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over a large spatial area. However, since making each mea-
surement requires a significant amount of time, and the 
robot needs a certain amount of time to travel between 
sensing locations, it is important to plan trajectories that 
allow obtaining the most useful information about the 
phenomenon under study.1 

A similar problem arises in the context of monitoring 
municipal drinking water distribution networks. Acciden-
tal or malicious contamination of such networks can affect 
a large population and cause significant harm. We can 
potentially detect such contamination by deploying sen-
sors in the water distribution network. However, these 
sensors are fairly expensive—for example, the Hach Water 
Distribution Monitoring system is currently priced above 
$13,000 per unit. Thus, we must optimize the locations 
where these costly sensors are placed to maximize their 
effectiveness. The need to address this task has received 
significant attention, and recently the Battle of the Water 
Sensor Networks was instituted as a benchmark challenge 
to encourage research in this area.2 

More generally, the goal in sensing optimization is to 
learn something about the state of the world (such as 
temperature at a given location or whether there is con-
tamination) by optimally making a small set of expensive 
measurements. The fundamental question is, How can we 
get the most useful information at minimum cost? This 
problem has been studied in several disciplines, includ-
ing statistics (experimental design), machine learning 
(active learning), operations research (facility location), 
sensor networks, and robotics. However, most of the ex-

H
igh levels of pollutants, such as nitrates, in 
lakes and rivers can lead to the rapid growth 
of algae. These algal blooms can be a severe 
threat to our drinking water resources. For 
example, the algal bloom at Taihu Lake, 

Jiangsu Province, China, in June 2007 deprived four mil-
lion people of drinking water and required an estimated 
$14.5 billion in cleaning costs (www.msnbc.msn.com/
id/21498294/, June 2007). 

Many of the growth processes associated with such 
algal blooms are still not sufficiently well understood and 
need to be studied in lakes instead of the lab. A natural 
approach to obtaining this understanding is to monitor 
environmental factors such as temperature, nutrient dis-
tribution, and fluorescence that are associated with such 
algal blooms. A promising technology for this goal uses 
sensors carried by robotic boats to obtain measurements 

Where should we place sensors to quickly 
detect contamination in drinking water dis-
tribution networks? Which blogs should we 
read to learn about the biggest stories on 
the Web? Such problems are typically NP-
hard in theory and extremely challenging 
in practice. The authors present algorithms 
that exploit submodularity to efficiently find 
provably near-optimal solutions to large, 
complex real-world sensing problems. 
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The simplest type of constraint is a cardinality con-
straint: We have k sensors, and thus want to ensure that  
|A| ≤ k. In this case, the optimization problem becomes 

A* = argmax
A
 F(A)     (1) 

          A ⊂ V: |A| ≤ k. 

More generally, sensors can have different costs—for ex-
ample, drilling into a pipe may be more expensive than 
placing a sensor in an existing junction. Here, we denote 
the cost of sensor s by C(s); the cost of a set of sensors A 
is the sum of their individual costs, C(A) = ∑

s∈A
 C(s). If we 

have a maximum budget B to spend, then our constraint 
becomes C(A) ≤ B. 

Submodularity 
Even the simplest formulation of these sensing prob-

lems in Equation 1 is already NP-hard,3 and it is unlikely 
that there will be an efficient algorithm for solving this 
problem exactly. However, consider what perhaps is the 
simplest possible heuristic: the greedy algorithm. This pro-
cedure starts by picking the element s1 that provides the 
most information: s1 = argmaxs F(s). Then, we iteratively 
pick elements s

i
 that provide the most additional informa-

tion: s
i
 = argmax

s
 F({s} ∪ {s1, ..., si – 1}).

This heuristic seems naïve, because, for example, when 
we pick the second sensor, the choice of the first sensor is 

isting approaches rely on heuristics without 
guarantees, which can potentially perform 
poorly. There are also algorithms that are 
designed to find the optimal solution, such 
as algorithms for solving partially observ-
able Markov decision processes (POMDPs) 
or mixed-integer programs (MIPs). However, 
it is often very difficult to scale these tech-
niques to large problems. 

We describe a new class of algorithms 
that have strong theoretical performance 
guarantees and scale to large sensing prob-
lems. Our algorithms are based on the key 
insight that many sensing problems satisfy 
submodularity, an intuitive diminishing- 
returns property: Adding an observation 
helps more if we have made few observa-
tions than if we already have made many 
observations. When a problem satisfies 
this diminishing-returns property, we can 
develop effective algorithms that are guar-
anteed to both perform well in theory and 
work well in practice. 

SenSing optimization 
problemS 

The sensing optimization problem seeks to find a set 
of sensors that provides the best possible sensing quality 
at the minimum possible cost. Let’s start by defining the 
notions of sensing quality and cost. Intuitively, a sensing 
quality function F(A) provides a score for selecting the set 
of locations A out of the possible locations V. 

Consider the problem of protecting our water distribu-
tion systems from contamination. Here, F(A) measures, 
for example, the number of people protected by placing 
sensors at locations A. To understand such a function 
better, consider the effect of introducing a contaminant 
at some location i; as this contaminant spreads through 
the network, thousands or more people may be affected. 
Due to the system’s complex dynamics, contamination at 
some locations spreads farther than at others, as Figure 
1a shows. Once we place a sensor, some contamination is 
detected earlier, as shown in Figure 1b, and more people 
are protected from the contaminant. A good set of sensor 
placements A, shown in Figure 1c, will detect contamina-
tion early, so F(A) will be high. Conversely, poor placement 
A′, as shown in Figure 1d, will have low F(A′).  

In general, the goal of sensing optimization is to find a set 
A* that provides the maximum possible value. Intuitively, we 
can maximize F(A) by placing sensors at every possible loca-
tion, but in real applications there are resource constraints 
in that sensors cost money and budgets are limited. 
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Figure 1. Impact of contamination events on a large drinking water 
distribution network. The color of each node indicates the impact severity 
before detection if a contaminant is introduced at that node and sensors 
are placed at the indicated locations. Red indicates high impact, green 
indicates low impact. In (a), no sensors are placed, hence contamination 
is never detected; (b) results after placing one sensor; (c) shows effective 
placement; and (d) shows poor placement. 
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placing k sensors in submodular 
problems, the greedy algorithm 
is guaranteed to provide near-
optimal solutions, thus providing 
a theoretical explanation for the 
strong empirical performance of 
this simple heuristic. 

phySical SenSing  
caSe Study

Accidental and malicious 
contamination in municipal 
drinking water distribution 
networks can pose a severe 
threat to the population. Such 
contamination could poten-
tially be detected by deploying 
sensors in the network’s junc-

tions and pipes, but because existing sensor solutions 
are fairly expensive, only small numbers of these sen-
sors can be deployed. The problem of deploying a small 
number of sensors to optimize performance criteria such 
as time to detection or minimizing the expected popula-
tion affected by contamination has received significant 
attention. 

During the 8th Annual Water Distribution Systems 
Analysis Symposium in August 2006, the Battle of the 
Water Sensor Networks was organized. The 13 teams 
participating in the BWSN challenge competed for op-
timal performance.2 The challenge included a realistic 
model of a metropolitan-area water-distribution network 
with 12,527 nodes, as well as a description of 3.6 million 
realistic contamination scenarios, which varied in the 
choice of injection location and time of introduction of 
the contaminant into the network, as well as other pa-
rameters. The EPANET 2.0 simulator developed by the US 
Environmental Protection Agency5 was used to estimate 
the impact of possible contamination. The goal of the chal-
lenge was to optimize sensor deployments with respect 
to multiple objectives: minimizing the time to detection, 
the expected population affected by contamination, and 
the total amount of contaminated water consumed, and 
maximizing the detection likelihood. 

More formally, for a set A of sensor locations, the result-
ing value F(A) will be: 

F A p i M
s A is

i

( ) ( ) max  ,
      

=
∈∈

∑
Ι  

    (2)

where M
is
 is, for example, the population protected by 

early detection from a sensor placed at node b if a contami-
nation originates at node i. Objective functions of this form 
and the ones used in the challenge are submodular.3 Our 
approach was to exploit this submodularity property to 
provide near-optimal sensor placements. However, evalu-

fixed and cannot be revised. This simple heuristic, however, 
performs surprisingly well in practice in many real-world 
applications. In fact, for many practical applications it is 
hard to find an algorithm that performs significantly better 
than the greedy approach for the optimization problem in 
Equation 1. This empirical observation leads to an interest-
ing theoretical question: Why does the greedy algorithm 
perform so well on sensor placement problems? 

This question can be answered by introducing sub-
modularity, a structural property that is present in many 
practical sensing optimization problems. Intuitively, a 
problem is submodular if we observe diminishing returns. 
For example, if we have deployed five sensors, a sixth one 
will provide much additional information, whereas after 
deploying 500 sensors the 501st will provide much less 
new information. Figure 2 illustrates this concept using 
the classic notion of set cover. Diminishing returns can be 
seen throughout our lives—for example, when applied to 
business practices, where the Pareto principle says that 
“80 percent of your sales come from 20 percent of your 
clients.” In water distribution systems, we naturally see 
diminishing returns: A few sensors may protect a large 
portion of the population, but to protect the last few people 
we may need many more sensors. 

More formally, a set function is said to be submodu-
lar4 if adding an element s to a set A provides more gain 
than adding it to a set B; in other words, if A is a subset 
of B—that is, ∀A ⊂ B ⊆ V and ∀ s ∈ V \ B—we have  
F({s} ∪ A) − F(A) ≥ F({s} ∪ B) − F(B). Many real-world 
problems satisfy this property—for example, the function 
measuring the population protected by sensing in water 
distribution systems.3 

If a problem is submodular, we can exploit this prop-
erty to develop efficient algorithms that are guaranteed in 
theory to provide near-optimal solutions and that perform 
extremely well in practice. In particular, for the case of 
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Figure 2. Illustration of the diminishing-returns effect (submodularity) of adding 
sensors. The blue regions indicate nodes where contamination is detected quickly using 
the existing sensors. The red region indicates the additional coverage by adding a new 
sensor s. If more sensors are already placed (b), there is more overlap, hence less gain in 
sensing quality. 
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can, after seeing the deployment, select the minimum over 
a set of submodular functions. More formally, we pick A* 
to maximize 

A F A
A V A k i i

∗

⊂ ≤
= argmax min   ( ),

    :    
    (3)

where F1, ..., Fm
 is a collection of monotonic submodular 

functions. In the water networks example, F
i
 is the detec-

tion performance that sensors A achieve if the adversary 
chooses contamination scenario i ∈ I. In the following, 
we describe an algorithm for solving such robust sensing 
problems. 

Given the provably near-optimal performance of the 
greedy algorithm for optimizing submodular functions—
that is, for solving Equation 1—a natural approach to the 
robust optimization Equation 2 would be to modify the 
greedy algorithm so that after elements s1, ..., sj−1 have 
been selected, it adds the element 

s j
s V i

=
∈

argmaxmin
   

 F
i
({s1, ..., sj–1} ∪ {s}).

For example, in the water network example, it adds 
the sensor that most decreases the worst-case detection 
time. 

Unfortunately, for the robust optimization Equation 
2, this greedy algorithm can arbitrarily fail badly.6 To 
see this, consider the following example. Suppose there 
are two contamination events, i1, i2, and three possible 
sensor locations, s1, s2, and s3. A sensor at location s1 can 
immediately detect event i1 but never detect i2; similarly, 
s2 can immediately detect i2 but never detect i1. A sensor 
at location s3, however, can detect both contamination 
events, but only after a long time. 

Now suppose we can afford to place two sensors. If we 
run the greedy algorithm, it will place a sensor at loca-
tion s3 first, since that is the only location that can detect 
both events. But once the greedy algorithm commits to 
picking s3, it can only select s1 or s2, but not both, leaving 
one of the contamination events essentially unprotected. 
On the other hand, the optimal choice is to pick s1 and 
s2, thus detecting both contaminations. This example 
illustrates the fact that the simple greedy algorithm that 
was useful before will perform very badly when it comes 
to problems that require robustness. 

ating the objective function F(A) requires the values M
is
, 

and thus the estimation of the impact of all 3.6 million 
contamination events i ∈ I, along with the benefit of plac-
ing each sensor at each possible location. 

Due to the magnitude of the problem in the challenge 
(the largest water distribution network studied by the com-
munity at that time), this task required massive amounts 
of distributed computation, processing approximately 47 
terabytes of simulation data in a cluster of 20 multicore 
machines.3 In addition, evaluating the function F(A) is 
very computationally expensive, and running the greedy 
algorithm to select 20 sensors takes approximately 30 
hours in a highly optimized implementation. By exploiting 
submodularity, we drastically reduced this computation 
time to approximately one hour using the lazy evaluations 
technique, while retaining the strong theoretical guaran-
tees.3 We call this the cost-effective lazy forward-selection 
(CELF) algorithm. 

To evaluate the entries in the challenge, parameter set-
tings were varied in the problem instances, including the 
amount of contaminant introduced and the delay before 
detection. Altogether, contributions were evaluated in 30 
different settings. Since the goal was to solve a multicriteria 
optimization problem, for each of these settings the set of 
nondominated entries was identified. (An entry was con-
sidered to dominate even if there were other entries that 
performed at least as well in all objectives, but the entry in 
question performed strictly better in one of the objectives.) 
Each participating research team was evaluated based on 
the total number of nondominated solutions (with 30 being 
the maximum possible score). 

The participants in the challenge used different algo-
rithms for optimization, including genetic algorithms and 
other heuristics and exact solvers (such as approaches 
based on MIPs) that could only be applied to smaller parts 
of the problem instance due to its size. Some participants 
did not use algorithms, but rather their domain knowl-
edge and prior expertise to make the decision. According 
to the performance evaluation by the organizers of the 
challenge, our solution based on submodular function 
optimization obtained a 24 percent higher score than the 
runner-up.2 

robust sensing optimization 
When applied to a water distribution network, the CELF 

algorithm selects sensor locations to detect random, ac-
cidental contamination events. However, an adversary 
who learns about the sensor locations can act strategically 
and maliciously and contaminate the network based on 
that knowledge. To protect against such an adversary, it is 
important to decide where to place sensors to maximize 
the worst-case detection performance. 

This and many other problems can be formulated as 
optimizing a sensor deployment against an adversary who 

The Saturate algorithm reduces the 
nonsubmodular, worst-case objective  
to a submodular optimization problem 
that can be approximately solved using 
the greedy algorithm. 
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location s, F
s
(A) = Var(X

s
) − Var(X

s
 | X

A
) can be shown to 

be a submodular function.7 Optimizing the average pre-
diction error throughout the environment (for example, 
a lake) is a natural (submodular) function we can opti-
mize. Unfortunately, such an average-case optimization 
does not guarantee good predictions at every point in the 
lake, which could result in missing an important event. A 
good alternative is to optimize the worst-case prediction 
error over the entire lake, a problem often called minimax 
kriging. Thus, selecting a set of locations to measure to 
minimize the worst-case prediction error is an example 
of a robust submodular sensing problem. 

We use the Saturate algorithm on this problem and 
compare it against the state of the art from geostatistics, 
a simulated annealing algorithm with seven parameters 
that need to be carefully fine-tuned for the particular ap-
plication at hand. Figure 3a compares the performance of 
the algorithms on a problem of predicting pH values in a 
lake near Merced, California. We can see that the greedy 
algorithm performs very poorly on this task. The simulated 
annealing algorithm performs much better, requiring ap-
proximately half as many samples to achieve the same 
worst-case error. The Saturate algorithm is competitive 
with the state-of-the-art geostatistics algorithm, while 
being much simpler to implement, requiring no param-
eters to tune and running approximately 10 times faster 
in our experiment. 

Note however that, when predicting these pH values, the 
performance of the greedy algorithm was “reasonable.” We 
obtained a very different outcome when evaluating the al-
gorithms on the problem of deploying sensors in drinking 
water distribution networks to minimize the worst-case 
time to detection. Figure 3b shows the results of this exper-
iment. Interestingly, in this domain, the greedy algorithm 

Saturate algorithm
Motivated by the poor performance of the greedy al-

gorithm, we developed Saturate, a novel algorithm for 
optimizing the worst-case detection performance. The 
key idea behind Saturate is to reduce the nonsubmodular, 
worst-case objective to a submodular optimization prob-
lem that can be approximately solved using the greedy 
algorithm. This transformation is achieved by first “guess-
ing” the value c of the optimal solution (this guessing is 
implemented as a binary search). Then, the greedy algo-
rithm is applied to “saturate” all objectives (that is, ensure 
that F

i
(A)  c). This reformulation of the problem allowed 

us to design this very simple algorithm that is theoretically 
guaranteed to obtain a near-optimal solution to the robust 
sensing problem. 

We have evaluated our Saturate algorithm on several 
real-world sensing problems. The first application is in 
environmental monitoring. Problems such as monitoring 
algal blooms in lakes require estimating spatial phenomena 
such as temperature, fluorescence, and nutrient distribu-
tion over a large spatial area. One approach to estimate a 
phenomenon such as temperature is to make measure-
ments at a small number of locations (for example, using 
sensor buoys or sensors carried by robotic boats) and then 
predict the temperature at the unobserved locations using 
statistical models. Gaussian processes (also known as  
kriging models) have been found effective for this purpose. 
However, to obtain accurate predictions, we must select 
measurement locations that minimize the expected error 
in the predictions made given these measurements. 

One approach to quantify the prediction error at 
some location s ∈ V is the expected posterior variance  
Var(X

s
 | X

A
) given that we have made measurements at 

locations A. In many cases, the reduction in variance at 
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Figure 3. Performance of Saturate for (a) environmental monitoring and (b) water networks. Saturate dramatically outperforms 
the greedy algorithm and is competitive with or superior to a highly fine-tuned simulated annealing algorithm. 
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To understand how to address this question, consider 
how information spreads through the blogosphere. As il-
lustrated in Figure 4, a story posted in a blog may be picked 
up (and linked to) by other blogs; from there, these postings 
may be linked to by yet more blogs, and so on. Such spread 
of information in the blogosphere forms what we call an 
information cascade.9 A good blog captures big stories—that 
is, large cascades—early on, as close to the first source as 
possible. 

At first, the problem of capturing information cascades 
seems quite different from the previous tasks. In reality, 
however, the spread of contaminants through water distri-
bution systems is very similar to the spread of information 
through the blogosphere. And, most importantly, both of 
these tasks can be formulated as submodular optimiza-
tion problems, which can be tackled by the algorithms we 
have described. 

As an example, let us formalize one criterion for char-
acterizing how well a blog captures a cascade c sparked 
by a certain story. Consider reading a particular blog b, 
which discussed this story at a certain time t. If blog b 
captures the story early on in cascade c, and then the 
story becomes huge, many other postings will appear in 
cascade c at a time later than t. In this case, blog b was 
very successful at capturing cascade c. On the other hand, 
if a story does not become popular, its cascade c′ will be 
small. If blog b captures cascade c′ late, few blogs will 
report on this story after blog b, but nothing much will 

does not decrease the worst-case detection time, exhibit-
ing, in practice, the arbitrarily bad performance the greedy 
approach suggested by the theory. The explanation for this 
poor performance is that unless all contamination events 
are detected, the worst-case detection time remains the 
same. However, no single sensor can detect all contamina-
tion events; thus, the greedy algorithm has no indication 
of which first sensor location to pick. 

The simulated annealing algorithm randomizes, so it 
eventually obtains nontrivial, but still poor, performance. 
Our Saturate algorithm exhibits much better performance 
in practice, obtaining 60 percent lower worst-case detection 
time than simulated annealing when placing 25 sensors. 

From water to the web:  
what blogS Should i read? 

The case studies we have used thus far focus on opti-
mization problems related to physical sensing. Sensing 
on the Web represents a very different problem. In 2008, 
Time asked, “How many blogs does the world need?” 
claiming that there were already too many out there.8 The 
blogosphere has grown at a tremendous rate, with tens of 
millions of active blogs generating hundreds of millions of 
postings per year (http://spinn3r.com). This activity leads 
to a huge overload of information, opening up significant 
sensing optimization questions such as, If you only have 
10 minutes a day to spend on the blogosphere, which blogs 
should you read to keep track of the big stories? 

Tim
e

Figure 4. An information cascade. Information has spread through the blogosphere at a tremendous rate, with tens of millions 
of active blogs generating hundreds of millions of postings per year.  

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 24, 2009 at 13:38 from IEEE Xplore.  Restrictions apply. 



COVER FE ATURE

computer 44

under the unit cost model. The NP cost model achieves 
the same score while reading just 1,500 posts. Thus, opti-
mizing the benefit:cost ratio leads to drastically improved 
performance. 

Interestingly, the solutions obtained under the NP 
cost model are very different from the unit cost model. 
Rather than picking large blogs that capture many stories, 
under the NP model, the algorithm discovered the notion 
of summarizer blogs (for example, themodulator.org or 
watcherofweasels.com); these bloggers navigate the blogo-
sphere and discover and talk about stories that eventually 
become big. Blogs selected under NP cost appear about 
three days later in the cascade than those selected under 
unit cost, which further suggests that summarizer blogs 
tend to be chosen under the NP model. 

Although picking good blogs is important, there may not 
be a single blog, or even a small set of blogs, covering your 
personal interests. To address this issue, we can reverse 
our information management goal. Rather than selecting 
blogs, we can find a principled approach for picking a set 
of posts that best covers the important stories in the blogo-
sphere. This task can also be formalized as a submodular 
optimization problem.10 As an example, here is the set of 
posts that our algorithm selects out of the 200,000 posts 
in an eight-hour period on 18 January 2009 if our budget 
k is set to five: 

 1. Israel unilaterally halts fire as rockets persist 
 2. Downed jet lifted from ice-laden Hudson River 
 3. Israeli-trained Gaza doctor loses three daughters and 

niece to IDF tank shell 
 4. EU wary as Russia and Ukraine reach gas deal 
 5. Obama’s first day as president: prayers, war council, 

economists, White House reception 

be lost by being late since the story was insignificant in 
the first place. 

More formally, if we recommend a set A of blogs, the 
resulting value F(A) is given by Equation 2, where M

ib
 is 

the number of postings on cascade i that are dated later 
than the time blog b first appears in this cascade. Thus, 
both this objective and the objective for water distribution 
systems are submodular functions and amenable to the 
same algorithms. 

To demonstrate our algorithms in practice, consider 
a blog dataset from 2006, with 45,000 blogs, 10.5 mil-
lion posts, and 16.2 million links (30 Gbytes of data).9 In 
this dataset, we discovered 17,589 significant cascades, 
where each blog participated in 9.4 different cascades on 
average. As Figure 5a shows, the CELF algorithm greatly 
outperforms several other heuristic selection techniques. 
The best runner-up, performing about 45 percent worse 
than CELF, picks blogs by the number of in- or out-links 
from or to other blogs in the dataset, which is the type of 
heuristic many blog search websites use. 

The results presented so far assume that every blog 
has the same cost. Under this unit cost model, the algo-
rithm tends to pick large, influential blogs that have many 
posts. For example, instapundit.com is the best blog, but 
it has 4,593 posts. The top 10 blogs had more than 21,000 
posts in 2006. Under the unit cost model, large blogs are 
important, but reading a blog with many posts is very time-
consuming. This motivates the number of posts (NP) cost 
model, where we set the cost of a blog to the number of 
posts it had in 2006. 

Comparing the NP cost model with the unit cost in Figure 
5b, we note that under the unit cost model, CELF chooses 
expensive blogs with many posts. For example, obtaining 
the same objective value requires reading 10,710 posts 
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Figure 5. Performance of CELF algorithm on blog selection problem: (a) CELF outperforms heuristics; (b) cost-benefit 
optimization. 
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The selected five posts all cover the most prevalent stories 
from this particular day. 

But the most prevalent stories may not be the ones that 
are important to you. Since people have varied interests, 
the ideal coverage algorithm should incorporate user pref-
erences to tailor the selected posts to individual tastes. 

For this task, we must learn a personalized coverage 
function for the blogosphere through user interaction—for 
example, from users labeling posts they would like to read or 
not read, or by what posts the user clicked on.10 As an exam-
ple, Figure 6a illustrates the important words being discussed 
in the blogosphere on 21 January 2009, while Figure 6b shows 
the important words for the articles the algorithm picks for 
a user who is very interested in sports. Such a personal-
ization problem exemplifies problems where, rather than 
being given a submodular function, we need to address the 
problem of learning a submodular function from data. Here 
again we were able to exploit this mathematical structure to 
develop an algorithm with strong theoretical guarantees that 
performs very well over these huge datasets. 

O
ur society is drowning in information: The 
Internet allows us to access virtually every 
bit of information available to humanity at 
any given time and at virtually no cost. The 
ubiquitous availability of sensors allows mon-

itoring of the physical world in an unprecedented manner. 
This development presents exciting new opportunities for 
the advancement of science and society. However, this 
explosion in availability of information also creates the 
fundamental challenge of developing new techniques for 
extracting the most useful information. We believe that 
the algorithms we describe present an interesting step in 
this direction. 
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Figure 6. Important words in blog postings on 21 January 2009 (a) before and (b) after personalization. These figures were 
generated using wordle.net. 
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