 cos2 ω − sin2 ω

)

. (A.17)

The valence-valence flavor neutral propagators, including the extra hairpin interactions of

eq. (A.14) are then given at arbitrary twist by

Gv1v2
=

δv1v2

p2 + (mv1v1
π )2

− 1

2

p2 + (mss
π )2 +

(
64W ′â2

f2 + 2a2γss

)

cos2 ω

(p2 + (mv1v1
π )2)(p2 + (mv2v2

π )2)
. (A.18)

Defining the fields π0 = 1√
2
(ηv

u − ηv
d) and η̄ = 1√

2
(ηv

u + ηv
d), one finds at maximal twist

Gπ0 =
1

p2 + (mvv
π )2

, and Gη̄ =
(mss

π±)2 − (mvv
π )2

[ p2 + (mvv
π )2 ]2

. (A.19)

It is interesting to note that it is not the mass of the neutral twisted mass pion which

enters the numerator of the hairpin propagator, but rather a mass which is equivalent to

the charged pion mass, which at maximal twist is free of even O(a2) corrections.
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