Supporting Information

Competitive Benzene C-H Bond Activation versus Olefin Insertion in a Palladium(II) β-Diketiminate Complex

Bo-Lin Lin, Koyel X. Bhattacharyya, Jay A. Labinger, John E. Bercaw Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology,

Pasadena, CA 91125, USA

Part I. X-Ray Crystal Structure Data of Compound **3** and Compound **6**: S2-S23 **Part II**. Energies and Cartesian Coordinates of DFT Optimized Structures: S23-S32

Crystal Structure Analysis of:

3

(shown below)

Contents

Table S1. Crystal data

Figures Figures

- Table S2.Atomic Coordinates
- Table S3.Selected bond distances and angles
- Table S4.Full bond distances and angles
- Table S5.
 Anisotropic displacement parameters
- Table S6.Observed and calculated structure factors (available upon request)

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 295981.

Empirical formula	$C_{30}H_{40}N_2Pd$
Formula weight	535.04
Crystallization Solvent	Dichloromethane/n-pentane
Crystal Habit	Block
Crystal size	0.32 x 0.28 x 0.19 mm ³
Crystal color	Yellow
Data Colle	ection
Type of diffractometer	Bruker SMART 1000
Wavelength	0.71073 Å MoKα
Data Collection Temperature	100(2) K
θ range for 24440 reflections used in lattice determination	2.18 to 49.62°
Unit cell dimensions	a = 15.0554(4) Å b = 7.2730(2) Å c = 11.8708(3) Å
Volume	1299.83(6) Å ³
Z	2
Crystal system	Orthorhombic
Space group	Pmn2 ₁
Density (calculated)	1.367 Mg/m ³
F(000)	560
Data collection program	Bruker SMART v5.630
θ range for data collection	2.18 to 45.01°
Completeness to $\theta = 45.01^{\circ}$	96.5 %
Index ranges	-26 \leq h \leq 29, -14 \leq k \leq 12, -23 \leq l \leq 22
Data collection scan type	ω scans at 7 ϕ settings
Data reduction program	Bruker SAINT v6.45A
Reflections collected	36614
Independent reflections	10105 [$R_{int} = 0.0629$]
Absorption coefficient	0.734 mm ⁻¹
Absorption correction	None
Max. and min. transmission	0.8732 and 0.7991

Table S1. Crystal data and structure refinement for 3 (CCDC 295981).

Table S1 (cont.)

Structure solution and Refinement

Structure solution program	Bruker XS v6.12
Primary solution method	Patterson method
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	Bruker XL v6.12
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	10105 / 1 / 160
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.370
Final R indices [I>2 σ (I), 8998 reflections]	R1 = 0.0294, wR2 = 0.0589
R indices (all data)	R1 = 0.0363, wR2 = 0.0601
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$
Max shift/error	0.005
Average shift/error	0.000
Absolute structure determination	Anomalous differences
Absolute structure parameter	-0.008(14)
Largest diff. peak and hole	1.350 and -0.724 e.Å ⁻³

Special Refinement Details

The molecule sits on a crystallographic mirror plane. Hydrogen atomic positions were evident in the difference Fourier map and placed in geometrically calculated positions and treated as riding atoms during least-squares refinement. These calculated position may vary slightly from the actual positions, particularly for hydrogens bonded to C12, C13, C14, C13A and C14A.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma$ (F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 3 (CCDC 295981). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U_{eq}
Pd(1)	0	10589(1)	1080(1)	11(1)
N(1)	975(1)	11264(1)	2239(1)	13(1)
C(1)	839(1)	12182(2)	3189(1)	14(1)
C(2)	0	12730(2)	3584(1)	16(1)
C(3)	1627(1)	12642(2)	3935(1)	18(1)
C(4)	1852(1)	10562(2)	2039(1)	13(1)
C(5)	2466(1)	11605(2)	1417(1)	16(1)
C(6)	3315(1)	10884(2)	1250(1)	22(1)
C(7)	3556(1)	9185(2)	1689(1)	25(1)
C(8)	2935(1)	8154(2)	2291(1)	23(1)
C(9)	2079(1)	8819(2)	2470(1)	17(1)
C(10)	2207(1)	13446(2)	957(2)	22(1)
C(11)	1399(1)	7706(2)	3105(1)	25(1)
C(12)	0	10277(2)	-673(1)	15(1)
C(13)	816(1)	9552(2)	-286(1)	15(1)
C(14)	1012(1)	7520(2)	-113(1)	17(1)
C(15)	866(1)	6341(2)	-1184(1)	18(1)
C(16)	0	6614(2)	-1851(1)	14(1)
C(17)	0	5294(2)	-2860(2)	19(1)

Pd(1)-N(1)	2.0708(10)	C(12)-Pd(1)-C(13)	38.70(4)
Pd(1)-N(1)#1	2.0708(10)	C(12)-Pd(1)-C(13)#1	38.70(4)
Pd(1)-C(12)	2.0932(16)	C(13)-Pd(1)-C(13)#1	69.03(4)
Pd(1)-C(13)	2.1696(11)	N(1)-Pd(1)-N(1)#1	90.23(5)
Pd(1)-C(13)#1	2.1696(11)	N(1)-Pd(1)-C(12)	133.35(3)
		N(1)#1-Pd(1)-C(12)	133.35(3)
		N(1)-Pd(1)-C(13)#1	168.65(4)
		N(1)-Pd(1)-C(13)	100.22(4)
		N(1)#1-Pd(1)-C(13)#1	100.22(4)

Table S3. Selected bond lengths [Å] and angles [°] for 3 (CCDC 295981).

 $\overline{Symmetry\ transformations\ used\ to\ generate\ equivalent\ atoms:}\\ \#1\ \text{-x},y,z$

Pd(1)-N(1)	2.0708(10)	C(8)-C(9)-C(4)	118.79(12)
Pd(1)-N(1)#1	2.0708(10)	C(8)-C(9)-C(11)	121.21(12)
Pd(1)-C(12)	2.0932(16)	C(4)-C(9)-C(11)	120.00(11)
Pd(1)-C(13)	2.1696(11)	C(13)-C(12)-C(13)#1	120.72(15)
Pd(1)-C(13)#1	2.1696(11)	C(12)-C(13)-C(14)	125.04(11)
N(1)-C(1)	1.3257(15)	C(13)-C(14)-C(15)	11357(10)
N(1)-C(4)	14367(14)	C(16)-C(15)-C(14)	118 09(10)
C(1)-C(2)	14057(13)	C(17)-C(16)-C(15)	108 71(9)
C(1)-C(3)	1.5170(16)	C(17)-C(16)-C(15)#1	108.72(9)
C(2)-C(1)#1	1.4057(13)	C(15)-C(16)-C(15)#1	115.97(14)
C(4)-C(5)	1 4046(16)		110.57(11)
C(4)-C(9)	1 4089(16)		
C(5)-C(6)	1 3957(15)		
C(5) - C(10)	1.3937(13) 1.4980(18)		
C(6)-C(7)	1 389(2)		
C(7) - C(8)	1.305(2) 1.395(2)		
C(8)-C(9)	1.393(2) 1.3926(18)		
C(9) - C(11)	1.5920(18) 1.5074(19)		
C(12) C(13)	1.3074(19) 1.4144(14)		
C(12) - C(13)	1.4144(14)		
C(12) - C(13) + 1 C(13) - C(14)	1.4144(14) 1.5212(17)		
C(13)-C(14) C(14) $C(15)$	1.5213(17) 1.5403(17)		
C(14) - C(15)	1.5495(17) 1.5380(14)		
C(15)-C(10)	1.5360(14) 1.535(2)		
C(16) - C(17)	1.535(2) 1.5380(14)		
C(10)-C(13)#1	1.5560(14)		
C(12)-Pd(1)-C(13)	38.70(4)		
C(12)-Pd(1)-C(13)#1	38.70(4)		
C(12)-Pd(1)-C(13)#1	69.03(4)		
N(1) - Pd(1) - N(1) + 1	90.23(5)		
N(1)-Pd(1)-C(12)	133 35(3)		
N(1) + 1 + O(1) + O(12) N(1) + 1 - Pd(1) + O(12)	133.35(3)		
N(1) - Pd(1) - C(13) + 1	155.55(5) 168.65(4)		
N(1) - Pd(1) - C(13)	100.03(4) 100.22(4)		
N(1)=1 $d(1)=C(13)N(1)=1$ $D(1)=C(13)=1$	100.22(4) 100.22(4)		
C(1) = N(1) - C(4)	100.22(4) 117 46(9)		
C(1) N(1) Pd(1)	117.40(9) 125.14(7)		
C(4)-N(1)-Pd(1)	123.14(7) 117 22(7)		
N(1) C(1) C(2)	117.23(7) 124.40(11)		
N(1)-C(1)-C(2)	124.40(11) 110 16(10)		
C(2) C(1) C(3)	119.10(10) 116.41(11)		
C(1) C(2) - C(1) + 1	128.02(15)		
$C(1)-C(2)-C(1)\pi 1$ C(5) C(4) - C(9)	120.02(13) 121.14(10)		
C(5)-C(4)-N(1)	121.14(10) 120.01(10)		
C(9)-C(4)-N(1)	120.01(10) 118.85(10)		
C(5) - C(4) - IN(1) C(6) - C(5) - C(4)	110.03(10) 118.28(11)		
C(0) - C(0) - C(4) C(6) - C(5) - C(10)	110.20(11) 121.52(11)		
C(4) - C(5) - C(10)	121.32(11) 120.21(10)		
C(7) - C(5) - C(10)	120.21(10) 121.35(12)		
C(6) - C(7) - C(8)	121.33(12) 110 71(12)		
C(0) - C(1) - C(0) C(0) - C(8) - C(7)	119.71(12) 120.71(12)		
(\mathcal{I})	120.11(12)		

Table S4. Bond lengths [Å] and angles [°] for 3 (CCDC 295981).

 $\overline{Symmetry\ transformations\ used\ to\ generate\ equivalent\ atoms:}\\ \#1\ \text{-x},y,z$

Table S5. Anisotropic displacement parameters (Å²x 10⁴) for 3 (CCDC 295981). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U ¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
$\overline{Pd(1)}$	106(1)	113(1)	105(1)	3(1)	0	0
N(1)	125(3)	119(4)	138(4)	-2(3)	-9(3)	2(3)
C(1)	149(4)	122(4)	149(4)	1(3)	-16(3)	-17(3)
C(2)	174(6)	153(7)	161(6)	-37(5)	0	0
C(3)	184(4)	173(5)	170(5)	-23(4)	-33(4)	-19(4)
C(4)	128(4)	119(4)	133(4)	-11(3)	-22(3)	2(3)
C(5)	147(4)	163(4)	159(4)	-17(4)	-1(3)	-18(4)
C(6)	145(4)	288(6)	230(9)	-71(5)	0(4)	-9(4)
C(7)	170(5)	323(7)	265(6)	-106(5)	-53(5)	81(5)
C(8)	267(5)	196(5)	226(5)	-51(5)	-98(5)	99(5)
C(9)	217(5)	139(4)	164(5)	-1(4)	-53(4)	22(4)
C(10)	236(4)	174(4)	248(9)	35(5)	18(5)	-37(4)
C(11)	364(7)	167(5)	212(6)	52(4)	-27(5)	-8(5)
C(12)	179(6)	153(6)	105(5)	5(4)	0	0
C(13)	130(4)	182(5)	133(4)	-19(4)	10(3)	-35(4)
C(14)	127(4)	215(5)	156(4)	-29(4)	-27(3)	40(4)
C(15)	155(4)	204(5)	187(5)	-41(4)	-20(4)	47(4)
C(16)	139(5)	145(6)	134(6)	-12(5)	0	0
C(17)	195(7)	184(7)	179(7)	-45(5)	0	0

Crystal Structure Analysis of:

6

(shown below)

Contents

Table S6. Crystal data

Figures Figures

- Table S7.Atomic Coordinates
- Table S8.Selected bond distances and angles
- Table S9.Full bond distances and angles
- Table S10.Anisotropic displacement parameters
- Table S11.
 Observed and calculated structure factors (available upon request)

⁶

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC). The deposition number is 296075.

Empirical formula	$C_{24}H_{31}N_3Pd$	
Formula weight	467.92	
Crystallization Solvent	Dichloromethane/n-pentane	
Crystal Habit	Block	
Crystal size	$0.30 \ge 0.26 \ge 0.26 \text{ mm}^3$	
Crystal color	Pale yellow	
Data Coll	ection	
Type of diffractometer	Bruker SMART 1000	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 26590 reflections used in lattice determination	2.72 to 49.62°	
Unit cell dimensions	a = 7.9947(2) Å b = 11.0299(3) Å c = 14.0889(4) Å	$\alpha = 72.0190(10)^{\circ}$ $\beta = 86.2190(10)^{\circ}$ $\gamma = 69.5370(10)^{\circ}$
Volume	1105.90(5) Å ³	
Z	2	
Crystal system	Triclinic	
Space group	P-1	
Density (calculated)	1.405 Mg/m ³	
F(000)	484	
Data collection program	Bruker SMART v5.630	
θ range for data collection	1.52 to 49.65°	
Completeness to $\theta = 49.65^{\circ}$	83.5 %	
Index ranges	$-15 \le h \le 16, -22 \le k \le 22, -29$	$\leq l \leq 25$
Data collection scan type	ω scans at 7 ϕ settings	
Data reduction program	Bruker SAINT v6.45A	
Reflections collected	44455	
Independent reflections	19083 [$R_{int} = 0.0610$]	
Absorption coefficient	0.853 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.8088 and 0.7840	

Table S6. Crystal data and structure refinement for 6 (CCDC 296075).

Table S6 (cont.)

Structure solution and Refinement

Structure solution program	Bruker XS v6.12
Primary solution method	Patterson method
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	Bruker XL v6.12
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	19083 / 0 / 261
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.202
Final R indices [I> 2σ (I), 15817 reflections]	R1 = 0.0301, wR2 = 0.0673
R indices (all data)	R1 = 0.0409, wR2 = 0.0701
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$
Max shift/error	0.003
Average shift/error	0.000
Largest diff. peak and hole	1.677 and -0.800 e.Å-3

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table S7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 6 (CCDC 296075). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U _{eq}
Pd(1)	7947(1)	9405(1)	7206(1)	13(1)
N(1)	6030(1)	8793(1)	8008(1)	13(1)
N(2)	6434(1)	11458(1)	7054(1)	13(1)
N(3)	9910(1)	9956(1)	6432(1)	18(1)
C(1)	4376(1)	9624(1)	8077(1)	14(1)
C(2)	3739(1)	11044(1)	7666(1)	15(1)
C(3)	4741(1)	11900(1)	7274(1)	14(1)
C(4)	3049(1)	9034(1)	8681(1)	20(1)
C(5)	3791(1)	13397(1)	7162(1)	19(1)
C(6)	6490(1)	7410(1)	8641(1)	14(1)
C(7)	6108(1)	6446(1)	8323(1)	17(1)
C(8)	6558(1)	5119(1)	8974(1)	22(1)
C(9)	7396(1)	4750(1)	9905(1)	23(1)
C(10)	7783(1)	5714(1)	10204(1)	21(1)
C(11)	7333(1)	7052(1)	9581(1)	16(1)
C(12)	5223(2)	6815(1)	7312(1)	26(1)
C(13)	7763(2)	8094(1)	9907(1)	24(1)
C(14)	7329(1)	12424(1)	6802(1)	14(1)
C(15)	7391(1)	13164(1)	5797(1)	18(1)
C(16)	8221(1)	14141(1)	5584(1)	23(1)
C(17)	8975(1)	14370(1)	6341(1)	23(1)
C(18)	8953(1)	13597(1)	7331(1)	19(1)
C(19)	8143(1)	12615(1)	7569(1)	14(1)
C(20)	6544(2)	12936(1)	4977(1)	26(1)
C(21)	8091(1)	11787(1)	8638(1)	17(1)
C(22)	10984(1)	10341(1)	6001(1)	19(1)
C(23)	12303(2)	10874(1)	5444(1)	28(1)
C(24)	9516(1)	7434(1)	7334(1)	22(1)

Pd(1)-N(3)	2.0135(9)	N(3)-Pd(1)-N(1)	178.19(3)
Pd(1)-N(1)	2.0262(8)	N(3)-Pd(1)-C(24)	87.01(4)
Pd(1)-C(24)	2.0526(9)	N(1)-Pd(1)-C(24)	91.41(4)
Pd(1)-N(2)	2.1113(7)	N(3)-Pd(1)-N(2)	90.54(3)
		N(1)-Pd(1)-N(2)	91.03(3)
		C(24)-Pd(1)-N(2)	177.45(4)

Table S8. Selected bond lengths [Å] and angles [°] for 6 (CCDC 296075).

Pd(1)-N(3)	2.0135(9)	C(7)-C(6)-C(11)	121.00(8)
Pd(1)-N(1)	2.0262(8)	C(7)-C(6)-N(1)	120.62(8)
Pd(1)-C(24)	2.0526(9)	C(11)-C(6)-N(1)	118.38(8)
Pd(1)-N(2)	2.1113(7)	C(8)-C(7)-C(6)	118.28(9)
N(1)-C(1)	1.3372(11)	C(8)-C(7)-C(12)	120.28(9)
N(1)-C(6)	1.4381(11)	C(6)-C(7)-C(12)	121.44(8)
N(2)-C(3)	1.3203(11)	C(9)-C(8)-C(7)	121.31(10)
N(2)-C(14)	1.4278(12)	C(10)-C(9)-C(8)	119.66(9)
N(3)-C(22)	1.1457(13)	C(9)-C(10)-C(11)	120.74(9)
C(1)-C(2)	1.4031(12)	C(10)-C(11)-C(6)	118.99(9)
C(1)-C(4)	1.5154(13)	C(10)-C(11)-C(13)	120.58(9)
C(2)-C(3)	1.4100(13)	C(6)-C(11)-C(13)	120.43(8)
C(3)-C(5)	1.5186(12)	C(19)-C(14)-C(15)	120.93(8)
C(6)-C(7)	1.4023(13)	C(19)-C(14)-N(2)	118.97(7)
C(6)-C(11)	1.4051(12)	C(15)-C(14)-N(2)	120.11(8)
C(7)-C(8)	1.3993(14)	C(16)-C(15)-C(14)	118.32(9)
C(7)-C(12)	1.5057(14)	C(16)-C(15)-C(20)	121.01(9)
C(8)-C(9)	1.3901(16)	C(14)-C(15)-C(20)	120.65(9)
C(9)-C(10)	1.3877(16)	C(17)-C(16)-C(15)	121.08(9)
C(10)-C(11)	1.3961(12)	C(16)-C(17)-C(18)	119.88(9)
C(11)-C(13)	1.5075(14)	C(19)-C(18)-C(17)	120.53(10)
C(14)-C(19)	1.4021(13)	C(18)-C(19)-C(14)	119.18(8)
C(14)-C(15)	1.4069(11)	C(18)-C(19)-C(21)	120.96(8)
C(15)-C(16)	1.4021(15)	C(14)-C(19)-C(21)	119.84(8)
C(15)-C(20)	1.5030(15)	N(3)-C(22)-C(23)	178.08(11)
C(16)-C(17)	1.3868(18)		
C(17)-C(18)	1.3944(14)		
C(18)-C(19)	1.3937(13)		
C(19)-C(21)	1.5078(12)		
C(22)-C(23)	1.4533(15)		
N(3)-Pd(1)-N(1)	178.19(3)		
N(3)-Pd(1)-C(24)	87.01(4)		
N(1)-Pd(1)-C(24)	91.41(4)		
N(3)-Pd(1)-N(2)	90.54(3)		
N(1)-Pd(1)-N(2)	91.03(3)		
C(24)-Pd(1)-N(2)	177.45(4)		
C(1)-N(1)-C(6)	116.01(7)		
C(1)-N(1)-Pd(1)	124.39(6)		
C(6)-N(1)-Pd(1)	119.23(5)		
C(3)-N(2)-C(14)	116.66(7)		
C(3)-N(2)-Pd(1)	124.45(6)		
C(14)-N(2)-Pd(1)	118.53(5)		
C(22)-N(3)-Pd(1)	176.10(8)		
N(1)-C(1)-C(2)	125.72(8)		
N(1)-C(1)-C(4)	119.28(7)		
C(2)-C(1)-C(4)	114.95(7)		
C(1)-C(2)-C(3)	127.84(8)		
N(2)-C(3)-C(2)	123.68(8)		
N(2)-C(3)-C(5)	120.14(8)		
C(2)-C(3)-C(5)	116.10(8)		

Table S9. Bond lengths [Å] and angles [°] for 6 (CCDC 296075).

S22

Table S10. Anisotropic displacement parameters (Å²x 10⁴) for 6 (CCDC 296075). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U ¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pd(1)	117(1)	137(1)	106(1)	-38(1)	7(1)	-21(1)
N(1)	125(2)	128(2)	131(3)	-35(2)	3(2)	-32(2)
N(2)	116(2)	140(2)	124(2)	-33(2)	1(2)	-30(2)
N(3)	151(3)	185(3)	165(3)	-57(2)	30(2)	-30(2)
C(1)	125(3)	158(3)	136(3)	-47(2)	4(2)	-44(2)
C(2)	110(3)	159(3)	171(3)	-47(2)	1(2)	-30(2)
C(3)	117(3)	140(3)	134(3)	-36(2)	-13(2)	-25(2)
C(4)	165(3)	198(4)	236(4)	-55(3)	51(3)	-70(3)
C(5)	125(3)	146(3)	252(4)	-39(3)	2(3)	-18(2)
C(6)	132(3)	135(3)	144(3)	-39(2)	2(2)	-38(2)
C(7)	148(3)	172(3)	213(4)	-84(3)	3(3)	-45(2)
C(8)	197(4)	165(3)	299(5)	-84(3)	48(3)	-71(3)
C(9)	214(4)	156(3)	262(4)	-13(3)	54(3)	-51(3)
C(10)	198(4)	196(4)	170(4)	4(3)	6(3)	-45(3)
C(11)	166(3)	172(3)	138(3)	-30(2)	-3(2)	-49(2)
C(12)	251(5)	260(4)	285(5)	-141(4)	-61(4)	-60(4)
C(13)	309(5)	244(4)	175(4)	-63(3)	-54(3)	-105(4)
C(14)	116(3)	140(3)	126(3)	-19(2)	16(2)	-26(2)
C(15)	160(3)	191(3)	126(3)	-2(2)	21(2)	-20(3)
C(16)	184(4)	223(4)	192(4)	24(3)	59(3)	-54(3)
C(17)	159(3)	208(4)	281(5)	1(3)	57(3)	-81(3)
C(18)	126(3)	196(3)	233(4)	-36(3)	22(3)	-69(3)
C(19)	114(3)	146(3)	144(3)	-21(2)	14(2)	-39(2)
C(20)	289(5)	292(5)	129(4)	-31(3)	-14(3)	-56(4)
C(21)	188(3)	194(3)	131(3)	-22(2)	-8(2)	-77(3)
C(22)	179(4)	236(4)	161(3)	-75(3)	40(3)	-66(3)
C(23)	279(5)	419(6)	212(4)	-121(4)	96(4)	-207(5)
C(24)	193(4)	176(4)	258(4)	-66(3)	66(3)	-22(3)

Part II

Total internal energy, Utot (SCFE + ZPE + U): -625.513570 hartrees Total enthalpy, Htot (Utot + pV): -625.512626 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -625.569917 hartrees

Pd	0.5110670752	-1.0297235332	-0.4375121409
Ν	1.2398121850	-1.5455930247	1.3702149999
С	2.5141166615	-1.6117385304	1.7148123980
С	3.6329046911	-1.3469610543	0.9227009374
С	3.5993558526	-0.9504594030	-0.4246367458
Ν	2.5197100071	-0.7653645078	-1.1548587445
С	-1.3384659059	-1.3258715180	0.4062913973
Η	-1.4018840182	-2.3589263368	0.7653915134
Н	-1.4563587942	-0.6348622714	1.2481679465
Η	-2.1220156441	-1.1444509241	-0.3314069528
Η	2.7424779226	-0.4787653596	-2.1041931694
Η	4.5736186216	-0.7842041998	-0.8966502503
Η	4.6060697726	-1.4570455466	1.3868928504
Η	2.7138430859	-1.9111976507	2.7480127386
Η	0.5857873874	-1.7804515364	2.1060105538
С	-0.2057582150	0.2783890416	-2.4132623064
С	-1.4480051468	0.9351457470	-2.2744014951
Η	0.7091399558	0.8564787407	-2.3433075429
Η	-1.4689558552	1.9781524897	-1.9731295808
С	-0.1741252278	-1.0720192405	-2.8209229693
С	-1.3848693877	-1.7485100294	-3.0854399789
С	-2.5947205394	-1.0869015415	-2.9549657282
С	-2.6264354624	0.2605732293	-2.5473676582
Η	0.7659234802	-1.5529085784	-3.0682801410
Η	-1.3570709481	-2.7837472653	-3.4120005183
Н	-3.5239478714	-1.6062568052	-3.1716580483
Η	-3.5799452791	0.7722261820	-2.4519442767
Х	-0.1916365000	-0.3955365000	-2.6159500000

Total internal energy, Utot (SCFE + ZPE + U): -625.481457 hartrees Total enthalpy, Htot (Utot + pV): -625.480513 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -625.536980 hartrees

С	-0.0041279313	-0.6761349349	0.0225222100
С	-0.0078737432	0.3134878644	1.0080206558
С	1.1995228772	0.8111601688	1.5251434779
С	2.4087416159	0.2702337755	1.0583345692
С	2.4132788305	-0.7190111397	0.0727259622
С	1.2064071785	-1.1895789563	-0.4488653298
Pd	1.2102220835	2.7388497195	2.4531323077
С	1.2315030064	1.5771230320	4.3483724062
Ν	1.2252712395	4.5530083642	3.4168661275
С	1.2169217012	5.7473287868	2.8554918059
С	1.1983187987	6.0217268450	1.4837407143
С	1.1859998025	5.0426070372	0.4824181373
Ν	1.1890400687	3.7375298194	0.6636031738
Η	2.1433365998	1.9883370626	4.7836951905
Η	1.2395472558	0.4944448790	4.5130743748
Η	0.3322089238	1.9817305126	4.8144002288
Η	1.2382423442	4.5718171302	4.4305427769
Η	1.2255704268	6.6115713925	3.5261994615
Η	1.1935390076	7.0603531348	1.1756025002
Η	1.1726129722	5.3999303955	-0.5516016093
Η	1.1784175600	3.1901365384	-0.1886636811
Η	3.3509670530	0.6285129418	1.4647649135
Η	3.3562054361	-1.1225820083	-0.2872794087
Η	1.2089171934	-1.9614195139	-1.2140000450
Η	-0.9441888206	-1.0475825317	-0.3772166617
Η	-0.9531966980	0.7043723236	1.3744493909
Η	1.1993634860	1.1126208055	2.9367614880

TS_{oxad}

Total internal energy, Utot (SCFE + ZPE + U): -625.466570 hartrees Total enthalpy, Htot (Utot + pV): -625.465626 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -625.521719 hartrees

Pd	0.0066270874	0.1742617817	-0.0378580966
Ν	0.0021209495	-0.1013543323	2.0323486801
С	1.0520027752	-0.2848419952	2.8204323105
С	2.3943483712	-0.3154611920	2.4391551296
С	2.8670899929	-0.1676274579	1.1245744048
Ν	2.1321516164	-0.0049020831	0.0453709827
С	-2.0524441641	0.3303126502	0.0325346869
Η	-2.3099316795	0.9499398751	0.8956318793
Η	-2.4884536650	0.7520556324	-0.8716465812
Η	-2.4203984056	-0.6911260452	0.1725482727
Н	-0.8804197163	-0.0968647162	2.5317007819
Η	0.8524182511	-0.4245954778	3.8871160611
Н	3.1313762220	-0.4649362684	3.2194782772
Н	3.9538784034	-0.1997636848	0.9979644211
Η	2.6729987749	0.0970899633	-0.8073953175
С	-0.0553037845	-0.1730011837	-2.0634012811
С	-0.8483048098	0.4719140681	-3.0225371177
С	-0.8639128197	0.0259941137	-4.3469120949
С	-0.0901449633	-1.0682886757	-4.7329773240
С	0.7070018642	-1.7113020213	-3.7860597324
С	0.7368311804	-1.2621254935	-2.4623549931
Η	-1.4631850420	1.3226984718	-2.7477999260
Η	-1.4841355144	0.5398842691	-5.0769904809
Η	-0.1058815194	-1.4156494075	-5.7623533431
Н	1.3105919168	-2.5692141518	-4.0719202186
Н	1.3642847524	-1.7770304170	-1.7423706074
Н	0.0314186852	1.4193456702	-0.8932984967

Total internal energy, Utot (SCFE + ZPE + U): -625.512504 hartrees Total enthalpy, Htot (Utot + pV): -625.511560 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -625.569443 hartrees

С	0.0045918692	-0.1251704108	-0.2095360052
С	-0.1179602466	-0.1098886098	1.1883906940
С	1.0549301907	-0.1284773843	1.9600450832
С	2.3142448774	-0.1398441947	1.3505674567
С	2.4226130258	-0.1406745718	-0.0417278680
С	1.2640869629	-0.1336723118	-0.8199835586
Pd	-1.9266885076	-0.0197383858	2.0830509826
С	-1.3091286207	2.2778477432	3.1764816042
Ν	-3.8334756975	0.0298241224	2.9960331142
С	-4.7522587113	-0.8984923038	2.8396994706
С	-4.6210944563	-2.0676625993	2.0694463645
С	-3.4914539829	-2.4212825695	1.3326989053
Ν	-2.3582611569	-1.7519423834	1.2047179512
Η	-2.0006091854	2.9018086069	3.7451981658
Η	-0.3182639526	2.7273477161	3.1100838964
Η	-1.6992896337	2.1822492771	2.1491358674
Η	-4.1382555185	0.7961131478	3.5878838607
Η	-5.7114922279	-0.7630712411	3.3498027570
Н	-5.4646498755	-2.7473530735	2.0426596278
Н	-3.5410546213	-3.3659451457	0.7841957358
Н	-1.6461908873	-2.1795034388	0.6280961671
Η	0.9971431108	-0.1400854700	3.0465678541
Η	3.2109868147	-0.1555438793	1.9661520583
Η	3.4010215685	-0.1514154957	-0.5147595999
Η	1.3377087802	-0.1342842275	-1.9052617202
Η	-0.8867460769	-0.1217717724	-0.8329621444
Η	-1.2048886838	1.3163825363	3.7063509603

Total internal energy, Utot (SCFE + ZPE + U): -550.502069 hartrees Total enthalpy, Htot (Utot + pV): -550.501125 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -550.557870 hartrees

С	0.0198828305	-0.0064335461	0.0303068984
Pd	-0.0184890581	0.0051688930	2.0967879566
С	2.2508251428	-0.0053986698	2.1309774634
С	1.8224345621	-1.3218958538	2.1287324448
Ν	-1.9495818771	0.6318156303	1.9122043952
С	-2.8029483470	0.9102849029	2.8836616249
С	-2.5734555395	0.8382396254	4.2579726953
С	-1.3620857613	0.4457490050	4.8506680533
Ν	-0.2636388310	0.0872939521	4.2204188447
Х	2.0107585000	-0.6557270000	2.1107505000
Η	-0.7549479125	-0.6959092454	-0.3221107405
Η	-0.2036501832	1.0068639494	-0.3206934829
Η	0.9835918133	-0.3180401075	-0.3859480394
Η	0.4846211377	-0.1546556724	4.8603666090
Η	-1.3455226855	0.4426737158	5.9457732538
Η	-3.3913378024	1.1052870485	4.9169022679
Η	-3.8015540565	1.2342479830	2.5753625521
Η	-2.3261269088	0.7530028678	0.9797631605
С	1.8732377927	-2.2886803320	3.2842759047
С	2.8599164546	0.7424967396	3.2895024693
Η	1.6947144506	-1.7947669014	1.1581331655
Η	2.4268024144	0.4552932907	1.1620433907
Η	3.9529025315	0.7594651732	3.1764655803
Η	2.5183266165	1.7812496223	3.3093469347
Η	2.6382325870	0.2938545376	4.2595454122
Η	2.7477459357	-2.9444432394	3.1711370525
Η	1.9551795692	-1.7983757034	4.2560294993
Η	0.9863330006	-2.9282943691	3.3001139061

Total internal energy, Utot (SCFE + ZPE + U): -393.349654 hartrees Total enthalpy, Htot (Utot + pV): -393.348710 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -393.392660 hartrees

С	0.3264673997	-0.7728700545	-0.3564467263
Pd	1.1386183380	-1.6319484721	1.3020277712
Ν	1.9343345364	-2.5362415623	3.0451833342
С	3.2230594134	-2.6371169032	3.2797807862
С	4.2539446878	-2.1756526493	2.4367924360
С	4.0768583605	-1.5349210306	1.2140336472
Ν	2.9443360969	-1.2297945813	0.5982100277
Η	0.6153132149	-1.2958844962	-1.2735398342
Η	-0.7611337439	-0.8739837968	-0.2099209894
Η	0.5812881478	0.2887001136	-0.4350828944
Η	3.0257445585	-0.7598758678	-0.2925627790
Η	4.9846500253	-1.2389524163	0.6809682171
Η	5.2740727395	-2.3320231716	2.7668712493
Η	3.5446834672	-3.1201782522	4.2079517438
Η	1.3641749256	-2.9353652413	3.7845931361

Total internal energy, Utot (SCFE + ZPE + U): -232.148098 hartrees Total enthalpy, Htot (Utot + pV): -232.147154 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -232.177603 hartrees

Η	-0.0000021880	-0.000003872	0.0061696424
С	-0.0000020980	-0.0000007121	1.0926771102
С	1.2092448642	0.0000007663	1.7908399241
С	1.2092504050	-0.000003048	3.1871635923
С	0.0000005060	0.0000001360	3.8853259998
С	-1.2092442684	0.0000014152	3.1871587461
С	-1.2092483672	-0.0000010567	1.7908362062
Η	2.1501801707	0.0000020950	1.2475751584

2.1501949683	-0.0000028304	3.7304117679
-0.0000140915	-0.0000011033	4.9718337304
-2.1501845428	0.0000019674	3.7304147450
-2.1501867200	-0.0000026445	1.2475761590
	2.1501949683 -0.0000140915 -2.1501845428 -2.1501867200	2.1501949683-0.0000028304-0.0000140915-0.0000011033-2.15018454280.0000019674-2.1501867200-0.0000026445

Total internal energy, Utot (SCFE + ZPE + U): -157.119376 hartrees Total enthalpy, Htot (Utot + pV): -157.118432 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -157.152537 hartrees

С	-0.2444048889	0.0000055380	-0.2856971209
С	0.0287074582	0.0000093468	1.1922588611
С	1.2168881117	0.0000046551	1.8074930424
Н	-0.8605049799	0.0000086348	1.8228553689
Н	1.2147120102	0.0000073002	2.8977506048
С	2.5817278615	-0.0000152965	1.1779587071
Н	2.5469085077	-0.0000290818	0.0860117856
Н	3.1577228782	0.8792363705	1.4943383934
Н	3.1576994904	-0.8792746979	1.4943588862
Н	0.6678792783	0.0000700551	-0.8867841939
Н	-0.8349244346	-0.8793488545	-0.5736520561
Η	-0.8350426091	0.8792797478	-0.5736428401

Total internal energy, Utot (SCFE + ZPE + U): -550.462113 hartrees Total enthalpy, Htot (Utot + pV): -550.461169 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -550.515560 hartrees

С	-0.0730584401	0.0122840692	0.0090698590
Pd	-0.0560528196	0.0015420447	2.2794220641
С	1.8570561778	0.0604112173	0.7729113487
С	2.0177854047	0.0579778326	2.2112770502
Ν	-2.1584702494	-0.0002450203	2.2259127188
С	-2.9586723797	-0.0038312157	3.2714580180
С	-2.5613540623	-0.0281461754	4.6174768224
С	-1.2362602528	-0.0456334238	5.0624563653
Ν	-0.1414259652	-0.0387248486	4.3222755357
Η	-1.0921588008	-0.0667589247	6.1472552021
Η	-3.3406858832	-0.0323500681	5.3706783613
Η	-4.0380594649	0.0131585915	3.0875319772
Η	-2.6512788048	0.0242072129	1.3371863337
Η	2.0611983404	-0.9031088466	0.3112429563
С	2.3678184694	1.2429360808	-0.0300567054
С	2.6204852722	1.2510985791	2.9339956749
Η	2.3401456266	-0.9049433776	2.6147696991
Η	0.7156089297	-0.0596998901	4.8610309157
Η	-0.7458634266	-0.8451698016	0.0951648748
Η	-0.6096100979	0.9625568158	-0.0369625899
Η	0.4735607001	-0.1130761762	-0.9201604022
Η	3.4513168889	1.3324211266	0.1191945297
Η	2.1859410932	1.1253883102	-1.1014201839
Η	1.9140153911	2.1839786073	0.2900579217
Н	3.7039396178	1.3260373014	2.7553522257
Η	2.1682259878	2.1985209754	2.6276052940
Η	2.4810282326	1.1637857070	4.0159876615

Total internal energy, Utot (SCFE + ZPE + U): -550.503979 hartrees Total enthalpy, Htot (Utot + pV): -550.503034 hartrees Total Gibbs free energy, Gtot (Htot - T*S): -550.557890 hartrees

С	1.3322031638	1.2361725031	-0.7802080427
С	1.0880964849	-0.0589196077	0.0107070052
С	1.9077216300	-0.1715529026	1.2674708994
Pd	0.0740722241	0.0446553638	2.1806403950
Ν	-1.9404146197	0.2631144961	2.7822164565
С	-2.3449816126	0.3090939323	4.0341260473
С	-1.5299840950	0.2315568735	5.1764223145
С	-0.1417271495	0.0862072107	5.1715738930
Ν	0.6562422852	-0.0019907972	4.1200339653
Η	-0.0528991425	0.0536743865	0.3478581256
Η	0.3433843593	0.0394977645	6.1516314805
Η	-2.0192274805	0.2861833989	6.1420792860
Η	-3.4190544506	0.4180492975	4.2199676498
Η	-2.7042617279	0.3334970483	2.1193854924
С	1.0401506575	-1.2932041094	-0.9017893949
Η	2.5076795440	0.7232781206	1.4572050656
С	2.6728928508	-1.4431323806	1.5835096710
Η	1.6365447361	-0.1046743091	4.3485261373
Η	2.3038559105	1.1815601249	-1.2844496456
Η	0.5638839707	1.3929743837	-1.5448282033
Η	1.3390831625	2.1058941168	-0.1176539889
Η	0.3175905031	-1.1499458184	-1.7118359838
Η	2.0243177452	-1.4593965844	-1.3546145082
Η	0.7606629715	-2.1962313676	-0.3549984368
Η	3.5147165462	-1.5976132604	0.8904045601
Η	3.0974899323	-1.3903524939	2.5915147831
Н	2.0438602399	-2.3368556601	1.5426037190
Х	1.5033035000	-0.0921970000	0.6343335000