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TABLE IV
COMPARISON OF NUMERICAL SENSITIVITY

FROM BOTH APPROACHES

as (19), and compute the standard deviation of the values of the corre-
sponding perturbed polynomial at the point ���� � �

�

��. We perform the
test at ���� � �

�

�� � ���� ���� ��� ���� ���� ��� ���� ��� and ����� ����
and compare the results of both approaches in Table IV.

There are several reasons showing that our approach is promising.
First, we can see from Tables I and III that the number of variables in the
conventional approach grows rapidly when the degrees of the mono-
mial bases increase, while the number of variables in our approach
grows linearly with respect to the number of subregions. Moreover,
our approach attains the exact optimal value with less computational
cost than the conventional SOS approach. Secondly, Table IV shows
that the standard deviations of the perturbed polynomial from the pro-
posed approach are less than that from the conventional approach, for
all selected points. This implies that the optimal value of the proposed
approach is less numerically sensitive than that of the conventional ap-
proach. Strictly speaking, the asymptotic exactness of our scheme is
not guaranteed in the case of lowest-degree monomial bases. However,
it is achieved apparently in this example. We expect that the asymp-
totic exactness can also be proved with the monomial bases of lowest
degrees, and this is the direction of our further research.
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Robust Stability Analysis of Nonlinear Hybrid Systems

Antonis Papachristodoulou and Stephen Prajna

Abstract—We present a methodology for robust stability analysis of non-
linear hybrid systems, through the algorithmic construction of polynomial
and piecewise polynomial Lyapunov-like functions using convex optimiza-
tion and in particular the sum of squares decomposition of multivariate
polynomials. Several improvements compared to previous approaches are
discussed, such as treating in a unified way polynomial switching surfaces
and robust stability analysis for nonlinear hybrid systems.

Index Terms—Hybrid systems, linear matrix inequality, sum of squares,
switched systems.

I. INTRODUCTION

Hybrid systems have dynamics that are described by a set of contin-
uous (or discrete) time differential equations in conjunction with a dis-

Manuscript received July 02, 2007; revised March 21, 2008. Current version
published May 13, 2009. This work was supported in part by the Engineering
and Physical Sciences Research Council Grant EP/E05708X/1. Recommended
by Guest Editors G. Chesi and D. Henrion.

A. Papachristodoulou is with the Department of Engineering Science, Uni-
versity of Oxford, Oxford OX1 3PJ, U.K. (e-mail: antonis@eng.ox.ac.uk).

S. Prajna was with Control and Dynamical Systems, California Institute of
Technology, Pasadena, CA 91125 USA and is now with Credit Suisse, New
York, NY 10010 USA (e-mail: prajna@cds.caltech.edu).

Color versions of one or more of the figures in this technical note are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2009.2017155

0018-9286/$25.00 © 2009 IEEE

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on June 22, 2009 at 13:58 from IEEE Xplore.  Restrictions apply.



1036 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009

crete-event (decision) process. Examples include motion control sys-
tems and robotics [1], air traffic management [2], [3] etc.

For the case of systems with continuous dynamics, stability
properties are traditionally addressed using Lyapunov functions
[4]. Extensions of these ideas to hybrid systems have appeared in,
e.g., [5]–[8]. See also [9] for a survey of the field, as well as the
recent books [10]–[12]. Piecewise quadratic Lyapunov functions have
been introduced, which are constructed by concatenating several
quadratic Lyapunov-like functions algorithmically by solving a set
of Linear Matrix Inequalities (LMIs) [13]. However, in some cases
such LMI conditions can be conservative or the number of quadratic
Lyapunov-like functions needed is large, resulting in an increased
computational load.

This technical note, which extends the work in [14] to treat ro-
bustness analysis in the presence of dynamic uncertainties, provides
a methodology for stability analysis of switched and hybrid systems.
For proving stability, polynomial and piecewise polynomial Lyapunov
functions are constructed using positive polynomials and the sum of
squares decomposition [15]–[18], which can be efficiently computed
using semidefinite programming, e.g., using the software [19]. An
advantage of this method is that it provides a less conservative test
for proving stability when switching between subsystems is arbitrary,
provided that a finite number of switches occurs on every bounded
time interval. Moreover, we demonstrate that stability can be proven
with a smaller number of Lyapunov-like functions, eliminating the
need of refining the state space partition in order to find quadratic such
multiple Lyapunov functions. The method can be readily applied to
systems with nonlinear subsystems and nonlinear switching surfaces,
therefore allowing much richer system descriptions. Finally, para-
metric and dynamic robustness analysis can be performed in a unified
manner.

Appropriate modeling for such systems, as well as the existence and
uniqueness of solutions are important research topics [20], as many
times solutions may not exist, may not be unique (non-determinism) or
a Zeno behaviour is observed (infinite number of discrete transitions in
finite time). Here we will assume that the system models are such that
these phenomena, including sliding modes and equivalent dynamics are
avoided [21]. Moreover, we will say “arbitrary switching” to mean ar-
bitrary switching in which only a finite number of switches is allowed
in finite time. The tools developed in this technical note can be extended
to cover the case of systems with sliding modes if the additional mode
that captures the sliding mode dynamics is added to the system de-
scription and a condition that the Lyapunov function decreases along
sliding-mode trajectories is imposed.

The technical note is organized as follows. We first present some pre-
liminaries on hybrid and switched systems, as well as tools from pos-
itive polynomials that we will be using to analyze them. In Section III
we will formulate various algorithms for testing stability for hybrid and
switched systems, giving examples for the various cases. We then dis-
cuss robust stability analysis, before concluding the technical note.

II. PRELIMINARIES

A. Hybrid Systems

We consider systems of the following form:

�� � ������ � � � � ��� � � � � ��� (1)

where � � � is the continuous state, � is the discrete state (location),
����� is the vector field describing the dynamics of the �-th mode/sub-
system (assumed to be sufficiently smooth), and � is the finite index
set. Executions (trajectories) of the system are concatenations of a se-
quence of continuous flows and discrete transitions. During a contin-
uous flow, the discrete location � is maintained and the continuous state

evolves according to (1). The evolution of the discrete state � can be ei-
ther time-dependent or state-dependent.

For time-dependent switching we consider switching signals which
are piecewise constant and continuous from the right and which have
a finite number of discontinuities on every bounded time interval. For
state-dependent switching, we assume that � is partitioned into oper-
ating regions ��, � � �� � � � � �� by guard sets (also called switching
surfaces). These operating regions may or may not intersect, and their
union is �. When the continuous state is � in location � and a guard set
���� ��� is met, a discrete transition to �� will occur and the continuous
state will take the value ��, which is prescribed by the single-valued
reset map ���� ������. Systems with infinitely fast switching, such as
those that have sliding modes, are excluded from our discussion, even
though analysis in the case of sliding modes can still be performed.

We describe mathematically the regions �� by

�� � �� � � � 	����� � �� 	
� 
 � �� � � � ��� � (2)

for some 	�� � � � . A guard set between the � and �� modes is
given by

���� ��� � �� � � � ��� ���� � �� ��� ���� � ��

	
� 
 � �� � � � ������� �� (3)

for some ���� � � � . Lastly, the reset map is given by

���� ������ � 
�� ���� (4)

We assume that the origin is a common equilibrium of the locations the
stability of which we will investigate; this implies that ����� � � for
all � � �.1

We will also consider systems of the form

�� � ����� ��� � � � � ��� � � � � ��� (5)

where � � � � 	 denotes the uncertainty in the continuous flow
which may be time-varying, in which case �� � 	 � 	 is bounded.

Finally, we assume that the functions ��, 	�� , ��� � and 
�� are poly-
nomials. For the case in which any of these functions is nonpolynomial,
see the comment at the end of Section III-D.

B. Sum of Squares Decomposition

Our analysis is based on positive polynomials [15]–[17] and the
sum of squares decomposition of multivariate polynomials. A multi-
variate polynomial ���� is a sum of squares if there exist polynomials
������ � � � � �	��� such that ���� � 	

��� �
�
� ���. This in turn is equiv-

alent to the existence of a positive semidefinite matrix �, and a prop-
erly chosen vector of monomials���� such that ���� � �
 ��������
[15].

What makes the sum of squares decomposition attractive is the fact
that it can be computed using semidefinite programming, since the
computation of � is nothing but a search for a positive semidefinite
matrix subject to some affine constraints. Coupled with the property
that ���� being a sum of squares implies2 ���� � �, the sum of squares
decomposition provides a computational relaxation for testing polyno-
mial positivity, which belongs to the class of NP-hard problems. Three

1Here we assume that � � � for all � � �. A relaxed assumption would be
that � ��� � � for all � � � � �� � � � � � � � and also that a transition
can occur from location � at state 0 only if �� � � � and � ��� � �.

2Note that the converse implication is true only in special cases. One such
instance is when the polynomial is quadratic.
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TABLE I
THREE KINDS OF POLYNOMIAL POSITIVITY (ON THE LEFT) AND THE CORRESPONDING SUM OF SQUARES CONDITIONS (ON THE RIGHT). CONDITIONS ON THE

RIGHT ARE SUFFICIENT FOR THOSE ON THE LEFT. THE POLYNOMIAL DEGREE � IS ASSUMED TO BE EVEN,
OTHERWISE THE POLYNOMIAL WILL BE NEGATIVE FOR SOME �. HERE � � �

kinds of polynomial positivity and their corresponding sum of squares
computational relaxations are shown in Table I.

The sum of squares decomposition has been exploited to algorith-
mically construct Lyapunov functions for nonlinear systems [15], [18],
[22], [23]. For this purpose, real coefficients ��� � � � � �� are used to pa-
rameterize a set of Lyapunov functions in the following way:

� � ���� � ���� � ����� �

�

���

������� (6)

where ����� are some polynomials; for example they could be mono-
mials of degree up to some number. The search for a Lyapunov func-
tion � ��� � � , or equivalently some ��, such that � ��� is positive
definite and �� ��� is negative definite can still be formulated as a sum
of squares problem and solved using semidefinite programming. The
results in the subsequent sections will be formulated in terms of in-
equalities such as � ��� � � or � ��� 	 �. However, if the computa-
tion of Lyapunov functions is to be performed using semidefinite pro-
gramming, then these inequalities have to be relaxed to sum of squares
constraints, in the way summarized in Table I.

III. STABILITY ANALYSIS

A. Stability of Hybrid Systems

Stability of equilibria of hybrid systems has been addressed in [5],
[6], [9], [24], [25]. We will use the following two Lyapunov theorems
in the sequel. The first theorem concerns the case of what is known as
a “common” Lyapunov function:

Theorem 1: Consider a hybrid system (1) with 0 an equilibrium
point and let
��� ������ � �. Suppose that there exists an open set� �
� such that � � � . Let � � � � be a continuously differentiable

function such that:
1) � ��� � � and � ��� 	 � for all � � � � ��	,
2) ��� �������
���� 
 � for all � � � , � � �.

Then � � � is a stable equilibrium of the hybrid system. If furthermore
��� �������
���� � � for all � � � � ��	, � � � then � � � is an
asymptotically stable equilibrium.

The proof of this theorem can be found in, e.g., [10]. Global asymp-
totic stability can be obtained if � � � and � is radially unbounded.
The above theorem has the drawback that such a � may be difficult
to construct even if switching occurs between linear subsystems. But
since the switching signal is not state-dependent, it is useful when in-
vestigating stability under arbitrary switching.

A more general theorem that will lead our discussion on multiple
Lyapunov functions for determining stability is stated below, which in-
cludes ’impulsive jumps’, even if 0 is an equilibrium point. Recall that

��� ������ � �� is the reset map when ���� ��� is met. Let us denote
the switching times by �� so that 
������� ���

�
� ��������� � ����� �,

where ��� are the times just after the switching times.

Theorem 2: Consider a hybrid system with 0 as an equilibrium point.
For each � � �, suppose that there exists a continuously differentiable
function �� � �� � such that:

1) ����� � � and ����� 	 � for all � � �� � �,
2) �����������
���� 
 � for all � � ��.

If moreover, for all executions and for all switching times ��, we have
�
��� �

������ �� 
 ���� �������� then � � � is stable.
The above theorem (a proof of which can be found in [6]) con-

siders many Lyapunov functions, each defined for each subsystem, sat-
isfying the familiar Lyapunov conditions. The last condition ensures
that during switches, the value of the Lyapunov function is non-in-
creasing, even if the continuous state is reset. It can be relaxed to the
statement that �

��� �
������ �� 
 �

��� �
������� where �� � ��� is the

time that location ����� � was last active. This condition is difficult to
impose algorithmically, so we will use the condition stated in the the-
orem instead, i.e., that the Lyapunov functions are non-increasing when
switches occur.

Corollary 3: Consider a hybrid system with 0 as an equilibrium
point. For each � � �, suppose that there exists a continuously dif-
ferentiable function �� � �� � such that:

1) ����� � � and ����� 	 � for all � � �� � �,
2) �����������
���� 
 � for all � � ��,
3) �� ��

��� ����� 
 � for all � � ���� ���� �� � 
��� ������.
Then � � � is a stable equilibrium.

B. Stability Under Time-Dependent Switching

Here switching is time-dependent, and the switching signal is
piecewise constant and continuous from the right. A finite number of
switches is allowed on every bounded time interval in order to exclude
arbitrarily fast switching. We also assume �� � � and consider (1)
with ���� ��� � �, and 
��� ������ � �. A sufficient condition for the
stability of the origin in this case is the existence of a global common
Lyapunov function, as summarized in the following theorem.

Theorem 4: Suppose that for system (1) there exists a polynomial
� ��� such that � ��� � � and

� ��� 	 � 
� �� �� � ��� �	
�	��
 ������
�
 (7)
�� ���

��

���� � � 
� �� �� � � � (8)

then the origin is globally asymptotically stable for arbitrary switching.
Notice in particular that if the vector fields are linear, i.e., 
���� �

���, and if � ��� is chosen to be quadratic, say � ��� � ����,
then the conditions in Theorem 4 correspond to the well-known LMIs
� 	 �, ��

� � � ��� � � for all �, which prove quadratic stability
of the system but may be conservative. Several researchers have con-
sidered the use of non-quadratic Lyapunov functions for such systems,
e.g., polyhedral [26], [27], piecewise-quadratic [28] and polynomial
[29]. See also [30] where a sufficient condition for the existence of a
homogeneous polynomial Lyapunov function is given, which is also
necessary in some cases. For the case of systems with time-varying
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Fig. 1. Trajectories of the system in Example 5 under arbitrary, time dependent
switching. The switching signal is piecewise constant and continuous from the
right and switches arbitrarily between the two locations with a bounded number
of discontinuities on every bounded time interval. Dashed curves are level curves
of the common Lyapunov function.

uncertainties with a bounded variation rate [31], parameter-dependent
homogeneous Lyapunov functions can be employed. This is related to
the work of P. -A. Bliman [32], [33], which provides sufficient condi-
tions for robust stability of linear systems, using quadratic Lyapunov
functions with polynomial dependence on the parameters.

1) Example 5: Consider the system �� � �����, � � ���� ���
�

under arbitrary switching, with

����� �
���� � ���
��� � 	��

� ����� �
�	�� � ���
	
�� � 	��

�

It can be proven using a dual semidefinite program that no global
quadratic Lyapunov function exists for this system [7]. Nevertheless,
a global sextic Lyapunov function

� ��� � ���
����� � ����
������ � ���������
�

� � ��		������
�

�

�
���������
�

� � ��	������
�

� � ��
�	����

exists, and therefore the system is asymptotically stable under arbitrary
switching (cf. Fig. 1).

For higher degree polynomial vector fields and Lyapunov functions,
the search for � ��� can also be performed using semidefinite program-
ming by formulating the conditions as sum of squares conditions.

C. Piecewise Polynomial Lyapunov Functions

For state-dependent switching, the analysis method presented in Sec-
tion III-B will be too conservative. Stability can be proven in a more
effective way using piecewise polynomial Lyapunov functions. Such
functions are “patched” from several polynomial functions ����� (also
termed Lyapunov-like functions), typically corresponding to the re-
gions ��. Theorem 2 requires that the Lyapunov-like function �����
and its time derivative along the trajectory of the �-th location need
only be positive and negative respectively within ��.

The conditions in the previous paragraph can be accommodated
using a method similar to the S-procedure [13] as follows. To incor-
porate the fact that ����� only needs to be positive on ��, where �� is
described by (2), we impose the relaxed condition

������

�

���

������������ 	 
 (9)

for some ������ � 
. Since ������ is nonnegative on ��, the above
condition implies that ����� is positive on ��. An analogous condition
can be imposed on 
���
�. Note that there is no requirement in this
method that the multipliers ������ be constants (as in the S-procedure);
they can also be polynomials of higher degree [15]. Thus, this condition
is generally less conservative than the S-procedure.

1) Switched Systems: In this case, the guards between two locations

��� ��� and
���� �� coincide. Such systems are categorized as switched
systems. The transition between locations is unknown a priori, but will
depend on the direction of the vector fields. Without characterizing the
direction of switching, it is essential that the piecewise Lyapunov func-
tion used to prove stability be continuous on 
��� ���. Imposing

����� � ��� ������� ����� �� ��� � 
 (10)

where ��� ���� is an arbitrary polynomial, will guarantee the continuity
of � ��� on
��� ��� (equivalently
���� ��). This results in the following
Theorem for switched systems.

Theorem 6: Consider a switched system with 
��� ��� � 
���� �� for
all �� �� � �. Assume that there exist polynomials �����, ��� ���, with
���
� � 
 and ������ � 
, ������ � 
, such that

������

�

���

������������ 	 
 �� �� 
� � � �� (11)

���
��

����� �

�

���

������������ � 
 �� �� 
� � � �� (12)

����� � ��� ������� ������� ��� � 
 ��� ��� (13)

Then the origin of the state space is asymptotically stable. A Lyapunov
function that proves this is the piecewise polynomial function � ���
defined by

� ��� � ������ �� � � ��� (14)

Moreover, if each ����� is radially unbounded in the invariant �� and
���� �

� then the result holds globally.
Even though the switched system is stable, low degree (e.g.,

quadratic) ����� that satisfy the above conditions may not exist,
as those conditions are only sufficient for stability. In this case, an
improved test can be performed by dividing the continuous state space
into a more refined partition than the original��, and then constructing
a piecewise Lyapunov function (of the same degree as before) based
on this new partition. For systems with more than two state variables,
this refinement is obviously not an easy matter. A simpler way for
obtaining an improved test is to use a higher degree Lyapunov function
based on the original partition, as illustrated by the following example.

2) Example 7: Consider the switched system �� � ����� with four
state variables and two modes

����� �

��� � 	��� � �	�� � 	��
�
���� � 
���� � ��� � 
����

���� � 	��� � ����� � ���
���� � ���� � �	�� � ���

�

����� �

������ � �
���� � 
�� � �����
�
���� � 
���� � ��� � �����
����� � 	
���� � ����� � �����
������ � 	
���� � 
�� � �����

�

�� � �� � � � ���� � 
	� �� � �� � � � ���� 
 
	

where ���������
�����������
���������
�����
�����
�����. No
piecewise quadratic Lyapunov function (using the original state space
partition) exists for this system. Refining the partition for this system
is not easy, thus we resort to higher order Lyapunov function instead.
A homogeneous piecewise quartic Lyapunov function can be found by
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solving the optimization problem corresponding to the conditions in
Theorem 6. This proves that the origin of the state space is globally
asymptotically stable.

3) Hybrid Systems: Directions of transitions in most hybrid sys-
tems are characterized a priori. Because of this, a piecewise Lyapunov
function for a hybrid system need not be continuous, and it is enough
to have �� ��� � ����� on ���� ���. This is taken into account in con-
dition (15) of the theorem below.

Theorem 8: Consider a hybrid system and assume that there exist
polynomials �����, ��� ���� �

��, ��� ��� �
��, and ������ � �, 	����� �

�, ��� ���� �
�� � � such that ����� � � and

������

�

���

������
����� � � �� �� �� � � ��


��


�
����� �

�

���

	�����
����� � � �� �� �� � � ��

�� ��
�� � ��� ���� �

����� ���� �

�

���

��� ���� �
����� ����

���� ��� �
����� � ��� ����� ����� � � ��� ��� (15)

Then the origin is asymptotically stable. Moreover, if each ����� is
radially unbounded in the invariant �� and ���� �

� then the result
holds globally.

We remark that the last condition implies that when ��� ���� � �,
������� � � and �� � ��� ��� we have �� ��

�� � �����, which is the
last condition of Corollary 3.

D. Nonlinear Vector Fields and Switching Surfaces/Transition Sets

The same methodology can be applied to systems with nonlinear
vector fields and nonlinear switching surfaces or transition sets. To il-
lustrate this, consider the following example.

1) Example 9: Let the hybrid system �� � ����� be composed of
two subsystems

������
���� � ��� � ��� � ���

	�� � ��� � 
�� � ���
� ������

�� � ��� � ���

��� � ���
(16)

with a guard set

���� �� � 	� � �
�� � � 
�� �� � ��� (17)

���� �� � 	� � �
��� � �
�

��� (18)

Fig. 2 depicts some trajectories of the system, when the system is ini-
tialized with subsystem 1. Using Theorem 8 , the origin can be proven
globally asymptotically stable with a sextic piecewise polynomial Lya-
punov function given by � ������ � �������� if � is active, for some
�����’s that are omitted for brevity.

This way we have demonstrated how more complicated switching
rules can be taken into account when analyzing a hybrid system. We
note here that systems with rational or nonpolynomial vector fields can
still be analyzed using the sum of squares decomposition. This has been
presented in [22] and will not be discussed in this technical note. The
same technique can also be applied to nonpolynomial guard sets.

IV. ROBUST STABILITY ANALYSIS

Uncertainty in a switched or hybrid system can be present in the
vector fields describing the flow of the system and/or in the switching
scheme/transition law. The uncertainty can be of parametric nature,
or caused by time-varying perturbations of the vector field, switching
delays, etc.

A method for robustness analysis has been proposed in [5]. The ap-
proach is based on bounding the guard sets by an uncertain switching

Fig. 2. Trajectories of the system in Example 9. Dash-dotted line and dashed
curves show ���� �� and ������ respectively. The switching rule is given by
(17)–(18).

set, and the subsystem invariants by a bigger set where the corre-
sponding Lyapunov-like function is decreasing. Since this analysis is
carried out using conditions similar to those given in Section III, it
can be immediately generalized to make use of polynomial functions.
The method is well-suited for robustness analysis with respect to
nonparametric uncertainty, but unfortunately, although in principle
parametric uncertainty can be handled in a similar fashion, it is not
treated in a direct and efficient way.

Instead, in this section we present an analysis technique for handling
parametric and dynamic uncertainty in a direct way, based on param-
eter dependent Lyapunov-like functions and multipliers. Computation
of parameter dependent quadratic Lyapunov-like functions using LMIs
had been previously difficult, since such functions are nonquadratic
polynomials in the state and parameter variables. Using the sum of
squares decomposition, computation of even higher degree functions
becomes straightforward.

Recall the description of the continuous flow field introduced in Sec-
tion II-A. Let the set of admissible parameters be given by

� � 	� � � � ��� ��� � �� �� � �� � � � � ���

��� ��� � �� �� � �� � � � � ��� (19)

and in the case they are time-varying, let the set 
 be given by


 � 	� � � � ��� ��� � �� �� � �� � � � � ���

��� ��� � �� �� � �� � � � � ��� (20)

for some polynomials ��� ���, ��� ���, ��� ��� and ��� ���. Further-
more, assume that the vector fields �� and the polynomials describing
the invariants (2), guards (3) and reset maps (4) are dependent on �.
Theorems 4, 6, and 8 can be modified to accommodate parameter
dependent Lyapunov functions and multipliers. For brevity, we only
present the parameter dependent version of Theorem 8, for the case
the parameters are time-varying.

Theorem 10: Consider a hybrid system in which ����� �� has
unknown parameters � � � , where � is as in (19) so that their
time-variation is in 
, described by (20). Assume that there exist
polynomials ����� ��, ������ �� � �, ������� ��, ������� �� � �,
	����� �� �� � � �	����� �� ��, �	����� �� �� � �, �	����� �� ��,
�	����� �� �� � �, ��� ���� �

�� ��, ��� ���� �
�� �� � �, ���� ���� �

�� ��,
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Fig. 3. Trajectories of the system in Example 11 for different values of �. Dashed lines represent the guard sets.

���� ���� �
�� �� � �, and ��� ��� �

�� such that ����� �� � � and
conditions (21)–(23) are satisfied. Then the origin of the state space is
robustly asymptotically stable with respect to the unknown parameters
� � � when they vary inside �� � �.
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���


������ �� �������� � � �� �� �� � � �� (22)

�� ��
�

� �� � ��� ���� �
�

� ����� ���� ��

�

�

���

��� ���� �
�

� ����� ���� �� � ��� ��� �
����� � ��� ����

������ �� �

�

���

���� ���� �
�

� ��	�����

�

�

���

���� ���� �
�

� ��	����� � � ��� ��� (23)

1) Example 11: Let us consider the hybrid system �� � �����, with
vector fields

����� �
��� � ������ ��������

���� � ��
�

����� �
�� � ���� � ��������

������ � ��

and guard sets

���� �� � 	� � �
 � ������� ����� � ���

���� �� � 	� � �
������� ����� � ���

TABLE II
RELATION BETWEEN THE DEGREE OF � ���, � � �, 2, AND THE VALUE

OF � FOR WHICH ROBUST STABILITY CAN BE PROVEN. RECALL

THAT THE SYSTEM IS STABLE FOR � � �����

Notice the dependence of the first guard set on the unknown parameter
� � , and the time-varying uncertainties in the vector field, ����� and
�����.

Let us first concentrate on the case ����� � ����� � �. Obviously,
stability of the system depends on the value of �. In this example, we
have deliberately chosen a system with linear subsystems, so that robust
stability of the system can also be analyzed in a purely analytical way
for comparison purposes. By computing the flows of the subsystems
when the system is initialized in subsystem 1, it can be proven that the
system is stable for � 
 ���
� and unstable for � � ���
�. At � �
���
� it exhibits a limit cycle (see Fig. 3). With parameter dependent
Lyapunov-like functions of the form

����� �� � ������� � �������� (24)

robust stability of the system with respect to � � � � 	� � ��� � ��,
where � is a constant, can be proven. Using quadratic ������� and
�������, we can prove robust stability for� � ���
. Tighter robustness
bounds can be obtained by increasing the degree of the Lyapunov-like
functions, as depicted in Table II.

Now, let us fix � � �, and consider the robust stability of the system
under the presence of dynamic uncertainties ����� and �����. We as-
sume that


�����
 � ��� 
�����
 � �� (25)

for some numbers ��� �� 
 � (these inequalities define the set �), and
we consider different variation levels


 ������
 � �� 
 ������
 � �� (26)

for some number � � �. Fig. 4 shows robust stability regions that
are obtained using the same quadratic Lyapunov function structure, for
different variation rates �.
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Fig. 4. Robust stability regions verified by a quadratic multiple Lyapunov func-
tion for Example (11) with � � �. Here � , � and � are given by (25)–(26).

V. CONCLUSION

A method for stability analysis of switched and hybrid systems has
been presented. The method is based on polynomial and piecewise
polynomial Lyapunov functions, whose computation can be efficiently
performed using the sum of squares decomposition and semidefinite
programming. Using this approach, higher degree Lyapunov functions
can be constructed, thus reducing the conservatism of searching for
only quadratic candidates. In the same way parametric uncertainty can
be incorporated in the search. Several examples have been provided to
illustrate the benefits of this approach.

At the present time, the largest system that we could analyze was a
polynomial hybrid system with 10 continuous states and 6 locations,
for which the safety properties were assessed [34]. It is important to
note that the computation of Lyapunov functions is polynomial-time
for a fixed order system, however limitations are imposed because of
the size of the associated semidefinite programmes. Distributing the
calculation may be possible in some cases. For example, in the case of
multiple Lyapunov functions the computation can be done locally with
appropriate communication between the locations where transition is
possible. In the case of common Lyapunov function construction, we
would need to impose some sort of synchronization condition so that
at the end of the algorithm the same Lyapunov function is computed
by all computers.
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