
Dark matter in the Solar System. I. The distribution function of WIMPs
at the Earth from solar capture

Annika H.G. Peter*

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
and California Institute of Technology, Mail Code 105-24, Pasadena, California 91125, USA

(Received 8 February 2009; published 28 May 2009)

The next generation of dark matter (DM) direct detection experiments and neutrino telescopes will

probe large swaths of dark matter parameter space. In order to interpret the signals in these experiments, it

is necessary to have good models of both the halo DM streaming through the Solar System and the

population of DM bound to the Solar System. In this paper, the first in a series of three on DM in the Solar

System, we present simulations of orbits of DM bound to the Solar System by solar capture in a toy solar

system consisting of only the Sun and Jupiter, assuming that DM consists of a single species of weakly

interacting massive particle (WIMP). We describe how the size of the bound WIMP population depends

on the WIMP mass m�, spin-independent cross section �SI
p , and spin-dependent cross section �SD

p . Using

a standard description of the Galactic DM halo, we find that the maximum enhancement to the direct

detection event rate, consistent with current experimental constraints on the WIMP-nucleon cross section,

is <1% relative to the event rate from halo WIMPs, while the event rate from neutrinos from WIMP

annihilation in the center of the Earth is unlikely to meet the threshold of next-generation, km3-sized

(IceCube, KM3NeT) neutrino telescopes.

DOI: 10.1103/PhysRevD.79.103531 PACS numbers: 95.35.+d, 95.85.Ry, 96.25.De, 96.60.Vg

I. INTRODUCTION

A. Dark matter and detection

There is overwhelming evidence that nonbaryonic dark
matter (DM) must exist in large quantities in the Universe,
yet its nature is unknown. A popular candidate for DM is
one or more species of weakly interacting massive particle
(WIMP). Particles of this type occur naturally in many
theories of physics beyond the standard model (SM); ex-
amples include the neutralino � in supersymmetry [1], the

lightest Kaluza-Klein photon Bð1Þ in universal extra-
dimension (UED) theories [2–4], or the heavy photon AH

in Little Higgs models [5–7]. These particular candidates
are all stable, self-annihilating, behave as cold dark matter,
and are thermally produced in the early universe in roughly
the amount needed to explain the dark matter [8].

We may expect rapid progress in constraining the nature
of DM due to the maturity of a number of technologies
targeting different but complementary WIMP signals. The
next generation of particle colliders, in particular, the
Large Hadron Collider, may see signatures of physics
beyond the SM. A new generation of satellites is searching
for photons (e.g., the Fermi Gamma-Ray Space Telescope
[9,10]) and other particles (e.g., ATIC [11], PAMELA [12])
resulting from WIMP annihilations in the Milky Way’s
DM halo.

There are also experiments to probe the local WIMP
population. Since the flux of particles from WIMP annihi-
lation scales as the square of the WIMP density, any region

in the Solar System that has an unusually high density of
WIMPs is a good target. WIMPs generically interact
with baryons, which means that WIMPs passing through
the Solar System may be trapped and settle into dense
cores in the potential wells of the Sun or the planets.
The previous generation of neutrino telescopes (e.g.,
BAKSAN [13], MACRO [14], Super-Kamiokande [15],
AMANDA [16,17]) places the strongest constraints
on the spin-dependent WIMP-proton cross section �SD

p

( & 10�39 cm2 at m� � 100 GeV) based on flux limits of

neutrinos from WIMP annihilation in the Sun and Earth.
Even if the next generation of neutrino telescopes with
detector volumes approaching 1 km3 (e.g., Antares [18],
IceCube [19], the proposed KM3NeT [20]) do not identify
a WIMP annihilation signature, they are projected to im-
prove constraints on �SD

p by almost 2 orders of magnitude.

The best limits on the spin-dependent WIMP-neutron
�SD

n and spin-independent WIMP-nucleon �SI
p cross sec-

tions come from direct detection experiments. The signa-
ture of WIMPs in these experiments is a small
(� 10 keV� 100 keV) nuclear recoil. The next genera-
tion of direct detection experiments is slated to have target
masses approaching 1000 kg (e.g., DEAP/CLEAN [21],
LUX [22], SuperCDMS [23–25], WARP [26], XENON1T
[27], XMASS [28]) and to be sensitive to cross sections
down to �SI

p � 10�46 cm2, �SD
p � 10�40 cm2, and �SD

n �
10�42 cm2 [29,30].

B. WIMPs in the Solar System

For a given WIMP model, event rates in direct detection
experiments and neutrino telescopes are determined by the*apeter@astro.caltech.edu
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phase space distribution function (DF) of WIMPs in the
Solar System. The fiducial assumption is that the direct
detection event rate andWIMP capture rate in the Earth are
dominated by DM particles from the Galactic halo, passing
through the Solar System on unbound orbits [1,31]. There
are potentially observable consequences if even a tiny
fraction of WIMPs may become captured to the Solar
System, since bound WIMPs have lower speeds than halo
WIMPs. The push for many direct detection experiments
is toward ever-lower nuclear recoil energy thresholds
(� 0:1 keV–1 keV), both in order to gain sensitivity to
low-mass WIMPs and because the event rate is much
higher there than at higher energies [32,33]. At such low
energies, low-speed WIMPs contribute disproportionately
to the event rate for kinematic reasons.

Low-speed WIMPs have an even greater impact on the
event rate of neutrinos from annihilation in the Earth. The
shallowness of the Earth’s potential well means that only
low-speed WIMPs may be captured in the Earth. In par-
ticular, if the WIMP mass is above 400 GeV, only WIMPs
bound to the Solar System may be trapped in the Earth.

Two processes have been identified by which WIMPs
may become captured to the Solar System at rates large
enough to be important for terrestrial dark matter experi-
ments. Gravitational Capture: Gould [34,35] pointed out
that WIMPs may be captured from the halo by gravitation-
ally scattering on the planets. By treating WIMP orbits in
the Solar System as a diffusion problem, Gould [35] and
Lundberg and Edsjö [36] estimated that bound WIMPs
dominate the annihilation rate of WIMPs in the Earth for
WIMP masses * 100 GeV. Solar Capture: WIMPs cap-
tured in the Sun will reach thermal equilibrium with solar
nuclei on time scales t� ��1P, where � is the optical depth
of the Sun forWIMPs and P is the orbital period of a bound
WIMP. However, Damour and Krauss [37] identified a
population of solar-captured WIMPs that could survive
for much longer periods of time due to a type of secular
resonance that pulls their perihelia outside the Sun. Using
secular perturbation theory, they found that this population
could produce a low-recoil direct detection rate compa-
rable to that of halo WIMPs for �SI

p � 10�42–10�40 cm2,

and could yield an annihilation rate in the Earth a factor of
�100 greater than the rate expected from unbound halo
WIMPs for WIMP masses �100–150 GeV [38].

While these results are intriguing, the semianalytic treat-
ments used in these papers cannot fully capture the rich
range of behavior in small-N systems such as the Solar
System. It is important to check these results with numeri-
cal experiments. Moreover, the annihilation rate of WIMPs
in the Sun depends critically on whether WIMPs captured
in the Sun thermalize rapidly with solar nuclei. If the
planets can pull the WIMPs out of the Sun for extended
periods of time, or even eject the particles from the system,
the annihilation rate will be depressed with respect to
current estimates.

In a set of three papers [39,40], we present simulations
of WIMP orbits in the Solar System, including both the
gravitational effects of the dominant planet, Jupiter, and an
accurate Monte Carlo description of WIMP-nucleon elas-
tic scattering in the solar interior, as well as a discussion of
the likely contribution of bound WIMPs to direct detection
experiments and neutrino telescopes. In this paper, Paper I,
we focus on WIMP capture in the Sun. In order to put our
results in context, we first summarize the treatment of
Damour and Krauss [37], and describe the mechanism
they found that extended the lifetimes of solar-captured
WIMPs in the Solar System and built up the DF of WIMPs
at the Earth: the Kozai mechanism.

C. Damour and Krauss (1999) and the Kozai
mechanism

In the absence of gravitational torques from the planets,
WIMPs captured onto Earth-crossing orbits by elastic scat-
tering in the Sun will have a small number density at the
Earth relative to the halo number density for two reasons.
(i) Unless the WIMP is massive (m� * 1 TeV), the char-

acteristic energy a WIMP loses to a solar nucleus is large
enough such that most captured WIMPs have aphelia that
lie inside the Earth’s orbit. (ii) The characteristic time to
the next scatter, which will almost certainly remove the
WIMP from an Earth-crossing orbit unlessm� * 1 TeV, is

of order t / P�=�. For a WIMP with semimajor axis a ¼
1 AU, P� ¼ 1 year. If, for example, �SI

p ¼ 10�41 cm2 (or

�SD
p ¼ 10�39 cm2), �� 10�3, so the WIMP lifetime in the

Solar System is only of order a thousand years, short
compared to the age of the Solar System.
Damour and Krauss [37] recognized that the lifetimes of

bound WIMPs in Earth-crossing orbits could be extended
by orders of magnitude if gravitational torques from the
planets decreased the WIMP eccentricity (increased the
perihelion distance) enough that the WIMP orbit no longer
penetrated the Sun. For WIMPs in planetary systems such
as our own, such behavior is possible if the rate of peri-
helion precession _! is small, since then the torques from
the planets act in a constant direction over many WIMP
orbits. This process was first examined by Kozai [41] in the
context of asteroid orbits and is sometimes called the Kozai
resonance. The signature of this resonance is large fluctua-
tions in both the inclination and eccentricity while the
semimajor axis is fixed. The Kozai resonance can lead to
both libration and circulation in the argument of perihelion
!, and we use the term ‘‘Kozai cycles’’ to describe these
oscillations. Kozai cycles have been studied in the context
of comets [42], asteroids [43,44], triple star systems [45],
and exoplanets [46].
Damour and Krauss found approximate analytic Kozai

solutions for a solar system containing the inner planets
and Jupiter on circular, coplanar orbits. The requirement
that _! is small means that Kozai cycles are only significant
for WIMPs with perihelia that are not too far inside the
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solar radius, so the solar potential is not far from that of a
point-mass. Damour and Krauss use an analytic approxi-
mation to the solar potential in the outer r > 0:55R� of the
Sun, where R� is the radius of the Sun. They expanded the
potentials of the planets to quadrupole order in the small
parameter aP=a, where aP is the semimajor axis of a
planet, and neglected short-period terms and mean-motion
resonances. The solutions have an additional feature—if
the orbital plane of the planets in the solar system is the
x� y plane, the z-component of the specific angular mo-

mentum, Jz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�að1� e2Þp

cosI (I is the inclination)
is a conserved quantity.

To estimate the size of the solar-captured WIMP popu-
lation at the Earth, Damour and Krauss made the following
additional assumptions. (i) Jupiter-crossing WIMPs (with
aphelia greater than Jupiter’s semimajor axis, ra > aJ �
5:2 AU) were ignored, since their lifetimes in the Solar
System were assumed to be short. Similarly, all WIMPs
with ra < aJ that were not on Kozai cycles were also
ignored. (ii) They assumed that all WIMPs on Kozai cycles
would survive for the lifetime of the Solar System without
rescattering in the Sun, regardless of the optical depth in
the Sun for WIMPs. Since the typical lifetime of Earth-
crossing WIMPs is �103 yr for �SI

p � 10�41 cm2, the ex-

tension of the lifetimes of even a few Earth-crossing par-
ticles to the age of the Solar System results in a significant
boost to the DF of bound WIMPs at the Earth.

D. This work

To investigate the validity of these assumptions and to
provide a more accurate assessment of the contribution of
boundWIMPs to direct detection experiments and neutrino
telescopes, we perform a set of numerical simulations of
WIMP orbits in the Solar System. In this paper, Paper I, we
present a suite of simulations of solar-captured WIMP
orbits in a toy solar system consisting only of the Sun
and Jupiter. Jupiter is the only planet included in the
simulations for two reasons. (i) As the largest planet in
the Solar System, it dominates the dynamics of minor
bodies in the system. We address the issue of other planets
in Sec. VII of this paper as well as in later papers. (ii) Since
some of our numerical methods (described in Sec. II) are
new, and since it is important to have a physical under-
standing of the principal mechanisms that determine the
key features of the bound WIMP population, it is useful
to simulate a simple system first. In particular, particle
orbits in our toy solar system enjoy a constant of motion
(Eq. (20)), which provides a check on the numerical accu-
racy of the integrations.

We describe the simulations in Sec. III, and the DFs
derived from the simulations in Sec. IV. Also in Sec. IV, we
show how the DFs depend on the WIMP mass and cross
section m�, �

SI
p , and �

SD
p . Predictions for the event rates in

direct detection experiments and neutrino telescopes are
made in Secs. V and VI. We discuss our results in the

context of the previous work on solar-captured WIMPs
by Damour and Krauss [37] and Bergström et al. [38],
the presence of other planets, and the assumptions con-
cerning the halo DF in Sec. VII, and summarize the main
results of this work in Sec. VIII.
We defer the topic of annihilation of WIMPs in the Sun

to Paper II [39], and the simulations of gravitationally
captured WIMPs to Paper III [40].

II. ORBIT INTEGRATION

The problem of determining the long-term trajectories of
bound dark matter particles imposes a set of difficult
challenges to the integration algorithm. The algorithm
must (i) be stable and accurate over 4.5 Gyr;
(ii) accurately follow highly eccentric (e > 0:995) orbits
with no numerical dissipation; (iii) accurately integrate
trajectories that are influenced by perturbing forces that
may be comparable to the force from the Sun for short
intervals (including close encounters with and passages
through planets); and (iv) be fast, in order to obtain an
adequate statistical sample of orbits.
Much progress has been made in the past 15 years to

address the first and last criteria. This progress has largely
been motivated by interest in the long-term stability of
planetary systems. The most significant development has
been the advent of geometric integrators (symplectic and/
or time-reversible integrators), which have the desirable
property that errors in conserved quantities (such as the
Hamiltonian) are oscillatory rather than growing. How-
ever, the most commonly used algorithms [47–49] are
not immediately applicable to the present problem, for
two main reasons. First, one would like to use an adaptive
time step to quickly but accurately integrate a highly
eccentric orbit (using very small time steps near perihelion
and larger ones otherwise), or to resolve close encounters
with the planets. It is difficult to introduce an adaptive time
step in a symplectic or time-reversible way since varying
the time step by criteria that depend on phase space posi-
tion destroys symplecticity. Second, since for practical
purposes the integrations of planetary or comet orbits end
when two bodies collide, there has been little attention to
integrating systems for which the potential can deviate
significantly from the Keplerian point-mass potential, as
it does in the solar interior.
In the following sections, we describe an algorithm to

efficiently carry out the long-term integration of dark
matter particles in the Solar System. In Sec. II A, we out-
line an adaptive time step symplectic integrator (simulta-
neously formulated by Preto and Tremaine [50] and
Mikkola and Tanikawa [51]) that is used for most of the
orbital integrations. We explain the error properties of the
integrator in Sec. II B. In Sec. II C, we discuss procedures
to handle special cases, such as close planetary encounters.
We discuss the merits of various coordinate systems in
Sec. II D.
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A. The adaptive time step integrator

We closely follow the arguments of Mikkola and
Tanikawa [51] and Preto and Tremaine [50] in the descrip-
tion of the adaptive time step symplectic integrator.

A separable HamiltonianHðq;p; tÞ ¼ TðpÞ þUðq; tÞ (T
is the kinetic energy and U is the potential energy), a
function of the canonical position q and momentum p,
can be implemented as a symplectic integrator with fixed
time step �t. The key to finding a symplectic integrator
with a variable time step is to promote the time t to a
canonical variable, and make it a function of a new ‘‘time’’
coordinate s,

dt ¼ gðq;p; tÞds; (1)

find a separable Hamiltonian � in the extended phase space
that describes the motion, and take fixed time steps �s
when integrating the new equations of motion. The new
canonical coordinates are q0 ¼ t and p0 ¼ �H, so the new
set of canonical variables is Q ¼ ðq0;qÞ and P ¼ ðp0;pÞ.
Preto and Tremaine and Mikkola and Tanikawa find such
an extended phase space Hamiltonian,

�ðQ;PÞ ¼ gðQ;PÞ½Hðq;p; tÞ � p0�; (2)

which can be made separable with the choice

gðQ;PÞ ¼ fðTðpÞ þ p0Þ � fð�UðQÞÞ
TðpÞ þUðQÞ þ p0

; (3)

so that the extended Hamiltonian is

�ðQ;PÞ ¼ fðTðpÞ þ p0Þ � fð�UðQÞÞ: (4)

The equations of motion for this Hamiltonian are

dq0
ds

¼ f0ðTðpÞ þ p0Þ (5)

dq

ds
¼ f0ðTðpÞ þ p0Þ@T@p (6)

dp0

ds
¼ �f0ð�UðQÞ@UðQÞ

@q0
(7)

dp

ds
¼ �f0ð�UðQÞ@UðQÞ

@q
: (8)

To determine a useful choice for fðxÞ, Preto and Tremaine
expand Eq. (3) in a Taylor series about the small parameter
T þ p0 þU ( ¼ 0 if the Hamiltonian is exactly conserved)
to show that

gðQ;PÞ � f0ð�UðQÞÞ: (9)

Outside the Sun, the gravitational potential of the Solar
System is

Uðq; tÞ ¼ � GM�
jq� q�j þ

X
i

�iðq;qiÞ; (10)

where the first term in the potential denotes the Keplerian
potential of the Sun and �i is the potential from planet i,
and the potential from the Sun dominates most of the time.
Preto and Tremaine show that for a choice of

gðQ;PÞ ¼ jq� q�j (11)

� � GM�
Uðq; tÞ (12)

the two-body problem can be solved exactly, with only a
time (phase) error �t=P / N�2, where P is the orbital
period and N is the number of steps per orbit. This is a
good feature because phase errors are far less important for
our purposes than, for example, systematic energy drifts or
numerical precession. Note that the time step is propor-
tional to the particle’s separation from the Sun, so that
small time steps are taken near the perihelion of the orbit
and large steps near the aphelion. We use Eq. (11) as our
choice for gðQ;PÞ, for which the functional form of fðxÞ is

fðxÞ ¼ GM� logðxÞ: (13)

The adaptive time step equations of motion are imple-
mented via a second-order leapfrog integrator (also called
a Verlet integrator) with �s ’ �t=g ¼ h, where h is de-
termined by the number of steps desired per orbit. Since the
goal is to understand the behavior of a large ensemble of
orbits, we are more interested in maintaining small energy
errors over long times rather than precisely integrating
orbits over short times, and so a second-order symplectic
integrator is sufficient. For our choice of fðxÞ, and given
T ¼ v2=2 and U ¼ Uðr; tÞ, the change over a single ficti-
tious time step h can be written as the mapping

r 1=2 ¼ r0 þ 1

2
h

GM�v0
1
2v

2
0 þ p0;0

(14)

t1=2 ¼ t0 þ 1

2
h

GM�
1
2v

2
0 þ p0;0

(15)

v 1 ¼ v0 þ h
GM�

Uðr1=2; t1=2Þ
@Uðr1=2; t1=2Þ

@r
(16)

p0;1 ¼ p0;0 þ h
GM�

Uðr1=2; t1=2Þ
@Uðr1=2; t1=2Þ

@t
(17)

r 1 ¼ r1=2 þ 1

2
h

GM�v1
1
2v

2
1 þ p0;1

(18)

t1 ¼ t1=2 þ 1

2
h

GM�
1
2v

2
1 þ p0;1

; (19)

where the subscript i ¼ 0, 1=2, 1 labels what fraction of the
total time step h has been taken.
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B. Errors along the path

We explore the behavior of the energy errors in the
adaptive time step integrator as a function of energy,
eccentricity, distance from the Sun, and number of steps
per orbit. This study allows us, in conjunction with the
results of Sec. II C 2, to determine which fictitious time
step h to use to meet accuracy requirements. The choice of
h for the simulations is described in Sec. III D. For the
current study, we use short integrations in order to focus on
the errors of the adaptive time step integrator alone. We
will discuss the long-term behavior of the whole integra-
tion scheme after we discuss the other pieces of our
algorithm.

Since our toy solar system (Sunþ JupiterþWIMP) is a
restricted three-body problem, there is one constant of
motion, the Jacobi constant

CJ ¼ �2ðE� nJJzÞ; (20)

where E is the particle energy in an inertial frame, nJ is the
mean-motion of Jupiter, and Jz is the z-component of the
particle’s angular momentum, assuming that the motions
of the Sun and Jupiter are confined to the x� y plane.
Therefore, we can parametrize errors in terms of the Jacobi
constant. There are no analogous conserved quantities for
particles orbiting in planetary systems with more than one
planet or if the planetary orbit is eccentric. In those sys-
tems, one can quantify errors for integrators of the type
described in Sec. II A in terms of the relative energy error
�E=E ¼ ðEþ p0Þ=E, where E is determined by the in-
stantaneous position and velocity of the particle and p0 is
the 0-component of the momentum in the extended phase
space. If the equations of motion (5)–(8) were integrated
with no error, then p0 ¼ �E and �E=E ¼ 0.

In this section, we treat the Sun as a point-mass, and
consider trajectories with aphelia well inside Jupiter’s
orbit. We consider two different initial semimajor axes,
a ¼ aJ=3 and a ¼ aJ=6 respectively, where aJ is the semi-
major axis of Jupiter. To determine the size of the errors in
CJ as a function of eccentricity, we integrate orbits with
initial eccentricity e ¼ 0:9, 0.99, 0.999, and 0.9999. We
perform integrations for each combination of a and e for 10
different initial, random orientations and an ensemble of
step sizes. We run each integration for a total of 2� 104

Kepler periods. The integrations are started at perihelion
(to mimic the initial conditions of scattering in the Sun)
with a very small h ¼ 10�8R�1� year. We use such a small
time step because the magnitude of the errors in the inte-
grator are largest if the integration is started at pericenter,
and smallest when started at apocenter. Once the particle
reaches its first aphelion, h is adjusted so that it will
provide the desired number of steps per orbit. The fictitious
time step is related to the number of steps per orbit by the
step in the eccentric anomaly �u and semimajor axis a by

h ¼ 2
1� cos�u

ðGM�=aÞ1=2 sin�u
; (21)

for the symplectic mapping of Eqs. (14)–(19) in the case of
the Kepler two-body problem. The number of steps per
orbit is given by

N ¼ 2�

�u
: (22)

We show the dependence of the error on the distance
from the Sun in Fig. 1. In this figure, we plot the perihelion
and aphelion Jacobi constant errors for a trajectory with
initial a ¼ aJ=3 and e ¼ 0:999, integrated with 500 steps/
orbit, representative of all the simulations. We plot only
errors at perihelion and aphelion for clarity; a plot showing
errors at each time step would be similar but with more
scatter. The interior of the Sun is in the shaded region
(though the integrations were done for a point-mass Sun).
From Fig. 1, it appears that

j�CJ=CJj / r�1: (23)

This is a generic feature of the integrator, and implies that
the maximum Jacobi constant or energy error occurs at
perihelion. The errors are oscillatory, i.e., there is no
secular growth in the error envelope with time.

FIG. 1 (color online). Jacobi constant errors as a function of
distance from the primary for a trajectory with a ¼ 1:73 AU,
followed for 2� 104 Kepler periods. This trajectory was inte-
grated with 500 steps/orbit. Errors are calculated at perihelion
and aphelion. Points to the left of the vertical line lie within the
volume of the Sun; however, we used a point-mass Sun for this
integration.
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In Fig. 2, we show the maximum Jacobi constant error as
a function of initial semimajor axis ai and eccentricity ei.
To find the maximum error, we calculate the error in the
Jacobi constant every time e is in the range ei � 0:1ð1�
eiÞ. The restriction on e isolates the effect of eccentricity
on j�CJ=CJj, since Fig. 1 demonstrates that the maximum
error in a simulation depends on the largest eccentricity in
the orbit. We then plot the maximum error found among all
simulations for the same initial ai and ei. For each type of
simulation, the maximum error occurs at perihelion.
Figure 2 indicates that the maximum Jacobi constant error
is a decreasing function of the number of steps per orbit,
and an increasing function of semimajor axis and eccen-
tricity. Furthermore, the maximum error for e 2
ei � 0:1ð1� eiÞ within each simulation is a function of
the initial conditions. In the simulations with fixed eccen-
tricity and a ¼ aJ=6, the spread in these central values is
less than a factor of 2, while the spread is about a factor of
10 in the a ¼ aJ=3 simulations. This is described more in
[52].

To set the fictitious time step h for the simulations de-
tailed in Sec. III D, it is preferable to consider errors at a
fixed, small distance from the Sun rather than exclusively
at perihelion. This is because we use a mapping technique
to follow perihelion passages where rp � 2R�. Therefore,
we want to impose a maximum Jacobi constant (or energy)

error for the simulations at r ¼ 2R�. However, we also
want to optimize h such that passages near planets can be
integrated accurately with the least overall CPU time. A
full discussion about which values of h are used for the
main set of simulations in this work will be deferred to
Sec. III D, after we discuss close encounters with Jupiter in
Sec. II C 2.

C. Special cases

While we would like to use this adaptive time step
integrator as much as possible, keeping the fictitious step
h fixed, there are two situations which must be handled
separately.

1. The Sun

The interior of the Sun has a potential that deviates
strongly from the Keplerian. The integrator described in
Sec. II Aworks badly inside the Sun because it is designed
for nearly Keplerian potentials. Thus, we replace the in-
tegration through the Sun by a map. We exploit the fact that
tidal forces from the planets are small near the Sun. Since
the two-body problem can be solved exactly, we can define
a region about the Sun (called a ‘‘bubble,’’ with a typical
radius of 0.1 AU) for which we use the exact solutions to
the two-body problem. In reality, we create a map for the
bubble but only use it if the orbital perihelion lies within
r ¼ 2R�. The bubble wall is larger than 2R� so that a
particle does not accidentally step into the Sun when step-
ping into the bubble. In the WIMP orbital plane, we map
the incoming position and velocity to the outgoing position
and velocity using look-up tables for

�tða; eÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
GM�

p

�
Z rb

rpða;eÞ
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½� 1
2a � ~��ðrÞ� � að1� e2Þ=r2

q
(24)

and

��ða;eÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aðe2 � 1Þ

q
�
Z rb

rpða;eÞ
dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½� 1

2a� ~��ðrÞ�� að1� e2Þ=r2
q ;

(25)

which are the time �t and phase �� through which the
particle passes in the bubble region. By convention, a is
always positive, such that E ¼ GM�=2a for hyperbolic
orbits and E ¼ �GM�=2a for eccentric orbits. The þ=�
signs in Eqs. (24) and (25) correspond to hyperbolic (e >
1) and elliptical orbits (e < 1), respectively. We have nor-

malized the solar potential ~�� ¼ ��=GM�. Note that rb
is the bubble radius and rp is the true perihelion, defined by

FIG. 2. Errors in the Jacobi constant as a function of eccen-
tricity and semimajor axis. Each point shows the maximum error
for 10 trajectories initialized with the same eccentricity but with
random initial orientation, and followed for 2� 104 Kepler
orbits. Open points denote those trajectories for which the semi-
major axis a ¼ aJ=3 ¼ 1:73 AU; closed points refer to trajecto-
ries with a ¼ aJ=6 ¼ 0:87 AU. Circles mark trajectories with
initial eccentricity ei ¼ 0:9999, squares denote those with ei ¼
0:999, diamonds indicate those with ei ¼ 0:99, and triangles
those with ei ¼ 0:9.
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dr

dt

��������rp

¼ 0 (26)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
� 1

2a
� ~��ðrpÞ

�
� að1� e2Þ=r2p

s
: (27)

We parametrize the look-up tables in terms of the semi-
major axis and Keplerian perihelion rK ¼ jað1� eÞj.

There is one subtlety in matching the map through the
bubble to the integrator outside of bubble. In the Keplerian
two-body problem, one solves the equations of motion
dp=dt and dq=dt instead of dp=ds and dq=ds. If one
divides dq=ds and dp=ds by the differential equation for
the time coordinate, the time-transformed equations of
motion are

dq

dt

���������
¼ dq=ds

dt=ds
(28)

¼ f0ðT þ p0ÞdT=dp
f0ðT þ p0Þ (29)

¼ p (30)

dp

dt

���������
¼ dp=ds

dt=ds
(31)

¼ � f0ð�UÞ@U=@q

f0ðT þ p0Þ (32)

¼ � f0ð�UÞ
f0ðT þ p0Þ

@U

@q
: (33)

The second of these differs from the equations of motion of
the original Hamiltonian H by a multiplicative factor

� ¼ f0ð�UÞ=f0ðT þ p0Þ; (34)

in other words, the particle follows a Kepler orbit about a
Sun of mass �M�. Therefore, we calculate the orbital
elements using

a ¼
�������� p0

2�GM�

�������� (35)

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J2=ð�GM�aÞ

q
; (36)

where the upper (lower) sign should be used for hyperbolic
(elliptical) orbits. We use a look-up table for �t and ��
with the modification that�t, as calculated for a and ewith

� ¼ 1, must be multiplied by a factor of ��1=2. The

change in phase is unaffected by the choice of central
mass since it is a purely geometric quantity.
Similar look-up tables are also used to determine the

perihelion rp and the optical depth as a function of semi-

major axis and eccentricity. We discuss additional scatter-
ing in the Sun in Appendix B.
We demonstrate the robustness of the map in the upper

left panel of Fig. 3, where we show errors in the Jacobi
constant over a 500 Myr time span for an orbit with a �
1:54 AU. The orbit enters the Sun� 107 times in this time
span. We sample the orbit at the first aphelion after a 105 yr
interval from the previous sample, and there are approxi-
mately 100 steps/orbit. This figure shows that there are
only oscillatory errors throughout this long-term integra-
tion, and these fractional errors never exceed 10�6 at
aphelion. Long-term integrations of the two-body problem
using the map demonstrate energy errors only at the level
of machine precision.

2. The planets

While the adaptive time step integrator works well in a
near-Keplerian potential, one must treat close encounters
with planets more carefully. If the time step is too large
near a planet, the particle fails to resolve the force from the
planet. This can cause growing errors in the particle’s
trajectory. Since we use an fðxÞ that is optimized to the
potential of the Sun, the only way to achieve a small time
step near each planet is to either make the fictitious time
step h small or to switch to a different integration method
near each planet while using the method of Sec. II Awith a
reasonably large h for the rest of the orbit. The advantage
of the former approach is that it does not break the sym-
plectic nature of the integrator. However, it is also prohibi-
tively computationally expensive. Therefore, we use the
latter approach.
We define a spherical region (‘‘bubble’’) about each

planet for which we allow a different integration scheme,
while continuing to use the adaptive time step symplectic
integrator (Sec. II A) outside the spheres. The transition
between the integration schemes is not symplectic, but
reduces errors in the integration by enforcing an accuracy
requirement on j�E=Ej ¼ jðp0 þ EÞ=Ej ¼ jð�H þ
EÞ=Ej in the bubble of each planet.
In the bubble of each planet, we continue to use the

adaptive time step integrator, but the value of h0 (the prime
denotes the fact that this fictitious time step is only used
within a planet bubble) used in the bubble is selected to
keep the quantity j�E=Ej as small as possible while also
keeping the total integration time short. To find the optimal
value of h0, we use the following algorithm. When a
particle first enters a bubble, we record the particle’s
energy error at the first step, j�Ei=Eij. Then, we integrate
the particle’s trajectory through the bubble using the de-
fault value of h. As the particle is about to exit the bubble,
we calculate the energy error j�Ef=Efj. If the energy error
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meets the accuracy criterion, or if it is less than j�Ei=Eij,
then the integration is allowed to continue normally. If,
however, j�Ef=Efj does not satisfy the accuracy criterion,
we restart the integration in the bubble from the point at
which the particle first entered with a smaller fictitious
time step h0. This process iterates until either the energy
accuracy condition is satisfied or the energy error plateaus
in value. If the energy error plateaus in value, whichever
trajectory (corresponding to a particular choice of h0) has
the minimum j�Ef=Efj is chosen.

The choice of the bubble size lJ is related to the choice of
fiducial value of h and to the mass of the planet. A larger
value of h means that the bubble needs to be larger to

ensure that the planet’s gravitational potential is properly
resolved. Planets with larger masses will require larger
bubbles than smaller planets. We choose to keep the bubble
size fixed for all orbits. In general, we tune h so that the
typical energy errors for all energies are similar near each
planet, and to keep the error in the Jacobi constant small
j�CJ=CJj< 10�4 at r ¼ 2R�. The optimum sizes of the
Jupiter bubble is l� 1–3 AU if we require that
j�Ef=Efj � 10�7–10�6.

A complication arises when particles experience large
changes in energy in their passage through the planetary
bubble. In this case, the value of h that guaranteed a certain
precision in j�E=Ej in the pre-encounter orbit may be

FIG. 3 (color online). Error in the Jacobi constant as a function of time for several particles. The Jacobi constant is recorded at
aphelion at 105 yr intervals. Top left: A particle with a ¼ 1:54 AU. This particle repeatedly goes through the Sun (about 107 times),
but never goes through the bubble around Jupiter. It is integrated with h ¼ 6� 10�5R�1� yr, which corresponds to � 100 steps=orbit.
Top right: A particle that gets stuck near a Sun-skimming 2:1 resonance with Jupiter. This particle repeatedly goes through the Jupiter
bubble. It is integrated with h ¼ 2� 10�5R�1� yr, or � 350 steps=orbit. Bottom left: A particle gets stuck near a 3:2 resonance with
Jupiter. This orbit was integrated with h ¼ 1:5� 10�5R�1� yr, or� 650 steps=orbit. Bottom right: This particle repeatedly crosses rc,
the transition radius between barycentric and heliocentric coordinates (dashed line marks rc=2, the crossing semimajor axis for an orbit
with e� 1) and has its last aphelion before ejection from the solar system at t ¼ 1:6� 106 years. It is integrated with h ¼
2� 10�6R�1� yr, or 9� 103 steps=orbit.
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either too large (for adequate precision) or too small (it will
slow down the orbital integration). Therefore, we change
the value of h at the next aphelion. Again, this procedure
breaks the symplectic nature of the integrator, but by
changing h at aphelion, our experiments show that we
minimize errors. In Sec. III D, we outline how h is chosen
for the initial orbits, and how h is changed if the particle
experiences significant changes in energy from planetary
encounters.

We demonstrate the performance of the bubble for the
case of the three-body problem in Fig. 3. In this figure, the
fractional error of the Jacobi constant is plotted against the
time since the initial scatter in the Sun that produced a
bound orbit, and we show the first 500 Myr of the integra-
tions. The Jacobi constant is measured at the aphelion of
the orbit at 105 year intervals. The trajectories of the
particles in the upper right and bottom panels repeatedly
pass through the bubble around Jupiter. For these integra-
tions, lJ ¼ 2:3 AU, and the energy criterion was
j�Ef=Efj< 2� 10�7. There are no secular changes of

the Jacobi constant with time. Therefore, even though the
planet bubble disrupts the symplecticity of the integrator,
the integrator tracks the Hamiltonian well.

D. Coordinate choice

For most of the integration, we use a heliocentric coor-
dinate system for both the particles and the planets. There
are two main reasons why we choose a heliocentric system.
First, it is much simpler to use heliocentric coordinates for
passages through the Sun. Second, consider the gravita-
tional potential of the planets in the heliocentric frame,

�ðrÞP ¼ �dðrÞ þ�iðrÞ (37)

¼ �X
P

GMP

jr� rPj þ
X
P

GMPr 	 rP
x3P

; (38)

where the indirect term (i) arises from the fact that this
coordinate system is not the center-of-mass coordinate
system, and d denotes the direct term. For orbits that are
well within a planet’s orbit, the direct term can be ex-
panded into spherical harmonics

�dðrÞ ¼
X
P

GMP

jr� rPj (39)

¼ X
P

�
�GMP

rP
�GMP

r3P
r 	 rP �GMP

rP

� X1
l¼2

�
r

rP

�
l
Pl

�
r 	 rP
rrP

��
; (40)

where the Pl are Legendre polynomials. The dipole term of
the direct potential is canceled by the indirect potential.
Therefore, the primary contributor to the force on the
particle by the planet comes from the l ¼ 2 tidal term of

the potential, whereas the l ¼ 1 term is dominant in the
barycentric frame.
While there are distinct advantages to using the helio-

centric frame, the indirect term of the potential dominates
the potential at large distances from the Sun. This poses a
problem for the adaptive time step integrator, since the
choice of g ¼ �GM�=U ¼ jr� r�j is only optimal if the
Keplerian solar potential is dominant. Therefore, we
choose to work in the barycentric frame at large distances.
In practice, this means switching between heliocentric

and barycentric coordinate systems for long-period orbits.
We choose the crossover radius such that

maxj�i;Pðrc; �P ¼ 0Þj ¼ 	
GM�
rc

; (41)

where �P is the angle between r and rP, rc is the crossover
radius, the ‘‘max’’ signifies the planet for the planet P for
which the indirect potential is strongest, and 	 is a factor
& 1. In our Solar System, the planet for which the indirect
potential is strongest is Jupiter. The choice of 	 � 0:1
works well. The crossover radius is thus

MJrc
a2J

¼ 	
M�
rc

; (42)

or

rc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	M�=MJ

q
aJ: (43)

In changing coordinates, one breaks the symplectic flow of
the integrator. Therefore, one must treat the Hamiltonian,
and therefore p0, carefully at the crossover. We choose to
treat the transition the same way we treat the transition
into the bubble about the Sun. Namely, we calculate �
(Eq. (34)), the factor by which the gravitational potential is
modified in the integrator (see Eq. (33)), in the initial
coordinate frame i. Then we set

p0jf ¼ ��iEðr; tÞjf; (44)

where quantities calculated in the final frame are denoted
by f, and E is the energy derived from the position and
velocity coordinates of the particle. While this transition is
not symplectic, in practice it conserves the Jacobi constant
to adequate precision. This is demonstrated in the lower
left panel in Fig. 3, an orbit for which the initial semimajor
axis is 50 AU. In this integration, 	 ¼ 0:1, which translates
to rc ¼ 53 AU.

III. SIMULATIONS

A. Dark matter model

In order to perform the orbit simulations, it is necessary
to specify some dark matter properties. The particle mass
and elastic scattering cross sections completely determine
scattering properties in the Sun, and hence, these are the
only WIMP-dependent parameters necessary to run the
simulations and find the WIMP distribution function at
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the Earth. The particle physics model and parameter space
within each model do not need to be specified for the
simulations, although we assume that the dark matter
particle is a neutralino when we estimate event rates in
neutrino telescopes in Sec. VI. Thus, we use m� to denote

the WIMP mass.
The relative strengths of the spin-dependent and spin-

independent elastic scattering cross sections are important
in the context of scattering in both the Sun and the Earth.
For simplicity in interpreting the simulations, we would
like to use either a spin-independent or spin-dependent
cross section, but not a mixture of the two. We choose to
focus on the spin-independent cross section for the simu-
lations, but in Sec. IVD, we show how to extend our results
to the case of nonzero spin-dependent interactions. In
Sec. III D, we discuss the specific choices for the WIMP
mass and �SI

p used in the simulations.

We adopt the Maxwellian distribution function

fhðx; vÞ ¼
n�

ð2��2Þ e
�v2=2�2

(45)

to describe the dark matter distribution function in the solar
neighborhood in Galactocentric coordinates and far out-
side the gravitational sphere of influence of the Sun. Here,
� is the one-dimensional dark matter velocity dispersion,

set to � ¼ v�=
ffiffiffi
2

p
. We set the speed of the Sun around the

Galactic center to be v� ¼ 220 km=s, for which the ob-
servational uncertainty is about 10% [53,54]. The WIMP
number density is n� ¼ 
�=m�. We assume that the dark

matter density is smooth and time-independent in the
neighborhood of the Sun, and that 
� ¼ 0:3 GeV cm�3.

Even if the dark matter were somewhat lumpy, the results
of the simulations will still be valid if 
� is interpreted as

the average density in the solar neighborhood [55].
Transforming to the heliocentric frame via a velocity

transformation vs ¼ v� v�,

fsðx; vsÞd3xd3vs ¼ fhðx; vs þ v�Þd3xd3vs; (46)

where the subscript s refers to quantities measured in the
heliocentric frame. This distribution is anisotropic with
respect to the plane of the Solar System (the ecliptic).
The direction of the anisotropy with respect to the ecliptic
depends on the phase of the Sun’s orbit about the Galactic
center. In order to avoid choosing a specific direction for
the anisotropy (i.e., to avoid choosing to start our simula-
tions at a particular phase of the Sun’s motion about the
Galactic center), we angle-average this anisotropic distri-
bution function to obtain an isotropic DF of the form

�fsðx; vsÞ ¼ 1

4�

Z
fsðx; vsÞd� (47)

¼ 1

2ð2�Þ3=2
n�

�v�vs

� ½e�ðvs�v�Þ2=2�2 � e�ðvsþv�Þ2=2�2�: (48)

Using the angle-averaged DF is approximately valid for
two reasons: (i) Scattering in the Sun is isotropic, so any
bound WIMPs produced by elastic scattering will initially
be isotropically distributed. (ii) The time-averaged distri-
bution function (averaged over the Sun’s � 200 Myr orbit
about the Galactic center) only has a small anisotropic
component [34], a consequence of the large (60
) inclina-
tion of the ecliptic pole with respect to the rotation axis of
the Galaxy. If the flux at the Earth is dominated by particles
whose lifetime in the Solar System is greater than the
period of the Sun’s motion about the Galactic center, the
use of time-averaged distribution function is appropriate.
We use Liouville’s theorem to find the halo DF for an

arbitrary point in the Sun’s potential well. Neglecting the
gravitational potential of the planets and the extremely rare
interactions between dark matter particles, each particle’s
energy E is conserved:

E ¼ 1

2
v2
s (49)

¼ 1

2
v2 þ��ðrÞ; (50)

where v is the speed of particle with respect to and in the
gravitational sphere of influence of the Sun, and ��ðrÞ is
the gravitational potential of the Sun (�� ¼ �GM�=r for
r > R�, where R� represents the surface of the Sun). Thus,
the DF within the Sun’s potential well is

fðr; vÞ ¼ �fsðr; vsðr; vÞÞ; (51)

vsðr; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��ðrÞ þ v2

q
: (52)

An important consequence of this result is that the distri-

bution function is identically zero for local velocities v <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2��ðrÞ
p ¼ vescðrÞ below the escape velocity at that
distance.

B. Astrophysics assumptions

The Sun: The Sun is modeled as spherical and nonrotat-
ing. The gravitational potential and chemical composition
are described by the BS(OP) solar model [56]. We include
the elements 1H, 4He, 12C, 14Ni, 16O, 20Ne, 24Mg, 28Si, and
56Fe in computing the elastic scattering rate.
We treat the Sun with the ‘‘zero-temperature’’ approxi-

mation (i.e., the solar nuclei are at rest) since the kinetic
energy of nuclei in the Sun is much less than the kinetic
energy of dark matter particles. At the center of the Sun,
the temperature is Tc � 107 K, so the average kinetic
energy of a nucleus is of order

KA ¼ 3

2
kTc (53)

� 1 keV: (54)
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In the cooler outer layers of the Sun, the nuclei have even
less kinetic energy. In contrast, the kinetic energy of dark
matter particles in the Sun is of order

K� �m�v
2
esc (55)

� 103
�

m�

100 GeV

�
keV: (56)

The rms velocity of the nuclear species A is hv2
Ai1=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2KA=mA

p � 500ðmA=GeVÞ�1=2 km s�1, lower than the
�103 km=s speed of dark matter particles. Therefore, to
good approximation, one can treat the baryonic species in
the Sun as being at rest (i.e., having T ¼ 0)

The Solar System: The Solar System is modeled as
having only one planet, Jupiter, since Jupiter has the largest
mass of any planet by a factor of 3.3 and therefore
dominates gravitational scattering. We place Jupiter on a
circular orbit about the Sun, with a semimajor axis aJ ¼
5:203 AU, its current value, for the entire simulation, since
its eccentricity is only e � 0:05 [57], and the fractional
variation in its semimajor axis is & 10�9 over the lifetime
of the Solar System [58]. Jupiter is modeled as having
constant mass density to simplify calculations of particle
trajectories. This is not a realistic representation of
Jupiter’s actual mass density, but only a small fraction of
particles scattered by Jupiter actually penetrate the planet.
WIMP-baryon interactions in Jupiter are neglected since
the optical depth of Jupiter is small enough that the proba-
bility of even one scatter occurring in the simulation is
significantly less than unity.

The orbit of Jupiter defines the reference plane for the
simulation. The Earth’s orbit is assumed to be coplanar
with the reference plane, since the actual relative inclina-
tion of the two orbits is currently only 1.3
.

C. Initial conditions

The goal of this section is to compute the rate of elastic
scattering of halo WIMPs by baryons in the Sun onto
bound orbits, as a function of the energy and angular
momentum of particles after the scatter. We also show
how we use this to choose the initial starting positions
and velocities of the particles. There are two natural ap-
proaches to this problem: (i) Sample the dark matter flux
through a shell a distance R> R� from the center of the
Sun, treating scatter in the Sun probabilistically, and keep-
ing only those particles which scatter onto Earth-crossing
bound orbits. (ii) Calculate the scattering probability in the
Sun directly. The second approach is more efficient, and
this is the one described below.

The initial energy of a dark matter particle is

E ¼ 1

2
m�v

2 þ��ðrÞ (57)

¼ 1

2
m�½v2 � v2

escðrÞ�; (58)

where we have expressed the gravitational potential in
terms of the local escape velocity from the Sun. The final
energy of the dark matter particle is

E0 ¼ E�Q (59)

¼ 1

2
m�½v02 � v2

escðrÞ�; (60)

where Q is the energy transfer between the dark matter
particle and the nucleus during the collision. The energy
transfer can be expressed in terms of the center-of-mass
scattering angle � as (cf. Equation (A5))

Qðv; cos�Þ ¼ 2
�2

A

mA

v2

�
1� cos�

2

�
; (61)

where

�A ¼ mAm�

mA þm�

(62)

is the reduced mass for a nuclear species of nucleon
number A. The maximum energy transfer Qmax ¼
2�2

Av
2=mA occurs if the dark matter particle is back-

scattered, i.e., � ¼ �. Since we are interested in particles
that scatter onto bound, Earth-crossing orbits,1 the inter-
esting range of outgoing energy is

� GM�m�

2ð0:5a�Þ � E0 � 0; (63)

where a� is the semimajor axis of the Earth’s orbit, with
the lower bound determined by the fact that the aphelion of
a highly eccentric orbit is 2a.
For a given incoming energy E, it may not be kinemati-

cally possible to scatter into the full range of bound, Earth-
crossing orbits. In particular, if E�Qmax ¼ E0

min > 0, the
particle cannot scatter onto a bound orbit at all. Therefore,
the lower bound on allowed outgoing energy is

E0
min ¼ max

�
�GM�m�

2ð0:5a�Þ ;minðE�QmaxðvÞ; 0Þ
�
; (64)

while the upper bound remains

E0
max ¼ 0: (65)

Thus scattering rate of particles onto bound, Earth-crossing
orbits is

d _N�
drd�rdvdQ

¼ 4�
X
A

r2nAðrÞv3 d�A

dQ
fðr; vÞ�ðR� � rÞ

��½�E0��½E0 � E0
min�; (66)

1In principle, particles scattered to bound orbits with a < a�=2
could later evolve onto Earth-crossing orbits. However, the
torque from Jupiter is never high enough to pull a particle
with a < a�=2 onto an Earth-crossing orbit unless ðða�=2Þ �
aÞ=a & 10�3. Moreover, each additional scatter in the Sun
reduces the energy of the orbit in the limit of a cold Sun, so
the semimajor axis may only shrink.
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where we have imposed spherical symmetry on the Sun,
�r is the solid angle in the Sun, fðx; vÞ is the distribution
function in Eq. (51), d�A=dQ is the WIMP-nucleus cross
section (Eq. (A1)), and �ðxÞ is the step function. Since

dE0 ¼ dQ; (67)

we can write Eq. (66) as

d _N�
drd�rdvdE

0 ¼ 4�
X
A

r2nAðrÞv3 d�A

dQ
fðr; vÞ�ðR� � rÞ

��½�E0��½E0 � E0
min�: (68)

By sampling this distribution, we find the initial energy,
speed, and scattering position vector of the WIMPs.

The outgoing energy is distributed uniformly unless
there is kinematic suppression. The kinematic suppression
is most pronounced for large WIMP masses and very
negative energies because, in order for a particle to scatter
onto a bound orbit,

vs � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m�mA

p
m� �mA

vescðrÞ (69)

where vs is the particle velocity at infinity. Heavy dark
matter particles can only scatter onto bound orbits if their
velocities at infinity are only a small fraction of the escape
velocity from the Sun, a distance r from the Sun. For
energies for which the kinematic suppression is minimal,
we express the uniformity of d _N�=dE0 in terms of the
semimajor axis. Since E0 ¼ �GM�=2a for particles on
elliptical orbits, d _N�=da / a�2, or

d log _N�
d loga

¼ �1: (70)

Therefore, most particles scatter onto relatively small
orbits.

The angular momentum of each scattered particle is in
the range J 2 ½0; rv0�, where r is the radius from the center
of the Sun at which the particle scatters. To determine the
distribution of magnitudes and directions for the angular
momentum, we assume that the direction of the final
velocity v0 is isotropically distributed with respect to the
position vector r. If we specify �v to be the colatitude of
the velocity vector with respect to the position vector, and
the magnitude of the angular momentum is J ¼ rv0 sin�v,
then the distribution in angular momentum at fixed r, v0 has
the form

d _N� / d cos�v ¼ dJ2

2r2v02 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� J2=ðr2v02Þp : (71)

The effect of kinematic suppression due to a large WIMP
mass is that the particles that do scatter onto bound orbits
can only do so close to the center of the Sun where vesc is
highest. This reduces the maximum angular momentum of

the outgoing particle, and so eccentricity is an increasing
function of WIMP mass.
By sampling Eqs. (68) and (71), and the azimuth of v0

with respect to the position vector, we fully specify the six-
dimensional initial conditions of the WIMPs, sampled to
the same density as they would actually scatter in the Sun.

D. Simulation specifics

The goals of the simulations are to predict the direct and
indirect detection signals from particles bound to the Solar
System (relative to the signal from unbound particles) as a
function of m� and the elastic scattering cross section. We

simulate orbits for a variety of WIMP parameters and then
interpolate the results for other values of those parameters.
We ran four sets of simulations with different choices of

m� and �SI
p . The first simulation, called ‘‘DAMA,’’ used

m� ¼ 60 atomic mass units (AMUs) and �SI
p ¼

10�41 cm2. These parameters lie in the DAMA annual
modulation region [59,60]. A second simulation, called
‘‘CDMS,’’ used the same WIMP mass as in the DAMA
simulation but a cross section 2 orders of magnitude lower,
�SI

p ¼ 10�43 cm2, below the minimum of the CDMS 2006

exclusion curve (Fig. 4). Two more simulations were
chosen to have �SI

p ¼ 10�43 cm2 but with larger WIMP

masses. The ‘‘Medium Mass’’ simulation uses m� ¼
150 AMU, and the ‘‘Large Mass’’ simulation uses m� ¼
500 AMU, selected to explore the dependence of the
simulations on WIMP mass. The choices for m� and �SI

p

are plotted in Fig. 4 in addition to some recent direct
detection results. The details on the initial conditions of
the simulations are summarized in Table I.
Since integrating the orbits of particles in the Solar

System is computationally expensive, it is more important
to integrate just enough orbits to determine the approxi-
mate size of the bound DF relative to the unbound distri-
bution, and to get a sense of which effects matter the most,
than it is to get small error bars on the DF. This principle
guides our choices in the sizes of the ensembles of
particles.
The number of particles simulated Np in each of the

solar capture simulations is given in Table I. We follow
particles with semimajor axes slightly below the Earth-
crossing threshold so that if the semimajor axis increases
modestly during the simulation, the contribution to the
Earth-crossing flux is included. Fewer particles were simu-
lated in the runs with a lower cross section because the
lifetimes were far longer than in the DAMA run.
We use the flowchart in Fig. 5 to sketch the simulation

algorithm. There are six things that need to be set in order
to run the simulations: starting conditions; the radius rc at
which the heliocentric-barycentric coordinate change
needs to be made; methods for initializing h and poten-
tially changing h at later times; conditions for passing
through and scattering in the Sun; the size of the bubble
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about Jupiter, lJ, and the accuracy criterion j�E=Ej; and
conditions for terminating the simulation. Following the
flowchart, we discuss each point in turn.

Starting Conditions We sample the distribution of
WIMPs initially scattered into the Solar System according
to Eqs. (68) and (71). Once we have determined the initial
position and velocity of each WIMP, we trace the WIMPs
back to perihelion and start the integration there. We follow
all particles after the initial scatter, using the map to evolve
the particles to the Sun bubble wall (0.1 AU) using the map
described in Sec. II C 1. In order to account for the fact that
particles may experience a second scatter before leaving
the Sun for the first time, we perform a rescattering
Monte Carlo when we construct the DFs.

Once the particles have reached the bubble boundary, we
initialize the adaptive time step symplectic integrator

(Sec. II A), setting h ¼ 10�8R�1� yr and integrating the
equations of motion in heliocentric coordinates. With this
choice of initial h, a particle with initial semimajor axis
a ¼ 1 AU will be integrated with 4:7� 105 steps=orbit,
while a particle with a ¼ 100 AU will be integrated with
4:7� 106 steps=orbit. We choose such a small h to mini-
mize errors near perihelion, which is the point in the orbit
at which errors are largest (Sec. II B). If the semimajor axis
exceeds rc=2, it may be necessary to change to barycentric
coordinates before the particle reaches aphelion for the first
time.
Coordinate Change For the weak scattering simulations,

we set 	 ¼ 0:1 (Eq. (41)), thus setting the transition radius
between the heliocentric and barycentric coordinated re-
gimes to rc ¼ 53 AU. This is large enough that only a
small percentage of particles routinely cross the transition
radius, but small enough that the heliocentric potential
does not have too large a contribution from the indirect
potential.
Setting h: After the particles reach their first aphelion,

h is reset according the values listed in Table II.
These values of h are chosen such that both errors at
perihelion (j�E=Ej< 10�4) and near Jupiter (j�E=Ej<
10�6) are small. The combination of the values of h and
the Jupiter bubble radius lJ (see below) were determined
empirically. We used slightly smaller values of h for
some semimajor axes in the CDMS, Medium Mass,
and Large Mass runs compared to the DAMA run in
order to check that the behavior of long-lived WIMPs
was not an artifact of the choice of parameters.
A particle’s energy (and hence, semimajor axis) may

change throughout the simulation. If the energy changes by
20% or more from when the particle enters the Jupiter
bubble to when it exits, the particle is flagged to have h
adjusted at the next aphelion. We do not readjust h after
every aphelion, or after each time the particle passes
through the bubble, because very frequent changes in h
can induce growing numerical errors in the Jacobi con-
stant. We impose any changes in h at aphelion instead of
the bubble boundary, since we have determined experi-
mentally that the aphelion is the optimal point at which to
change h.
The Sun Bubble When a particle first crosses into the

bubble about the Sun, we calculate its perihelion. If the
perihelion is smaller than 2R�, we proceed to map its
current position and velocity to its position and velocity
as it exits the bubble according to the prescription of
Sec. II C 1. If the perihelion lies within the Sun, we employ
a Monte Carlo simulation of scattering in the Sun
(Appendix B). The vast majority of the time, the particle
does not scatter, and we simply use the map to move the
particle to the edge of the bubble. If the particle rescatters
onto an orbit with semimajor axis a < 0:3 AU, we termi-
nate the integration. If the particle rescatters onto an orbit
with a > 0:3 AU, we evolve the new orbit to the edge of
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FIG. 4 (color online). Points in the �SI
p �m� parameter space

used for the solar capture simulations, plotted along with exclu-
sion curves from recent experiments. This plot was generated
with http://dendera.berkeley.edu/plotter/entryform.html.

TABLE I. Solar capture simulations.

Name m� [AMU] �SI
p [cm2] Np [a > 0:48 AU]

DAMA 60 10�41 1078586

CDMS 60 10�43 145223

Medium Mass 150 10�43 144145

Large Mass 500 10�43 148173
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the bubble, and then resume the adaptive time step sym-
plectic integration.

The Jupiter Bubble For the DAMA, CDMS, and
Medium Mass simulations, we set the Jupiter bubble
boundary to be lJ ¼ 1:7 AU, and the accuracy criterion

to be j�Ef=Efj< 10�6. We adjusted this value for some

particles in order to speed up the integration in cases where
particles had generically slightly smaller initial j�Ei=Eij
than j�Ef=Efj, and took a longer time with j�Ef=Efj ¼
10�6 to reach a sufficiently flat plateau in j�Ef=Efj than

Solar Capture Simulations
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heliocentric coordinates
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Cross rc from
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barycentric coordinates

adaptive timestep integrator
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First apocenter?
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FIG. 5. Flowchart for the simulation algorithm for the solar capture experiments.

ANNIKA H.G. PETER PHYSICAL REVIEW D 79, 103531 (2009)

103531-14



with a slightly larger accuracy criterion. We set lJ ¼
3:4 AU past 500 Myr for the Medium Mass simulation to
determine if there were any effects of a larger lJ on the
orbits. There were no effects on the DF resulting from this
change. For the Large Mass simulation, we experimented
with a lower value of the accuracy criterion (j�Ef=Efj<
2� 10�7 for the first 500 Myr, j�Ef=Efj< 3� 10�7

later) and a larger bubble, lJ ¼ 2:1 AU. The only effect
the larger accuracy criterion had was to raise slightly the
maximum energy error per orbit.

Stopping Conditions There are three reasons for termi-
nating an integration. If the particle crosses outward
through the shell r ¼ 5000 AU, the integration stops.
Particles crossing this shell will rarely cross the Earth’s
orbit again. Second, if the particle rescatters in the Sun
onto an orbit with a < 0:3 AU, we halt the integration
since the particle will soon thermalize in the Sun and
will not cross the Earth’s orbit. Third, we stop the integra-
tion if the particle survives for a time t� ¼ 4:5 Gyr, ap-
proximately the lifetime of the Solar System.

E. Computing

Simulations were performed on three Linux beowulf
computing clusters at Princeton University. Each set of
simulations required 105 CPU cycles on 3 GHz dual core
processors.

IV. DISTRIBUTION FUNCTIONS

Before presenting the results of the simulations, we
define some terms that will be used frequently in this
section. The ‘‘heliocentric frame’’ describes an inertial
frame moving with the Sun. ‘‘Heliocentric speeds’’ will
refer to speeds relative to the Sun, measured at the Earth

assuming the Earth has zero mass. The ‘‘geocentric frame’’
refers to an inertial frame moving with the Earth. Unless
otherwise noted, geocentric WIMP speeds are those out-
side the potential well of the Earth. The ‘‘free space’’
distribution function, Eq. (48), is the angle-averaged halo
distribution function in an inertial frame moving with the
Sun, outside of the gravitational sphere of influence of the
Sun. The ‘‘unbound’’ distribution function refers to the
Liouville transformation of the free space distribution
function to the position of the Earth (Eq. (51)), including
the effects of the gravitational field of the Sun but not the
Earth.
In Fig. 6, we present the one-dimensional geocentric

DFs divided by the haloWIMP number density n� (defined

in Sec. III A) for each simulation. These DFs have already
been integrated over angles, and are normalized such that
the bound dark matter density n�;bound ¼

R
dvv2fðvÞ,

where fðvÞ ¼ R
d�fðvÞ. We plot the DFs in Fig. 6(a) on

a logarithmic scale in order to highlight the structures,
while we plot the CDMS simulation (Table I) DF on a
linear scale in Fig. 6(b) to compare the simulation results
with theoretical DFs. The DFs are based on ð1–4Þ � 108

passages of particles within a height jzj< zc ¼ 10R� of
the Earth’s orbit, and estimated using the technique de-
scribed in Appendix C. The DFs are insensitive to zc, at
least in the range 1 & zc & 25R�. Error bars are based on
500 bootstrap resamplings of the initial scattered particle
distributions for each simulation.
The most striking feature of the DFs is the smallness

with respect to the DF of haloWIMPs unbound to the Solar
System. This is in stark contrast to the prediction of
Damour and Krauss [37]. In order to show why this is
the case, we examine the simulations in detail. In particu-
lar, we (i) identify the features in the DF with specific types
of orbits, (ii) find the lifetime distribution of such orbits,
and (iii) determine what sets the lifetime of those orbits
(e.g., ejection vs rescattering and thermalization in the
Sun). With these data, we may also determine how the
DF varies with WIMP mass and cross section, and estimate
the maximum DF consistent with limits on the spin-
independent cross section.
The DFs from the four simulations show similar mor-

phologies, although the normalization of the features dif-
fers. The most prominent feature in all four DFs in Fig. 6 is
the ‘‘high plateau’’ between 27< v< 48 km s�1. In
order to identify which orbits contribute to this plateau,
it is useful to examine the two-dimensional DF. In Fig. 7,
we show the two-dimensional DF fðv; cos�Þ ¼R
d�fðv; cos�;�Þ for the CDMS simulation (Table I) in

both (a) heliocentric and (b) geocentric coordinates. The
angle between the velocity vector and the direction of the
Earth’s motion is �, while � is an azimuthal angle, with
� ¼ 0 corresponding to the direction of the north ecliptic
pole if � ¼ �=2. The DFs are plotted on a logarithmic
scale to highlight structure. We only show the CDMS

TABLE II. The fictitious time step h as a function of semi-
major axis a for the DAMA simulation and the simulations with
�SI

p ¼ 10�43 cm2 (CDMS, Medium Mass, Large Mass).

a [AU]

DAMA

h [R�1� yr]
�SI

p ¼ 10�43 cm2 h
[R�1� yr]

a < 0:75 1� 10�4 1� 10�4

0:75 � a < 1:1 7� 10�5 7� 10�5

1:1 � a < 1:6 6� 10�5 6� 10�5

1:6 � a < 2:2 5� 10�5 2� 10�5

2:2 � a < 3:5 4� 10�5 2� 10�5

3:5 � a < 6:2 3� 10�5 1:5� 10�5

6:2 � a < 11 2� 10�5 1� 10�5

11 � a < 13 9� 10�6 2� 10�6

13 � a < 22 2� 10�6 2� 10�6

22 � a < 30 2� 10�6 2� 10�6

30 � a < 45 1� 10�6 1� 10�6

45 � a < 120 6� 10�7 6� 10�7

120 � a < 200 4� 10�7 4� 10�7

200 � a < 500 3� 10�7 3� 10�7

a > 500 or unbound 2� 10�7 2� 10�7
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simulation results in this figure since the phase space
structure of the DF is virtually the same in all simulations.

From Fig. 7(b), we identify the short arc between 27<
v< 50 km s�1 below cos� <�0:5 with the high plateau,
although there is a small contribution from the other,
longer arc. We find that the short arc in the geocentric
DF corresponds to the trumpet-shaped feature in the helio-
centric DF below v < 38 km s�1. For bound orbits, the
heliocentric speed at r ¼ 1 AU is

vðaÞ ¼
�
2�

�
a

a�

��1
�
1=2

v�; (72)

where v� is the orbital speed of the Earth. The heliocentric
speed v ¼ 38 km s�1 corresponds to the lowest Jupiter-

crossing orbit, so the trumpet feature in the two-
dimensional heliocentric DF corresponds to orbits that do
not cross Jupiter’s orbit.
The trumpet shape of the heliocentric DF (and the

narrow band in the geocentric DF) in Fig. 7 can be simply
explained. In Fig. 8, we calculate the energy and angular
momentum for each point in velocity-space. The black
region of velocity-space represents unbound orbits. All
points for which orbits are bound and have perihelia inside
the Sun are marked in dark grey, while orbits that are bound
and cross Jupiter’s orbit are marked in light grey. The white
regions correspond to bound orbits that neither enter the
Sun nor cross Jupiter’s path. If we were to integrate the
�-slices shown if Fig. 8, we would find that the region in

FIG. 7 (color online). Distribution functions divided by n� in the v� cos� plane (integrated over �) for both (a) heliocentric and
(b) geocentric frames. These DFs come from the CDMS simulation, and the units are ðkm s�1Þ�3.
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Fig. 8 corresponding to Sun-penetrating orbits that do not
cross Jupiter exactly matches the parts of phase space we
identified with the high plateau.

Figure 8 was computed for a system without planets.
Once Jupiter is added, another type of orbit that may exist
is a bound orbit for which Jz is fixed but J is not. An
example of this type of orbit is a Kozai cycle. In this case,
Jz ¼ a�v cos� in the heliocentric frame. In the special
case that � ¼ �=2, J ¼ Jz. Therefore, the parts of
ðv; cos�Þ phase space in the� ¼ �=2 plane corresponding
to Sun-penetrating orbits also cover orbits with Jz fixed by
the initial scatter in the Sun for other values of�. Thus, the
high plateau in the one-dimensional geocentric DF is built
up by WIMPs with a < aJ=2 and small Jz but not neces-
sarily small J.

The second feature of the distribution functions in Fig. 6
is the ‘‘low plateau.’’ This is the relatively flat part of the
distribution function that extends from � 10 km s�1 to �
70 km s�1. This feature corresponds in the long arc in the
two-dimension DF in Fig. 7 and the stripe between 38<
v< 42 km s�1 in the heliocentric DF. From Fig. 8, we
identify this feature with bound, Jupiter-crossing orbits.

Small gaps exist in the heliocentric DF with v >
40 km s�1 and cos� < 0 and 38< v< 40 km s�1 and
cos� > 0 because these regions of phase space are inac-
cessible to WIMPs initially scattered in the Sun in the
restricted three-body problem. This translates to a trunca-
tion of the low plateau at the extrema in geocentric speed.
The third common set of features in the one-dimensional

geocentric distribution function are spikes in the low pla-
teau. These spikes result from the long-lifetime tail of
Jupiter-crossing or nearly Jupiter-crossing particles that
spend significant time near mean-motion resonances or
on Kozai cycles. The minimum semimajor axis for these
spikes corresponds to the 3:1 resonance, a � 2:5 AU.
Long-lifetime tails due to ‘‘resonance-sticking’’ orbits
have also been observed in simulations of comets
[61,62]. The error bars on the spikes are large due to the
small numbers of long-lived resonance-sticking particles in
each simulation. There is also some Poisson noise in the
height of the spikes between simulations due to the small
number long-lived WIMPs in each simulation.
Next, we show the lifetime distribution of boundWIMPs

and demonstrate which mechanisms (thermalization or

FIG. 8. Locations of various types of orbits in the (a) � ¼ 0 and (b) � ¼ �=2 slices of heliocentric velocity-space, and (c) � ¼ 0
and (d) � ¼ �=2 slices of geocentric velocity-space.
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ejection) terminate the contribution of orbits to the DF. In
Fig. 9, we present the lifetime distributions for all WIMPs
in the DAMA, CDMS, Medium Mass and Large Mass
simulations. There are several notable features in this
plot. First, and most striking, many of the bound particles
survive for very long times—up to 106–108 yr. However,
in none of the simulations is there a large population of
particles that survive for times of order of the age of the
Solar System, although there is a small population that
does (the notch at 4.5 Gyr in Fig. 9). Second, the lifetime
distribution functions of the CDMS, Medium Mass, and
Large Mass runs are very similar. However, these lifetime
distributions are quite different from that of the DAMA
simulation. The differences in the lifetime distributions are
due almost entirely to the elastic scattering cross section, at
least for the range of WIMP masses we consider.

In order to both explain these features in the lifetime and
phase space distribution functions, it is useful to examine
the lifetime distributions as a function of the initial semi-
major axis ai, as shown in Fig. 10.

The largest feature in Fig. 9 is the strong peak at tl �
103 yr for the DAMA simulation and tl � 105 yr for the
simulations with �SI

p ¼ 10�43 cm2, which we call the ‘‘re-

scattering peak.’’ It encompasses the majority of particles
in each simulation. This feature results from WIMPs that
rescatter in the Sun before they are ejected from the Solar
System by Jupiter or precess onto orbits that do not inter-
sect the Sun. This rescattering peak is offset between
DAMA and the other simulations because the lifetime is
inversely proportional to the scattering probability in the
Sun, tl / ��1

p .

There is one important difference in the composition of
the rescattering peak between the DAMA and other simu-
lations. In Fig. 10, we show that particles on Jupiter-
crossing orbits exhibit a rescattering feature in the
DAMA simulation but not in the other simulations.
Indeed, about 23% of Jupiter-crossing particles in the
DAMA simulation are rescattered in the Sun, while <2%
are rescattered in the other simulations. This is because the
time scale on which Jupiter can perturb the perihelia of
Jupiter-crossing orbits out of the Sun is significantly
shorter than rescattering time scales for the �SI

p ¼
10�43 cm2 simulations, but the two time scales become
closer at higher cross sections.
Another feature occurs at tl � 106 yr, which we call the

‘‘ejection peak.’’ This feature occurs at the same time for
each simulation, and from Fig. 10 we see that this arises
from Jupiter-crossing orbits. The median time at which this
feature occurs is independent of �SI

p since ejection, not

rescattering, sets the lifetime of these WIMPs. The slope of
the Jupiter-crossing lifetime distribution changes near
�10 Myr for all simulations. WIMPs that have tl >
10 Myr are resonance-sticking, and their lifetime distribu-
tion goes as NðtÞ / t��, where � is slightly less than one.
A third feature, called the ‘‘quasi-Kozai peak,’’ is cen-

tered at tl � 106 yr in the DAMA simulation, and tl �
108 yr in the other simulations. The feature is seen in the
1:5 AU � ai < 2 AU and 2 AU � ai < aJ=2 bins of
Fig. 10. The WIMPs in the quasi-Kozai peak are not on
true Kozai cycles because of significant interactions with
mean-motion resonances. In the simulations, particles in
the quasi-Kozai peak are observed to alternate between
rescattering peak-type orbits with perihelion well inside
the Sun, and orbits that look like Kozai cycles. Both the
semimajor axis and Jz vary with time; neither is conserved
although the combination giving the Jacobi constant CJ is
fixed (Eq. (20)). There are some orbits at the low end of the
semimajor axis range 1:5 AU< a � aJ=2 for which a and
Jz are conserved and the Kozai description is accurate.
The median lifetime of WIMPs on quasi-Kozai cycles is

well described by tl=P� � 300=�, where P� is the WIMP

orbital period and � is the optical depth through the center
of the Sun. This implies that particles are eventually re-
moved from Earth-crossing orbits by rescattering in the
Sun. The height of the rescattering peak relative to the
quasi-Kozai peak is greater in the DAMA simulation than
the other simulations because the optical depth in the Sun
is large enough that particles originating deep within the
Sun rescatter before the torque from Jupiter can pull the
perihelion towards the surface of the Sun.
The fourth feature is not obvious in Fig. 9, but is once the

lifetime distribution is displayed on logarithmic scales in
Fig. 10. This feature is the ‘‘Kozai peak.’’ This peak is
located at about tl � 108 yr for the DAMA simulation, and
near tl � t� ¼ 4:5 Gyr for the other simulations. This
feature results from particles whose orbital evolution can

FIG. 9 (color online). Particle lifetime distributions for the
DAMA (solid), CDMS (dot-dashes), Medium Mass (short
dashes), and Large Mass (long dashes) simulations.

ANNIKA H.G. PETER PHYSICAL REVIEW D 79, 103531 (2009)

103531-18



be described by Kozai cycles (a, Jz conserved), of which
we see both circulating and librating populations. For the
CDMS, Medium Mass, and Large Mass simulations, the
peak is at t� because that is the time at which we terminate
the simulations. Particles on these orbits have ai <
1:5 AU, and originate in the outer r * 0:5R� in the Sun.
They constitute only a small fraction (� 0:1%) of all orbits
with ai < 1:5 AU, but dominate the lifetime distribution of
particles with lifetimes * 108 yr. The median lifetime of
particles on Kozai cycles depends on the WIMP-nucleon
cross section in the form tl=P� � 105=�, where again � is

the optical depth through the very center of the Sun (��
10�3 for DAMA, �� 10�5 for the other simulations).
Now that we have identified the types and lifetimes of

bound WIMP orbits, we see how these come together to
build up the phase space DF as a function of WIMP mass
and cross section.

A. The distribution function as a function of �SI
p

We have identified (i) which range of initial semimajor
axis ai corresponds to the features in the geocentric DFs in
Fig. 6, and (ii) described the lifetime distributions of

FIG. 10 (color online). Lifetime distributions as a function of initial semimajor axis.
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WIMPs. Next, we describe the composition (not just in
terms of the semimajor axis ai but by the type of orbit) and
height of the DFs as a function of �SI

p . This is most easily

illustrated with the time-evolution of the DFs, which we
show in Fig. 11 for the (a) DAMA and (b) CDMS simula-
tions. We focus on these two simulations since the salient
results of the Medium Mass and Large Mass simulations
closely resemble those of the CDMS run. In each plot, we
show distribution functions as a function of time since the
birth of the Solar System, for t ¼ 106 yr, t ¼ 107 yr, t ¼
108 yr, t ¼ 109 yr, and t ¼ t� ¼ 4:5 Gyr.

The low plateau, composed of Jupiter-crossing particles,
has reached equilibrium in both �107 year for both simu-
lations. The only growth in the low plateau after 10 Myr
comes from particles on resonance-sticking orbits that
pump up the spikes. The time-evolution of the low plateau
(but not its final equilibrium height) is independent of cross
section over 2 orders of magnitude in the WIMP-baryon
cross section because the equilibrium time scale is essen-
tially the ejection timescale. The height of the low plateau
is proportional to the rate at which particles are initially
scattered onto Jupiter-crossing orbits, _NJ. Since the scat-
tering rate is proportional to the cross section, the height of
the low plateau is proportional to the spin-independent
cross section, at least in these simulations. One would
expect that the plateau height would grow less rapidly
with �SI

p if the lifetimes of Jupiter-crossing WIMPs were

dominated by rescattering in the Sun, not ejection from the
Solar System.

The absolute height of the spikes is similarly related to
_NJ and the relative ejection and rescattering time scales;
the spikes in the DAMA simulation are more prominent
than in the CDMS simulation because _NJ is 2 orders of
magnitude larger. The time-evolution of the spikes can be
explained by the following. The lifetime distribution of
spike WIMPs falls as NðtÞ / t��, where � is slightly less
than one. The rate at which WIMPs cross the Earth’s orbit
is _NcðtÞ ¼ const if the long-lived WIMPs are resonance-
sticking. Therefore, the total contribution of the spike
WIMPs to the DF beyond time t goes as

fspikeð>tÞ /
Z t�

t
Nðt0Þ _Ncðt0Þdt0 (73)

/ t1��� � t1��: (74)

This argument is only strictly true if the types of spike
orbits are independent of the lifetime distribution, which is
uncertain due to the small number statistics of the spike
WIMPs. However, in Fig. 11, some of the spikes either
grow linearly with time or do not grow at all for some
stretches of time. This phenomenon is due to the small
numbers of long-lived resonance-sticking particles. For an
individual WIMP, fðvÞ / t if t < tl and fðvÞ is fixed for
t > tl.

The time-evolution of the high plateau is different be-
tween the DAMA and CDMS simulations. In the DAMA
simulation, by t ¼ 1 Myr, nearly all of the rescattering
peak WIMPs have rescattered and thermalized in the
Sun, as have a significant fraction of the quasi-Kozai
WIMPs. At this point, the high plateau in the range
27 km s�1 < v< 45 km s�1 is built up by roughly similar
contributions from rescattering and Kozai peak WIMPs.
The contribution of Kozai WIMPs relative to rescattering
peak WIMPs at a particular time can be estimated using

fKozai
frescatt

� �

�
t

tmed

�
; (75)

where fKozai is the DF due to Kozai cycling WIMPs, frescatt
that of rescattering peak WIMPs, � is the fraction of
WIMPs with a < 1:5 AU on Kozai cycles, and tmed is the
median lifetime of rescattering peak WIMPs. � � 10�3
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FIG. 11 (color online). Growth of the distribution functions as
a function of time for the (a) DAMA and (b) CDMS simulations.
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for WIMPs experiencing Kozai cycles, and tmed � 103 yr,
so fKozai=frescatt � 1 at t ¼ 1 Myr. This assumes that the
increase in the DF for a Kozai cycling WIMP as a function
of time is similar to that of a WIMP on a rescattering peak-
type orbit. The feature in the DF between 45 km s�1 <
v< 50 km s�1 is due to quasi-Kozai WIMPs.

The high plateau grows substantially between t ¼
1 Myr and t ¼ 100 Myr, although not strictly linearly
because scatters in the Sun remove Kozai and quasi-
Kozai WIMPs from Earth-crossing orbits. The error bars
on the DF increase with time as the ever-decreasing num-
ber of Earth-crossing WIMPs (Fig. 10) build up the DF.
After 100 Myr, the high plateau grows very slowly until it
reaches equilibrium by t ¼ 1 Gyr; in our simulation of 8�
105 WIMPs with orbits interior to Jupiter’s orbit, only one
WIMP has a lifetime of 1 Gyr.

Even though we simulate�103 WIMPs on Kozai cycles,
we are clearly undersampling those with tl > 109 yr. To
estimate how much larger the DF could be, we note that the
lifetime distribution of Kozai WIMPs with tl > 100 Myr is
well fit by NðtÞ / t�2. If we assume that the rate at which
the long-lived WIMPs contribute to the DF as a function of
time is the same as for the Kozai WIMPs we simulate, then
_NcðtÞ ¼ const. Therefore, according to Eq. (73), the part of
the DF built after time t is fKozaiðv;>tÞ / t�1. For the high
plateau, fKozaiðv; t > 108 yrÞ � fKozaiðv; t > 109 yrÞ, so
we believe that we have not underestimated the high
plateau.

A major consequence of this equilibrium distribution is
that the high plateau of the DF fðvÞ=n� is fixed essentially

fixed above a certain cross section. Since the lifetime of
Kozai orbits tl / ð�SI

p Þ�1, we find that the high plateau is

fixed for �SI
p * 10�42 cm2.

The time-evolution of the distribution function is a bit
different in the simulations for which�SI

p ¼ 10�43 cm2. At

t ¼ 1 Myr, the high plateau is dominated by rescattering
peak WIMPs, which have a median lifetime tmed � 105 yr.
Between t ¼ 1 Myr and t ¼ 100 Myr, the growth in the
high plateau is mostly due to the long-lifetime tail of the
rescattering peak WIMPs and the quasi-Kozai WIMPs.
This is because fKozai=frescatt � 1 only for t� 108 yr. For
t > 100 Myr, the high plateau is dominated by Kozai
WIMPs. To determine if we sufficiently sampled the
Kozai population, we compared the DF derived from the
DAMA simulation when the integrated optical depths were
equivalent to those in the CDMS simulation (in effect,
comparing the DAMA simulation at t ¼ 107 yr with the
CDMS simulation at t ¼ 109 yr). We found the DFs to be
consistent with each other.

Unlike in the DAMA simulation, a number of particles
have lifetimes longer than the age of the Solar System
(� 100 out of �105). One consequence of this is that the
DFs should be somewhat smaller than the DAMA distri-
bution function, since the high plateau of the DAMA
simulation has reached equilibrium by the present but the

�SI
p ¼ 10�43 cm2 distribution functions are still growing.

In fact, we find that the high plateau is about a factor of 3
smaller for the CDMS simulation than for the DAMA
simulation. As �SI

p decreases, so should the height of the

high plateau. For �SI
p & 10�45 cm2, the high plateau

should be dominated by rescattering peak orbits.
In summary, we find that while the DF for �SI

p ¼
10�41 cm2 is dominated by Kozai WIMPs, there is some
contribution from long-lived Jupiter-crossing WIMPs
(although the error bars are large due to small number
statistics). As the cross section decreases, the Jupiter-
crossing component of the number density also decreases,
and the Kozai and quasi-Kozai contributions dominate.
However, the Kozai WIMPs fail to reach equilibrium, so
the overall DF goes down as a function of decreasing cross
section. Below �10�45 cm2, we expect the DF to be
dominated by the rescattering peak WIMPs.

B. The distribution function as a function of m�

There is little variation in the morphology of the lifetime
distributions for the three simulations with �SI

p ¼
10�43 cm2. The shape of the lifetime distribution appears
to be determined almost solely by the elastic scattering
cross section, not the particle mass, at least in the range of
masses considered in these simulations. It is possible that
these distributions (in lifetime and density composition)
for a very high or very low mass WIMP would perhaps
look different from those in Fig. 10.
However, the DFs in Fig. 6 did show some variation with

WIMP mass. There are three effects that might induce a
mass dependence on the DF.
(i) The mass can affect the initial energy and angular

momentum distribution of bound WIMPs. As discussed in
Sec. III C, it is increasingly difficult to scatter halo WIMPs
onto bound orbits as the WIMP mass increases. The maxi-
mum energy transfer Qmax approaches an asymptote for
large WIMP masses, but the unbound WIMP energy in-
creases since energy E / m�. Thus, the minimum scattered

particle energy E0 ¼ E�Qmax increases for fixed initial
speed but increasing WIMP mass. However, this is not
expected to be a major effect for the range of masses
used in the simulations.
The angular momentum distribution is also affected by

the WIMP mass, as parametrized by the initial particle
perihelion in Fig. 12. As discussed in Sec. III C, the maxi-
mum angular momentum decreases with increasing m�

since high-mass particles scattering onto bound orbits
must do so at smaller distances from the center of the
Sun. Thus, the Medium Mass and Large Mass simulations
have a deficit of large perihelion particles relative to the
CDMS simulation. Since Kozai WIMPs originate in the
outskirts of the Sun, this suggests that there will be
fewer particles on Kozai cycles as the WIMP mass
increases.
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(ii) The particle mass affects the rescattering probability
in the Sun. In Eq. (B7), we show that the scattering

probability along a path l is proportional to d�=dl / ð1�
e�Qmax=QAÞ, which is a mildly increasing function of WIMP
mass m� (since Qmax is mass-dependent, Eq. (B8)). The

optical depth for the Large Mass simulation (m� ¼

500 AMU) for a given path is about 15% higher than for
m� ¼ 60 AMU. However, while high-mass WIMPs have a

higher scattering probability than low-mass WIMPs, they
also rescatter far more often onto Earth-crossing orbits.
Therefore, it is not clear from the outset whether high-mass
WIMPs will have longer or shorter lifetimes relative to
low-mass WIMPs.
(iii) The WIMP mass also affects the overall amplitude

of the final bound dark matter DF because the WIMP mass
determines the scattering rate of halo particles onto bound,
Earth-crossing orbits. For high-mass WIMPs, the total
capture rate of halo WIMPs in the Sun is (e.g., [63])

_N tot=n� / m�1
� ; m� � mA: (76)

The function _Ntot=n� is plotted in Fig. 13(a) for the capture

rate due to all species in the Sun (solid red) and for
scattering only on hydrogen (blue dots; calculated in the
limit of a cold Sun). The capture rate of particles onto
Earth-crossing orbits is shown in Fig. 13(b). Note that the
capture rate _N�=n� onto Earth-crossing orbits is an in-

creasing function of WIMP mass until about m� � TeV

( � 100 GeV in the case of only hydrogen scattering). This
is because low-mass WIMPs may be scattered onto very
small orbits (whose aphelia may be within the Sun), which
are kinematically suppressed for higher mass WIMPs.
Even though the total WIMP capture rate decreases for
higher WIMP mass, those WIMPs that are captured are
increasingly preferentially scattered onto Earth-crossing

FIG. 12 (color online). Percentages of particles in each initial
perihelion bin. Poisson errors smaller than points.

(a) (b)

FIG. 13 (color online). In each plot, the red solid line denotes all species in the Sun, and the dotted blue line represents hydrogen.
(a): The capture rate _N of WIMPs by the Sun for �SI

p ¼ 10�43 cm2, divided by the halo number density of WIMPs. The short solid

black line gives the slope _N=n� / m�1
� , the limiting slope for m� � mA for a nuclear species A. (b): The capture rate _N� to Earth-

crossing orbits divided by the halo WIMP number density.
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orbits. The function _N�=n� turns over when most captured

particles are on Earth-crossing orbits, and then the function
follows the familiar _N�=n� / m�1

� .

The consequence of these scattering rates of halo
WIMPs in the Sun is that, if the DFs were otherwise
independent of WIMP mass, the high-mass DFs would
be greater than the low-mass DFs simply due to the pre-
factor _N� in Eq. (C13). In order to isolate the effects of
WIMP mass on the initial distribution of energy and an-
gular momentum as well as subsequent rescattering, we
divide the three DFs from the simulations with �SI

p ¼
10�43 cm2 in Fig. 6(a) by _N� and show these functions
in Fig. 14. The low plateaus do not appear to be signifi-
cantly different. There are some discrepancies in the
spikes, which are due to the low numbers of long-lived
resonance-sticking WIMPs in each simulation. The high
plateaus look relatively consistent with each other, given
the large error bars.

C. Maximum DF from spin-independent solar capture

An important quantity to estimate is the maximum al-
lowed DF consistent with experimental constraints on �SI

p .

We expect the point in m� � �SI
p yielding this maximum

DF to lie on the exclusion curve, but the maximal point is
determined by the shape of the curve for the following
reason. The best limits on�SI

p are shown in Fig. 4 and come

from the XENON10 (below m� ¼ 40 GeV) and CDMS

(abovem� ¼ 40 GeV) experiments [32,64]. The exclusion

curves reach a minimum of �SI
p � 4� 10�44 cm2 in the

range m� ¼ 20–70 GeV. Below these masses, the exclu-

sion curve rises sharply due to kinematic reasons. Above
m� � 70 GeV, the exclusion curves rise / m� because the

flux of halo WIMPs at the detector goes as 
�=m�.

Since extensions to the standard model generically pre-
dict m� * 100 GeV (with the notable exception of some

gauge-mediated supersymmetry breaking models which
predict m� � 1 keV [65–68]), we focus on this part of

the exclusion curve [1,2,5]. In the previous sections, we
found that (i) the high plateau dominates the DF at least up
to �SI

p ¼ 10�41 cm2, (ii) this plateau is a growing function

of the cross section until it reaches equilibrium for �SI
p *

10�42 cm2, and (iii) for a fixed cross section, fðvÞ=n� /
_N�=n�, which reaches its maximum for m� � 2 TeV

(Fig. 13(b)). If the CDMS exclusion curve in Fig. 4 were
extended to higher mass, one would find that the exclusion
curve hits �SI

p ¼ 10�42 cm2 near m� ¼ 2 TeV, which is

exactly the point at which both equilibrium in the high
plateau is achieved and _N�=n� reaches its maximum.

In Fig. 15, we show the estimated DF for m� ¼ 2 TeV

�SI
p ¼ 10�42 cm2, which we interpret as the maximum

possible DF consistent with exclusion limits if spin-
independent scattering dominates in the Sun. This DF is
based on the DAMA simulation DF, appropriately scaled
by WIMP cross section and mass. This DF yields a bound
WIMP fraction (relative to the halo) which is a factor of
�4 greater than that of the DAMA simulation.
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In conclusion, we find that even for the maximal DF for
bound WIMPs, the bound population is more than 3 orders
of magnitude smaller than the total halo population at the
Earth.

D. Extension to spin-dependent capture

So far, we have only explored the dark matter DF in the
case where WIMP-nucleon scatters in the Sun are domi-
nated by spin-independent, scalar interactions. However,
limits on the spin-dependent WIMP-proton cross section
are Oð107Þ times weaker than �SI

p , and spin-dependent

cross sections are generally higher than spin-independent
cross sections in large parts of parameter space for well-
motivated WIMPs. We showed that the low plateau of the
solar capture DF, consisting of Jupiter-crossing WIMPs,
grows as _N�=n� / �SI

p or �SD
p . Since the constraints on

�SD
p are so much weaker than on �SI

p , the low plateau could

become large, reaching equilibrium when rescattering in
the Sun occurs on time scales shorter than the time to pull
the Jupiter-crossing WIMP perihelia outside of the Sun.

In Fig. 16, we show a prediction for the low plateau for
m� ¼ 500 AMU and�SD

p ¼ 10�36 cm2, if the only depen-

dence of the DF on the WIMP cross section is fðvÞ / _N�.
The cross section is above the best m� � �SD

p constraint

unless m� > 1 TeV [69,70], but is chosen to demonstrate

an approximate maximum possible bound DF. At higher
cross sections, the Sun becomes optically thick to WIMP
scattering, at which point we expect the WIMP DF at the
Earth to drop dramatically. The large central peak in the
predicted DF arises from the nearly radial orbits. If the low
plateau scales strictly with cross section until the Sun
becomes optically thick, the Jupiter-crossing particles
dominate the bound DF, and can swamp the unbound DF
at low speeds (v < 50 km s�1).

However, there are some indications within the simula-
tions that the low plateau will grow less rapidly with the
cross section than in this simple model. Recall that� 98%
of Jupiter-crossing WIMPs are ejected in the CDMS,
Medium Mass, and Large Mass simulations, but a smaller
fraction ( � 73%) of WIMPs are ejected in the DAMA
simulation. Therefore, a more careful estimate of the DF is
required.

To find how large the WIMP DF can get, we estimated
the bound WIMP DF for various large spin-dependent
cross sections (�SD

p > 10�40 cm2) using the DAMA simu-

lation as a starting point, since it has the highest �SI
p and

best statistics of all the spin-independent simulations. We
scaled the total optical depth of each particle in the DAMA
simulation by an estimate of the optical depth for a par-
ticular spin-dependent cross section. For particles that were
not on Jupiter-crossing orbits, we scaled the lifetimes by
the ratio of the optical depth for the particular spin-
dependent cross section and the DAMA optical depth.
For the particles on Jupiter-crossing orbits, we used the
optical depth data from the DAMA simulation to find the

approximate time at which each particle hit a total optical
depth � ¼ 1 for the new cross section, which we inter-
preted as the new WIMP lifetime. We calculated the DFs
using the methods in Appendix C, with the inclusion of a
Monte Carlo treatment of the initial conditions to deter-
mine if captured WIMPs scattered multiple times before
they could leave the Sun.
There are several assumptions in this approach. First, we

used the initial distribution of semimajor axis and eccen-
tricity derived from the DAMA simulation without any
kinematic corrections due to the extreme mass difference
between hydrogen atoms and WIMPs. Thus, we tend to
overestimate the Kozai contribution to the DF since scat-
tering in the outer part of the Sun is suppressed for high
m�. This also underestimates the contribution of Jupiter-

crossing particles since the semimajor axis distribution
skews to higher a for large imbalances between the
WIMP and hydrogen masses. However, between m� ¼
60 AMU and m� ¼ 500 AMU, the fraction of Earth-

crossing particles that are also Jupiter-crossing only in-
creases from 18.9% to 21.5% if the particles scatter only on
hydrogen.
Second, we did not recalculate optical depths for each

passage through the Sun. This would be too time-
consuming. Instead, we scaled the optical depths of each
particle by the ratio of the scattering rate of E ¼ 0 halo
particles with the new cross section to the scattering rate of
E ¼ 0 halo particles in the DAMA simulation. Since
bound Earth-crossing particles do not have energies that
vary significantly fromE ¼ 0 relative to typical energies of
unbound halo particles, using the ratio of the scattering
rates to scale the DAMA optical depths should be a rea-
sonable proxy for finding optical depths for specific paths
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FIG. 16 (color online). Predicted geocentric DF if �SD
p ¼

10�36 cm2, assuming fðvÞ / �SI;SD
p for Jupiter-crossing orbits.

This prediction is based on the output of the DAMA simulation.
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through the Sun. However, this approximation does neglect
any differences in the radial distributions of hydrogen and
heavier elements in the Sun, as well as any kinematic
effects due to scattering off hydrogen rather than heavier
atoms.

We estimated DFs for m� ¼ 60 AMU at �SD
p ¼ 1:3�

10�39, 10�38, 10�37, and 10�36 cm2, and then extrapolate
the results to other WIMP masses by rescaling the DFs by
_NH�ðm�Þ, the rate of scattering halo WIMPs on hydrogen to

reach bound, Earth-crossing orbits. The cross section
�SD

p ¼ 1:3� 10�39 cm2 yields similar optical depths in

the Sun as �SI
p ¼ 10�41 cm2. We used 50 bootstrap resam-

plings for each spin-dependent cross section to estimate the
DFs. The results are shown in Fig. 17, displaying fðvÞ=n�
for each cross section against the geocentric unbound DF.

There are several key points this figure. The central part
of the DF for each cross section (v ¼ 30–45 km s�1) is
approximately independent of cross section, which is what
one would expect if Kozai cycles dominate this region and
particles have lifetimes of at least one Kozai cycle. This
region is relatively unaffected by multiple scatters before
the WIMPs exit the Sun for the first time because the
particles on Kozai cycles originate in a part of the Sun
that still has very low optical depth, even for the highest
cross section considered. The peak near 50 km s�1 is due
to nearly radial Jupiter-crossing orbits. The spikes in the
low plateau grow for a while and then disappear, a con-
sequence of rescattering in the Sun before WIMPs can
stick to resonances.

The most striking result of Fig. 17 is that the low plateau
is quite a bit lower than the naive prediction in Fig. 16. It
appears that, while the low plateau does rise for large
WIMP-proton cross sections, rescattering in the Sun plays
an integral role in severely reducing Jupiter-crossing par-
ticle lifetimes. We find that the low plateau reaches ap-
proximately its maximum value if�SD

p ¼ 10�36 cm2. Even

though the low plateau is still very slowly increasing
between �SD

p ¼ 10�37 cm2 for v < 50 km s�1, the plateau

actually decreases between going from �SD
p ¼ 10�37 cm2

to �SD
p ¼ 10�36 cm2. This is because WIMPs with geo-

centric speeds v > 50 cm s�1 are retrograde with respect
to the planets in the Solar System, and the torques from the
planets are less effective for retrograde than prograde
WIMPs. Thus, the time for WIMP perihelia to exit the
Sun is longer for retrogradeWIMPs than progradeWIMPs,
and so the probability for a retrogradeWIMP to rescatter in
the Sun before its perihelion exits the Sun for the first time
is significantly higher than for a prograde WIMP.
Therefore, the maximum low plateau occurs for �SD

p �
10�36 cm2, or about �SI

p � 10�38 cm2.

Combining these results with the maximum DF for spin-
independent solar capture in Fig. 15, we find that particles
captured to the toy solar system by elastic scattering in the
Sun are only a small population relative to the halo popu-
lation at the Earth, even if the spin-dependent WIMP-

proton elastic scattering cross section is quite large.
Improving on the approximations we used in this section
is unlikely to change this conclusion.

V. THE DIRECT DETECTION SIGNAL

Direct detection experiments look for nuclear recoil of
rare WIMP-nuclear interactions in the experimental target
mass. The WIMP-nucleus scattering rate per kg of detector
mass per unit recoil energy Q can be expressed as (cf. [1])

dR

dQ
¼

�
mA

kg

��1 Z 1

vmin

d3v
d�A

dQ
vfðx; vÞ; (77)

where d�A=dQ is the differential interaction cross section
between a WIMP and a nucleus of mass mA and atomic
number A, and v is the velocity of the dark matter particle
with respect to the experiment. The lower limit to the
integral in Eq. (77) is set to

vmin ¼ ðmAQ=2�2
AÞ1=2; (78)

the minimum WIMP speed that can yield a nuclear recoil
Q, The dark matter DF at the Earth is fðx; vÞ.
In this section, we will determine the maximum possible

contribution of the bound DF to the direct detection rate.
We focus on the maximum event rate from bound WIMPs
instead of exploring how the bound WIMP event rate
depends onWIMPmass and elastic scattering cross section
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since we expect the event rate to be small. We are inter-
ested in both the total excess signal due to bound WIMPs
for particular experiments, as well as the contribution to
the differential event rate, since the latter is important for
determining the WIMP mass [31,71].

We focus on directionally-insensitive direct detection
rates for spin-independent interactions, but the results of
this section can be applied qualitatively to spin-dependent
interactions as well. There is another class of direct detec-
tion experiment that is directionally sensitive [72–76]. In
principle, the bound WIMPs should leave a unique signal
in such experiments (see Fig. 7), but it would be challeng-
ing to measure this given the small bound WIMP density,
current errors in directional reconstruction, and high-
energy thresholds.

We calculate the bound WIMP event rate for m� ¼
500 AMU and �SI

p ¼ 10�43 cm2 and a high spin-

dependent proton cross section (�SD
p ¼ 10�36 cm2, ap-

proximately the point at which the Sun becomes optically
thick to WIMPs). We choose this point in parameter space
because it yields the largest DF due to WIMPs bound by
solar capture. The event rate can simply be scaled for lower
(or higher) spin-independent cross sections. The scaling for
other values of m� and �SD

p is different, but can be easily

determined.
The geocentric bound DF is anisotropic. Therefore, to

translate the DF outside the sphere of influence of the Earth
to the corresponding DF at the detector, one should use the
mapping technique in Appendix C, averaged over the
detector’s daily motion about the Earth’s rotation axis.
However, using the isotropic mapping instead of the full
six-dimensional mapping in Appendix C produces errors in
dR=dQ of at most a few percent. Therefore, we use this
simplification for the boundWIMP DF at the surface of the
Earth in calculating dR=dQ.

In Fig. 18, we show the maximal direct detection signal
due to solar-captured WIMPs if m� ¼ 500 AMU (lower

two lines). We find direct detection rates assuming 131Xe
and 73Ge targets, since the current and planned experi-
ments most sensitive to the spin-independent (and spin-
dependent neutron) cross section have isotopes of either Xe
or Ge as their target mass. For comparison, we also plot the
event rate expected for the halo DF in Eq. (51). We find that
boundWIMPs can only enhance the direct detection rate at
very small Q, and that the enhancement is largest at the
smallest recoil energies. For both the germanium and
xenon targets, the maximum enhancement to the total
event rate is �0:5% at Q ¼ 0. This enhancement is ac-
tually disproportionately large compared to the enhance-
ment in the local WIMP number density due to bound
WIMPs, which is n�;bound � 10�4n�;halo, since incoherence

in the WIMP-nucleon interaction for large nuclei sup-
presses the elastic scattering cross section for high-speed
halo WIMPs. We also show the experimental analysis
windows for the recent XENON10 and CDMS experi-

ments in this figure [32,64]. The current analysis threshold
of the CDMS experiment is too high to detect bound
WIMPs. If this experiment and its successor SuperCDMS
could push down their analysis thresholds, as other
germanium-based rare event experiments have (e.g.,
CoGeNT [33]), bound WIMPs may be observed. At Q ¼
4:5 keV, the current analysis threshold for the XENON10
experiment, the boost to the differential event rate is
�0:1%, and the total boost in their analysis window is
�10�3%. Thus, the bound particles only negligibly in-
crease the total event rate (integrating dR=dQ over the
range of Q’s allowed in the analysis window), if at all.
Estimates of the WIMP mass and cross section from direct
detection experiments will not be affected by solar-
captured particles.

VI. THE NEUTRINO SIGNAL FROM WIMP
ANNIHILATION IN THE EARTH

WIMPs may accumulate and annihilate in the Earth. The
signature of WIMP annihilation will be GeV to TeV neu-
trinos. Neutrino observatories (e.g., Antares [77], IceCube
[78]) are sensitive to the Čerenkov radiation of muons
created in charged-current interactions of muon neutrinos
in and around the experiment.
The neutrino flux at a detector on the surface of the Earth

is proportional to the annihilation rate � of WIMPs trapped

FIG. 18 (color online). The differential direct detection rate for
m� ¼ 500 AMU and �SI

p ¼ 10�43 cm2 assuming the DF is

dominated by spin-dependent scattering in the Sun with �SD
p ¼

10�36 cm2. The shaded region indicates the XENON10 analysis
region [32], and the vertical dashed line indicates the lower limit
to the CDMS analysis window (which extends to Q ¼ 100 keV)
[64].
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in the Earth. Finding � requires solving a differential
equation for the number of WIMPs N in the Earth, de-
scribed by

_N ¼ C� 2�; (79)

where the capture rate of WIMPs in the Earth by elastic
scattering is defined as

C ¼
Z

d3x
Z
vf<vescðxÞ

d3vd�
X
A

d�A

d�
nAðxÞvfðx; v; tÞ:

(80)

Here, d�A=d� is the WIMP-nucleus elastic scattering
cross section for nuclear species A, and v is the relative
speed between the WIMP and a nucleus. The number
density of species A is described by nAðxÞ. The cutoff in
the velocity integral reflects the fact that the WIMP’s speed
after scattering vf must be less than the local escape

velocity vescðxÞ.
If the WIMP DF is time-independent, the annihilation

rate goes as

� ¼ 1

2
Ctanh2ðt=teÞ; (81)

where

te ¼ ðCCaÞ�1=2 (82)

is the equilibrium time scale and Ca is a constant that
depends on the distribution of WIMPs in the Earth and is
proportional to the annihilation cross section.

While the contribution of bound particles to the direct
detection rate is expected to be minuscule, it is not un-
reasonable to expect that the bound particles could notice-
ably boost the neutrino-induced muon event rate from
WIMP annihilation in the Earth. Because the Earth’s gravi-
tational potential is shallow, it is difficult for halo WIMPs
to lose enough energy during collisions with the Earth’s
nuclei to become bound unless the WIMP mass is nearly
equal to the mass of one of the abundant nuclear species in
the Earth [79]. For WIMPs with mass m� > 400 GeV,

only WIMPs bound to the Solar System may be captured
in the Earth.

In Fig. 19, we show the capture rate (Eq. (80)) ofWIMPs
in the Earth as a function of mass for �SI

p ¼ 10�43 cm2 for

several different WIMP DFs. We use the potential and
isotope distributions in Encyclopædia Britannica [80] and
McDonough [81]. The lowest line shows the capture rate of
only the unbound WIMPs in the toy solar system. The
peaks in the capture rate correspond to points at which
the WIMP mass is nearly exactly the same as a one of the
common elements in the Earth, of which the iron peak
(mFe � 56 AMU ¼ 53 GeV) is especially prominent. The
long-dashed line represents the capture rate for both un-
bound particles and particles bound to the Solar System by
spin-independent scattering in the Sun. We show extrap-

olations to the regime in which spin-dependent scattering
dominates in the Sun with the short dash-dotted and long
dash-dotted lines, representing �SD

p ¼ 1:3� 10�39 cm2

and �SD
p ¼ 10�36 cm2 respectively. We included unbound

WIMPs in those estimates.
From Fig. 17, we note that the high plateaus in the DFs if

�SD
p > 10�39 cm2 are nearly identical; the main reason for

the difference in the capture rate is the low-speed DF of
Jupiter-crossing WIMPs. In fact, the capture rate is ex-
tremely sensitive to the DF of the lowest speedWIMPs. For
the relatively low capture rates in Fig. 19, te > t�, so � /
C2. Even small variations in the low-speed WIMP DF can
lead to large variations in the event rate at a neutrino
telescope.
To estimate a plausible range of muon event rates given

the capture rates in Fig. 19, we explore part of the minimal
supersymmetric standard model (MSSM) parameter space.
We can in principle explore other models, but the MSSM
yields, on average, somewhat larger spin-independent
cross sections. Given that iron is the most common element
in the core of the Earth, and oxygen, silicon, and magne-
sium the most common elements in the mantle, none of
which has spin-dependent interactions with WIMPs, only
in WIMP models with appreciable spin-independent inter-
actions will capture in the Earth be relevant.
We scan MSSM parameter space to estimate the

neutrino-induced muon event rate for neutrino telescopes
from neutralino annihilation in the Earth using routines

FIG. 19 (color online). Capture rate of WIMPs in the Earth as
a function of WIMP mass for �SI

p ¼ 10�43 cm2. All capture

rates include the capture of unbound halo WIMPs as well as the
capture of bound WIMPs.
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from the publicly available DarkSUSY v.5.0.2 code [82].
The code can also check whether a model described by a
set of SUSY parameters is consistent with current collider
constraints and relic density measurements. We describe
our scans in more detail in Paper III.

To estimate the muon event rate in a neutrino telescope,
we set the muon energy threshold to Eth

� ¼ 1 GeV. This is

somewhat optimistic for the IceCube experiment [36,83]
unless muon trajectories lie near and exactly parallel to the
PMT strings, but it is reasonable for the more densely
packed water experiments (e.g., Super-Kamiokande). The
signal drops sharply with increasing muon energy thresh-
old [84]. We assume that the material both in and surround-
ing the detector volume is either water or ice, since the
largest current and upcoming neutrino telescopes are im-
mersed in oceans or the Antarctic ice cap. We include all
muons oriented within a 30
 cone relative to the direction
of the center of the Earth.

In the following figures, we present muon event rates in
neutrino telescopes for various DFs. In Fig. 20, we show
the event rates for WIMPs unbound to the Solar System.
The solid black line on Fig. 20 represents the most opti-
mistic flux threshold for IceCube ([36] and references
therein). To show how the event rates depend on the
SUSY models for a given spin-independent cross section,
we mark the models on the figure according to which direct
detection experiments bracket the cross section for a given
neutralino mass. The open circles correspond to SUSY
models with �SI

p that lie above the 2006 CDMS limit

[85], which is shown in Fig. 4. The triangles are models
for which �SI

p lies between the 2006 CDMS limit and the

current best limits on �SI
p (a combination of XENON10

[32] and CDMS [64] limits), and squares denote models
consistent with all current direct detection experiments.

It appears that no halo WIMPs from any of the models
found in our scan of the MSSM consistent with experi-
ments would produce an identifiable signal in IceCube. We
cannot say that it is impossible for neutralino WIMPs from
the halo to be observed by IceCube or other km3-scale
experiments, since we are only sampling a small part of the
vast SUSY parameter space, but Fig. 20 suggests that it is
not likely.

In Fig. 21, we show the muon flux for WIMPs captured
in the Earth from the halo or from the population of bound
WIMPs. We calculate the muon event rate with the bound
DF for �SD

p ¼ 1:3� 10�39 cm2 no matter what the actual

�SD
p in the model is since this is near the maximum spin-

dependent cross section found in the parameter scans. �SI
p

is almost always small enough that the DF due to spin-
independent scattering in the Sun is subdominant to the
spin-dependent-derived DF. Therefore, the points in
Fig. 21 are almost entirely upper limits to the solar-
captured WIMP event rates. This figure is almost indistin-
guishable from Fig. 20. We find that the maximum en-
hancement over the halo WIMP event rate is of order 20%.

Thus, the solar-captured WIMPs produce almost no en-
hancement in the neutrino-induced muon event rate.
One caveat to this pessimistic result is that we estimated

the event rate using only the flux of muons from outside the
detector volume. However, Bergström et al. [84] suggest
that muons created inside the detector volume may domi-
nate the signal for smaller WIMPmasses (m� & 300 GeV)

in large (km3) telescopes, although the exact enhancement
has not been calculated. But, the enhancement of the event
rate due to bound WIMPs over halo WIMPs will be fixed
and small.

VII. DISCUSSION

A. Comparison with Damour and Krauss

Here, we compare the simulation results with the semi-
analytic predictions in [37].
Damour and Krauss neglected the population of WIMPs

on Jupiter-crossing orbits, arguing that it would be short-
lived because of the strong perturbations from Jupiter. This
argument is plausible, but it neglects the importance of
long-lived WIMPs on resonant orbits. The presence of
long-lived WIMPs on resonances suggests that Jupiter-
crossing WIMPs may be important for �SI

p � 10�41 cm2

(�SD
p � 10�39 cm2). However, suchWIMPs are unlikely to

FIG. 20 (color online). Muon event rates from halo WIMPs
unbound to the Solar System. Open circles mark MSSM models
for which �SI

p is above the 2006 CDMS limit [85], filled triangles

mark those with limits between that limit and the current best
limits on �SI

p (set by XENON10 for m� < 40 GeV [32] and

CDMS form� > 40 GeV [64]), and filled squares denote models

consistent with the best limits on elastic scattering cross sections.
The solid line is an optimistic detection threshold for the
IceCube experiment([36], and references therein).
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contribute significantly for much larger or much smaller
cross sections. For much larger cross sections, long-lived
WIMPs should be exceedingly rare; they are likely to
rescatter and thermalize in the Sun before Jupiter can
pull the perihelia out of the Sun. For smaller cross sections,
the rate of scattering ofWIMPs onto Jupiter-crossing orbits
is negligible.

Before we describe where our results diverge from
Damour and Krauss for a < aJ=2 � 2:6 AU, we reempha-
size the main points of their work. They found that the
main enhancement to bound WIMP DF came from a small
fraction, �0:1%, of WIMPs scattered onto orbits with
0:5 AU< a< 2:6 AU on Kozai cycles. They assumed
that these WIMPs, which originated in the outskirts of
the Sun, had lifetimes at least as long as the age of the
Solar System t� � 4:5 Gyr. For this range of semimajor
axes, we found two major differences between their work
and ours.

First, we find that WIMPs with 1:5 AU< a< 2:6 AU
are not well described by pure Kozai cycles due to signifi-
cant interactions with mean-motion resonances. Unless the
WIMP-nucleon cross section is large (�SI

p � 10�41 cm2,

allowed if m� & 5 GeV or m� * 10 TeV [32,64]; �SD
p �

10�39 cm2), most of the WIMPs in this semimajor axis
range have lifetimes �100 times longer than if the Sun
were an isolated body. However, this still does not increase
the DF at the Earth as much as if the 1% of WIMPs in this
semimajor axis band (the fraction of WIMPs initially
scattered onto 1:5 AU< a< 2:6 AU which were on
Kozai cycles in [37]; a higher fraction of large semimajor
axis WIMPs are on Kozai cycles than WIMPs with lower
semimajor axis) had lifetimes extending to t�.

To show why, we use the following argument. The
increase in the number density of WIMPs at the Earth n0
over the number density without tidal torques n is roughly
described by

n0

n
� 	fEt; (83)

where 	f is the fraction of WIMPs disturbed enough

from their orbits to have significantly longer lifetimes in
the Solar System. The factor Et describes the increase
in the WIMP lifetime. Typically, Et � minðt0med; t�Þ=
minðtmed; t�Þ, where tmed is the median lifetime of the
WIMPs in the absence of gravitational torques and t0med

is the median lifetime with gravitational torques. For our
simulations, 	f � 1 since most WIMPs with 1:5 AU<

a< 2:6 AU were on quasi-Kozai orbits and Et � 100,
implying that n0=n� 100. However, the Damour and
Krauss [37] prediction would be 	f � 0:01, and Et �
t�=ð103 yrÞ ¼ 4:5� 106, implying that n0=n� 4:5�
104, a factor of �500 larger than what we found in our
simulations.
However, the main reason that the density of bound

WIMPs is much smaller than estimated by Damour and
Krauss is that particles with a < 1:5 AU on Kozai cycles
have lifetimes that are much less than the age of the Solar
System. This is due to the fact that the typical integrated
optical depth per Kozai cycle is non-negligible, so a WIMP
undergoes only a finite number of Kozai cycles before
rescattering in the Sun. There are two important time scales
relevant to estimating the lifetimes of WIMPs on Kozai
cycles for a given WIMP-nucleon scattering cross section.
First, in the point-mass three-body problem, the period

of Kozai cycles are of order (cf. [86])

T / P2
J

P

M�
MJ

: (84)

Here, P denotes the orbital period of a particle and PJ

represents the orbital period of Jupiter. For typical parti-
cles, T & 105 yr.
The other important time scale is the time scale on which

the orbital perihelion is moved out of the Sun. Although the
optical depth in the outskirts of the Sun is extremely low
(�� 10�5 for an orbit with rp � 0:7R�, �� 10�6 for

rp � 0:9R� in the DAMA simulation, and even lower in

the other simulations), it takes many orbital periods for
Jupiter to pull the perihelia out of the Sun, hence making
the optical depth per Kozai cycle much larger than the
optical depth for a single passage through the Sun.
The rate of change in the angular momentum of aWIMP

is

dJ

dt
¼ KJ; (85)

where KJ is the torque on the particle orbit by Jupiter. The
torque is larger at aphelion ra for particles with a < aJ=2

FIG. 21 (color online). Muon event rates including bound
WIMPs. Symbols mark the same models as in Fig. 20.
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than at any other point in the orbit, so the average torque
can be approximated by its value at aphelion

KJ � rr�Jjr¼ra (86)

�GMJa
2

a3J
(87)

applied at aphelion, where we have expanded the potential
to the l ¼ 2 term in the spherical harmonic expansion
(Eq. (40)). The angular momentum must change by of
order

�J � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�R�

p
(88)

for perihelia to be external to the Sun. In reality, since
WIMPs on Kozai cycles originate at distances from the
center of the Sun r > 0:5R�, Eq. (88) should have a small
(� 0:1–1) coefficient in front. Therefore, if the torques are
coherent, the total time it takes for a WIMP to have its first
perihelion outside the Sun is

�t� �J

KJ

: (89)

Using the expressions for KJ and �J in Eqs. (87) and (88),
we find

�t

P
�M�

MJ

�
a

R�

��1=2
�
a

aJ

��3
(90)

� 104; for a ¼ 1 AU: (91)

Thus, a particle passes through the Sun many times during
each Kozai cycle. In the simulations, we find that the total
optical depth per Kozai cycle is�102–103 times the optical
depth at maximum eccentricity. Even if the optical depth at
maximum eccentricity is only 10�6–10�5 per orbital pe-
riod (typical of the DAMA simulation), the total optical
depth per Kozai cycle is �10�3. It only takes about 1000
Kozai cycles for such a particle to rescatter in the Sun. The
result is that the lifetimes of particles are typically less than
the age of the Solar System (� 100 Myr), and as such
cross the Earth’s orbit a factor of �50 times less than
predicted by Damour and Krauss.

To compare our results to Damour and Krauss, we use
Eq. (83). They find that 	f � 10�3 of WIMPs with

0:5 AU< a< 1:5 AU initially captured in the Sun will
be on a Kozai cycle. For their typical WIMP-proton cross
section �SI

p � 10�41 cm2, �� 10�3, so tmed � 103 yr, and

Et � 4:5� 106. Thus, Damour and Krauss expect n0=n�
103–104.

However, for the same cross section, we find t0med �
108 yr, such that Et � 105. Thus, n0=n� 100, which is
approximately the upper limit of what is found in the
simulations. In general, we find n0=n somewhat smaller
than�100, both because Et decreases as �p moves farther

below the equilibrium value (�SI
P � 10�42 cm2), and be-

cause the median lifetime of WIMPs not on Kozai cycles
but drawn from the same a and rp as the Kozai cycle

WIMPs is a bit higher than the population of WIMPs
with a < aJ as a whole.
We find that we can recover the Damour and Krauss [37]

estimates of the maximum increase in direct detection
experiments if the Kozai WIMPs in our simulations had
never scattered. For the DAMA simulation, the median
Kozai WIMP lifetime is just short of 100 Myr (Fig. 10).
If these WIMPs had instead rescattered on time scales
longer than the age of the Solar System, then we would
expect the DF to have been larger by a factor of �50–100.
We found that the maximum increase to the differential
direct detection rate dR=dQ (Eq. (77)) was �0:5% of the
halo event rate. If the DF were larger by this factor of 50–
100, then the bound WIMPs would add an additional 25–
50% of the halo event rate at smallQ, consistent with what
is found by Damour and Krauss.
We can also recover the large neutrino event rate from

WIMP annihilation in the Earth found by Bergström et al.
[38] using the Damour and Krauss results. We found that
for MSSM models consistent with limits on the WIMP-
nucleon elastic scattering cross section, the capture rate of
solar-captured WIMPs in the Earth was a maximum of
about 10% that of the halo, for m� � 100 GeV. If the DF

were a factor of 50–100 higher, the solar-bound WIMP
capture rate would be 5–10 times higher than the halo
capture rate. Since te > t� (Eq. (82)) for such capture rates,
the annihilation rate of WIMPs in the Earth would scale as
� / C2, leading to an increase in the neutrino flux in
neutrino detectors of 25–100 times the halo event rate,
consistent with what was found by Bergström et al.
However, we note that even if the enhancement were that
high, Fig. 21 shows that this signal would fall below the
IceCube flux threshold for WIMP models consistent with
experimental constraints.

B. Planets

Of course, all of the conclusions in this work are based
on simulations in a toy solar system, consisting of Jupiter
on a circular orbit about the Sun. Dynamics in the Solar
System are much more complex, both because Jupiter has
nonzero eccentricity and inclination and because other
planets are present. Bodies may have close encounters
with any planet within their aphelion, and may be influ-
enced by additional mean-motion and secular resonances
(e.g., [62,87–90]). The combination of these effects yields
far greater diversity of orbits in the real Solar System than
what we found in the toy solar system.
There are two qualitatively different ways in which a

more realistic treatment of the Solar System could change
the WIMP distribution at the Earth. First, additional parts
of phase space become accessible. While it is a triumph of
our numerical methods that the Jacobi constant is con-
served to high accuracy in our simulations, the conserva-
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tion of the Jacobi constant restricts the range of motion for
WIMPs. For example, WIMPs with a < aJ=2 experienced
only minor fluctuations in the semimajor axis because they
never encountered Jupiter closely enough to experience
large energy changes. Thus, according to the definition of
the Jacobi constant, Eq. (20), even WIMPs on quasi-Kozai
cycles only experienced relatively minor perturbations to
Jz. This meant that WIMPs not crossing Jupiter’s orbit had
heliocentric velocities perpendicular to the Earth’s motion,
restricting the geocentric speeds v * v� � 30 km s�1.
Jupiter-crossing WIMPs were restricted to geocentric
speeds v * 10 km s�1 in the toy solar system, which we
show in more detail in Chapter 5 of [52]. However, en-
counters with other planets can push geocentric WIMP
speeds below v ¼ 10 km s�1 by increasing Jz. While the
presence of a tail in the DF at low geocentric speeds is not
significant for direct detection event rates, it can have a
disproportionate effect on the capture rate of WIMPs in the
Earth.

Second, the overall number density of bound WIMPs
may change, depending largely on how efficient the planets
are at increasing (or decreasing) the lifetimes of WIMPs in
the Solar System (Eq. (83)). We will argue below that the
true number density ofWIMPs at the Earth is unlikely to be
much larger or smaller (within factors of a few) than that
estimated from simulations using a toy solar system.

We divide the discussion into three parts: (i) WIMPs
with initial ai < 1:5 AU, (ii) WIMPs with 1:5 AU< ai <
2:6 AU (quasi-Kozai WIMPs in the toy solar system), and
(iii) Jupiter-crossing WIMPs. Without further simulations,
though, it is not possible to tell exactly by how much the
DF will change. Hence, we also discuss the challenges
involved in simulating WIMPs in a more realistic solar
system.

1. a < 1:5 AU

The DF of solar-captured WIMPs could be greatly in-
creased if the planets other than Jupiter were to either
(i) pull a larger percentage of particles out of the rescatter-
ing peak and onto orbits that only occasionally enter the
Sun or (ii) extend the lifetimes of particles that already did
exit the Sun in the toy solar system simulations. Here, we
discuss three mechanisms for pulling additional WIMPs
out of the Sun: (i) close encounters with inner planets,
(ii) changes to the Kozai structure by other planets, and
(iii) additional secular resonances. Then, we will estimate
the lifetimes of such WIMPs.

Close encounters: Here, we describe how random-walk
encounters with planets can pull WIMPs that were in the
rescattering peak in our simulations onto long-lifetime
orbits in the Solar System. Close encounters with the inner
planets can alter the WIMP angular momentum with re-
spect to the Sun. Ignoring resonant phenomena in the Solar
System, the close encounters can be treated as a diffusion
problem.We use the rms change in angular momentum as a

function of time to estimate the time scales on which
WIMP perihelia are pulled out of the Sun. Modeling
WIMP-planet interactions as two-body encounters, each
time a WIMP of heliocentric speed v crosses a planet’s
orbit, the WIMP’s planet-centric speed u changes in the
direction perpendicular to u by

�u�GMP

bu
; (92)

where b is the impact parameter. Since WIMPs with a <
1:5 AU are on extremely eccentric orbits, to good approxi-

mation, u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ v2

P

q
, where v2

P ¼ GM�=aP. The

change in planet-centric speed can be related to the change
in heliocentric speed by

�v� u�u

v
(93)

¼ GMP

bv
: (94)

As a rough approximation, the change in angular momen-
tum per encounter is thus

�J � aP�v: (95)

We use the approximation that the angular momentum
undergoes a random-walk to estimate the time scale on
which a particle’s angular momentum changes by of order
�J� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM�R�
p

(Eq. (88)) in order for the orbital peri-
helion to lie outside the Sun. The rms change in angular
momentum will go as

hð�JÞ2i � Nð�JÞ2; (96)

where the particle encounters planet P with an impact
parameter b or less a total of N times in a time span t. In
general,

N � t

ðaP=bÞ2P�

; (97)

where P� is the orbital period of the WIMP. The factor

ðb=aPÞ2 is the probability per WIMP period that the WIMP
comes within a distance b of the planet. Thus, with some
rearranging, we find

hð�JÞ2i
ð�J�Þ2

� 10

�
MP

M�

�
2
�
aP
R�

��
a

a�

��3=2
�
2� aP

a

��1
�
t

yr

�
;

(98)

where the factor of 10 comes from the heretofore ignored
Coulomb logarithm (see [91]). The singularity at a ¼ aP=2
is artificial and would vanish in a more careful treatment of
WIMP-planet encounters. Thus, the time scale for WIMPs
to diffuse out of the Sun due to the action of planet P is

td=yr� 0:1

�
M�
MP

�
2
�
R�
aP

��
a

a�

�
3=2

�
2� aP

a

�
: (99)
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For both the Earth and Venus, M�=MP � 3� 105 and
R�=aP � 10�2, yielding a diffusion time td � 108 yr for
a� 1 AU. The time scales for Mercury and Mars are td �
1011 and �1010 years respectively. Thus, angular momen-
tum diffusion is dominated by the Earth and Venus. To
estimate the impact on the number density, we must find
	f, the fraction of WIMPs with a < 1:5 AU that may be

perturbed out of the Sun. For the DAMA simulation,
tmed � 103 yr, implying that 	f � tmed=td � 10�5. For

�SI
p ¼ 10�43 cm2, 	f � 10�3.

To estimate the impact of this population on the number
density of bound WIMPs, we must also estimate Et, the
ratio of the median lifetime including the gravitational
effects of the planets to the lifetime if the Sun were
isolated. Still ignoring resonances, we estimate the rms
time scale for WIMPs to be ejected from the Solar
System once the perihelia are outside the Sun,

hð�EÞ2i=E2 � hð�aÞ2i=a2 � 1: (100)

Since

�a ¼ a2

GM�
v�v; (101)

we use the expression for �v in Eq. (94) to find

�a ¼
�
MP

M�

�
a2

b
: (102)

Using the expression for N in Eq. (97), we find that

hð�aÞ2i
a2

� 10

�
MP

M�

�
2
�
a

aP

�
2
�
a

a�

��3=2
�
t

yr

�
; (103)

where again we have included a factor of 10 for the
Coulomb logarithm. The inner planets which will perturb
the orbits the most are Venus and the Earth, yielding
ejection time scales of tej � 1010 yr, longer than the age

of the Solar System. This yields Et � a few� 106 for the
DAMA simulation and Et � a few� 104 if �SI

p ¼
10�43 cm2. Combined, this would yield n0=n� a few�
10, where n is the number density of the rescattering peak
WIMPs in the toy solar system simulations. This is of the
same order as the increase in the bound WIMP DF due to
Kozai cycles in our simulations.

However, there are reasons to believe that Et is in fact
significantly smaller than these estimates suggest. First, if a
WIMP can diffuse out of the Sun, it can also diffuse back
in. Second, once a WIMP becomes Jupiter-crossing, it will
be ejected from the Solar System on time scales of �Myr,
which is essentially instantaneous.

Third, studies of Near Earth Object (NEO) orbits show
that once small bodies reach a * 2 AU, they are driven
into the Sun on rather short time scales, �1–10 Myr,
mostly by secular resonances but also by mean-motion
and Kozai resonances [87,89]. Given that WIMPs have
significantly higher eccentricity that the typical NEO, the

time scale to drive a WIMP back into the Sun via reso-
nances may be shorter. On the other hand, such WIMP
orbits have high speeds relative to the planets, while the
low eccentricity, prograde, low inclination NEO orbits
have relatively low speeds. Hence, NEOs will be more
efficiently gravitationally scattered onto the mean-motion
and secular resonances that drive up the eccentricity. In
spite of this latter effect, it is likely that WIMPs will be
scattered back into the Sun on time scales shorter than the
age of the Solar System. If the integrated optical depth in
each instance that the WIMP perihelion is driven into the
Sun (i.e., that the WIMP experiences many Sun-
penetrating orbits each time a resonance initially drives
the WIMP into the Sun) is large, the lifetime of the WIMPs
will be less than the age of the Solar System, hence
reducing Et.
Fourth, Gladman et al. [89] have identified additional

resonances that drive some NEOs of a < 1:9 AU into the
Sun without first boosting the semimajor axis above a ¼
2 AU. This will reduce Et for WIMPs with a < 1:9 AU.
However, WIMPs can survive many passes through the

Sun before scattering with solar nuclei onto uninteresting
orbits. The time scale for rescattering in the Sun depends
crucially on how many passages WIMPs can make through
the Sun before gravitational torques from the planets pull
the perihelia out again.
In general, it appears that the lifetimes of WIMPs with

a & 1:5 AU initially pulled out of the Sun by angular
momentum diffusion will be shorter than those predicted
by arguments based on energy diffusion, although quanti-
fying this is difficult without a full solar system
Monte Carlo simulation. Even if WIMP lifetimes were
dominated by diffusion instead of the effects listed above,
the boost to the DF would only just be comparable to that
due to Kozai cycles in the toy solar system.
Changes to the Kozai structure: Next, we consider

changes to the Kozai structure caused by planets other
than Jupiter. Both the inner and outer planets can affect
the structure of Kozai cycles. However, torques from the
outer planets other than Jupiter are unlikely to change the
number of particles whose perihelia exit the Sun. As
demonstrated in Eq. (87), the torque on a particle by a
faraway planet goes as K / MPa

2a�3
P , where MP and aP

are the mass and semimajor axis of the planet, and a is the
semimajor axis of the particle. A planet will provide a
torque

KP ¼ MP

MJ

�
aJ
aP

�
3
KJ (104)

relative to the torque from Jupiter. Even Saturn, the next
largest planet in the Solar System, and the second nearest
gas giant to the Earth, will only produce a torque about 5%
that from Jupiter. Jupiter dominates the tidal field for
particles that do not cross the orbits of the outer planets,
and so it dominates the structure of the Kozai cycles.
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Among the inner planets, Michel and Thomas [44] find
that the Earth and Venus can dominate the structure of the
Kozai cycles if the semimajor axis of the particle is near the
semimajor axis of either planet, the initial eccentricity of
the particle orbits is small, and the maximum inclination of
the orbit is low. However, WIMPs tend to have power-law
distributed semimajor axes, high eccentricities, and are
scattered isotropically in the Sun. Therefore, we expect
that the extra planets will not increase the number of
particles on Kozai cycles in the inner Solar System.

Secular resonances: There are additional secular reso-
nances in the full Solar System that do not appear in the
circular restricted three-body problem considered in this
work. These occur when the rate of change of either the
longitude of perihelion ( _$) or of the longitude of the

ascending node ( _�) of the WIMP is almost equal to that
of one of the planets. The evolution of NEOs is greatly
affected by the secular resonances with Jupiter and Saturn,
although several authors show that other resonances are
also important [87,89,92–94]. There are complications in
interpreting and extending results from NEO simulations.
For example, most analytic and numerical effort has fo-
cused on the regimes of prograde orbits with small e and I
relative to typical WIMPs since most observed NEOs have
such properties [95–97].

However, just like Kozai cycles, secular resonances
should be able to pull WIMP perihelia outside of the Sun
if the WIMP orbits originate in the outer layers of the Sun,
where the orbital precession due to the Sun’s potential is
small. Although there are neither analytic nor numerical
investigations of secular resonances for e > 0:995 relevant
for bound WIMP orbits, extrapolating from Williams and
Faulkner [98], it appears that for fixed a, the prograde
resonances lie at higher inclination for higher e, so secular
resonances will be relevant at high inclination, as for Kozai
cycles [98]. It is not clear how strong these resonances are,
although it is unlikely that they are much stronger than
Kozai resonances.

Lifetimes: Since Kozai WIMPs dominate the solar-
captured WIMP DF at the Earth in the simulations, it is
important to understand the stability of these orbits in the
true Solar System. There are two important questions:
(i) How long, on average, does it take for a WIMP to be
perturbed off a Kozai cycle? (ii) How does the integrated
optical depth per Kozai cycle change?

Since the diffusion approximation has nothing to say
about the stability of resonant orbits, we look to simula-
tions of NEOs again for insight. Unfortunately, NEO simu-
lations are either fundamentally short (< 100 Myr) or end
when NEOs hit the Sun, making it difficult to extract
estimates of the long-term stability of Kozai cycles.
There are a few hints from even those short simulations
with initial conditions significantly different from those of
WIMPs. First, Gladman et al. [89] find examples of NEOs
with a < 2 AU in Kozai cycles for tens of Myr in their

60 Myr integrations. The lifetimes of those NEOs are
limited only by the termination of the simulations at either
60 Myr or when the body hits the Sun. Thus, it seems
probable that WIMPs born on Kozai cycles will typically
stay there for at least of order of tens of millions of years,
and maybe significantly longer. If the time scale to perturb
a WIMP off a Kozai cycle occurs on time scales similar to
the ejection time scale (Eq. (103)), then WIMPs can exist
on Kozai cycles of order of the age of the Solar System. In
this case, the DF for WIMPs with a < 1:5 AU should be
relatively unchanged. On the other hand, if the typical time
scale for the removal of a WIMP from a Kozai cycle is
shorter (such that 	f becomes larger), the impact on the DF

depends crucially on what time scales those WIMPs are
then either ejected from the Solar System or rescattered in
the Sun.
The structural changes to the Kozai cycles in a more

complex solar system (a is no longer constant, frequent
switches between librating and circulating modes, emax and
Imax vary) mean that the integrated optical depth per Kozai
cycle may vary with time (see Figs. 7 and 8 in Gladman
et al. [89]). In principle, this could go up or down; in the
case of the quasi-Kozai cycles in our toy solar system, the
mean optical depth per Kozai cycle went up due to occa-
sional periods of very high eccentricity. However, given the
accessible phase space for WIMPs in a more realistic solar
system, it is quite possible that the mean integrated optical
depth per Kozai cycle will go down. In this case, theWIMP
lifetimes will be lengthened, although it is not clear by
what amount.
In summary, we predict that the number density of

WIMPs with ai < 1:5 AU will be within factors of a few
of the number densities found in the toy solar system, but
there are significant error bars in this prediction. We find
that the additional mechanisms to pull WIMPs out of the
Sun, angular momentum diffusion or extra secular reso-
nances, will at best yield the same number density as the
WIMPs on Kozai cycles in the toy solar system.
The total number density will likely depend largely on

the behavior of WIMPs that were confined to Kozai cycles
in the toy solar system. The DF will depend on the time
scales on which WIMPs are removed from Kozai cycles,
and the time scales for removal from Earth-crossing orbits
after they have been moved from Kozai cycles. If the
WIMP-nucleon cross section lies below the equilibrium
cross section (�SI

p � 10�42 cm2 or �SD
p � 10�40 cm2) for

the high plateau, perturbations by the inner planets will
reduce the Kozai WIMP DF unless both time scales are of
order of the age of the Universe and the mean integrated
optical depth per Kozai cycle is much smaller than in the
toy solar system.
However, for cross sections above the equilibrium cross

sections, the Kozai WIMP number density will tend to
increase. If both time scales are similar to the ejection
time scale found in Eq. (103), and if the mean optical
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depth per Kozai cycle is similar to what was found in the
toy solar system, the number density should be largely
unchanged from what we found in this work. If the time
scale for removal of WIMPs from Kozai cycles is signifi-
cantly less than the ejection time scale, or if gravitational
perturbations from the planets systematically decrease the
integrated optical depth per Kozai cycle, the DF could be
considerably larger.

2. 1:5 AU< a< 2:6 AU

Given that quasi-Kozai WIMPs have high eccentricity
and/or high inclination, they also will generically have
high-speed encounters with planets. Thus, we expect the
time scale for WIMPs to be removed from quasi-Kozai
orbits, tq, to be similar to that of WIMPs on Kozai cycles.

After being removed from a quasi-Kozai orbit, the WIMP
should hit the Sun again in�1–10 Myr, according to NEO
simulations, or get perturbed onto a Jupiter-crossing orbit
and get ejected.

We find that 	f � tmed=tq, and Et � tmax=tmed, where

tmax is t� if the perturbed WIMPs have lifetimes tl > t�,
and is equal to the median perturbed lifetime otherwise.
This implies that any boost or deficit in the number density
of WIMPs of 1:5 AU< a< 2:6 AU goes as n0=n�
tmax=tq, where n is in this case the number density of

quasi-Kozai WIMPs in the toy solar system simulations.
We expect that tmax � t�, and tq * 100 Myr (suggested by

the relatively short NEO simulations of Gladman et al.
[89]). Thus, n0=n & 50. If the time scale for the removal of
WIMPs from quasi-Kozai orbits is greater or the time scale
for rescattering is less than t� (quite possible given the
frequency with which NEOs hit the Sun), then n0=n will be
correspondingly less.

3. Jupiter-crossing WIMPs

Before discussing the effects of other planets on Jupiter-
crossing particles, we summarize the main features of the
Jupiter-crossing DF. The plateau in the DF was set by t�
107 yr, with growth in the spikes occurring at later times
due to long-lived Kozai and resonance-sticking particles.
The vast majority of Jupiter-crossing particles are lost by
ejection from the Solar System rather than rescattering in
the Sun for �SI

p & 10�41 cm2, although rescattering be-

comes more important for larger cross sections.
The outer planets are unlikely to affect the low plateau of

the Jupiter-crossing DF. Jupiter dominates the time scale
for Jupiter-crossing WIMPs to be pulled out of the Sun;
according to Eq. (99), td � 103 yr, while the time scale for
any of the outer planets to remove the perihelion of a
passing WIMP is at least an order of magnitude longer.
Jupiter also has the shortest WIMP ejection time scale
(Eq. (103)) by more than a factor of 10. It dominates the
Kozai structure of the types of orbits on which Jupiter-
crossing WIMPs originate, and its mean-motion reso-

nances are also by far the strongest in the Solar System
(unless the orbit of the test particle is exterior to the orbit of
Neptune) [42,62].
However, the outer planets may affect the spikes in the

Jupiter-crossing WIMP DF because WIMPs that are long-
lived in the toy solar system may not be long-lived in the
real Solar System. If the orbital node crossings occur near
one of the outer planets, the WIMP may be quickly per-
turbed from resonant motion and ejected. Thus, it is pos-
sible that the long-lifetime resonance features in theWIMP
DF will be less prominent than shown in this work,
although even in our simulations, the Jupiter-crossing
WIMPs are a subdominant contributor to the number den-
sity. However, shortening the WIMP lifetimes in this way
only strengthens our conclusion that the signal from bound
WIMPs in neutrino telescopes is unobservably small com-
pared to the signal from unbound WIMPs.
The inner planets may affect the low plateau of the

boundWIMP DF for the following reason. There is a small
probability that Jupiter-crossing WIMPs will be gravita-
tionally scattered by an inner planet onto an orbit that no
longer crosses Jupiter’s. If this effect were described by
diffusion, the net change to the bound WIMP number
density would be of order unity; the increase in lifetime
Et would be canceled by the decrease in 	t, since the time
scale for both scattering in or out of a Jupiter-crossing orbit
is the same if one inner planet dominates the gravitational
interaction cross section. However, the WIMPs could
spread into the low geocentric regions of phase space
inaccessible in the toy solar system, which is important
for capture in the Earth. The effect of secular or mean-
motion resonances on the size of the bound WIMP popu-
lation and the low-speed phase space density is unclear;
resonances could drive WIMPs into the Sun, as suggested
by NEO and asteroid belt simulations [87,89]. In this case,
the importance of resonances depends on how the typical
time for rescattering in the Sun relates to the other gravity-
dominated times in the Solar System.
In summary, we suggest that the height of the low

plateau of the Jupiter-crossing WIMP DF and the Jupiter-
crossing WIMP number density will be mostly unaffected
by the presence of additional planets in the Solar System,
although the inner planets may extend the plateau in phase
space. We expect that the long-lifetime peaks in the
Jupiter-crossingWIMP DFwill be lower in a more realistic
solar system due to interactions with the outer planets.

4. Future simulations

In order to test our arguments above and to definitively
determine the bound WIMP DF as a function of WIMP
parameters, especially at the low geocentric speeds inac-
cessible in the three-body problem but which are so im-
portant for WIMP capture in the Earth, we would like to
perform simulations of WIMP orbits using a more realistic
model of the Solar System. The numerical methods pre-
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sented in Sec. II and Appendix C should be applicable to a
more complex solar system with only minor tweaking, so
we are eager to use our methods for future simulations.
However, our experience with simulations in a toy solar
system, as well as phenomena highlighted in earlier por-
tions of this section, suggest specific challenges to this
program.

The main challenge will be to sample enough orbits to
have a statistically significant determination of the DF, and
to do this with finite computational resources. From our
simulations in the toy solar system, we have learned that it
is important to determine the long-lifetime tail of the
WIMP distribution, even if the overall fraction of WIMPs
in this population is small. The DFs were dominated by the
small number of particles on Kozai cycles (either a <
1:5 AU or on Jupiter-crossing orbits) and Jupiter-crossing
WIMPs on long-lifetime resonance-sticking orbits, about
�0:1% of all particles simulated. These rare but long-lived
WIMPs, especially the Jupiter-crossing population, also
dominated the uncertainties in the DF. However, even
getting to this level of uncertainty required �105 CPU-
hours per simulation. If we had simulated, say, an order of
magnitude fewer WIMPs, we may not have even identified
the long-lived Jupiter-crossing population.

A number of effects we identified earlier in this section
for orbits in a more realistic solar system will likely affect
small WIMP populations. For example, the fraction of
WIMPs with a < 1:5 AU leaving the rescattering peak
due to angular momentum diffusion will be small:
�10�5 for �SI

p ¼ 10�41 cm2 and �10�3 for �SI
p ¼

10�43 cm2. It will be necessary to simulate vast numbers
of WIMPs with a < 1:5 AU to get good statistics on this
population and to make sure we do not miss any important
effects.

We propose the following techniques to maximize the
statistics on the full solar system bound WIMP DF given
finite computing time. First, we propose a series of inter-
mediate simulations before simulating WIMPs in the com-
plete Solar System to highlight the importance of different
types of behavior. An initial step may be to simulate orbits
in a solar system containing Jupiter, the Earth, and Venus
(the planets that will likely dominate the behavior of
WIMPs with orbits interior to Jupiter’s) on circular, copla-
nar orbits, with the masses of the Earth and Venus scaled up
by 1 or 2 orders of magnitude. We choose a low number of
planets for simplicity in understanding the simulations, and
high masses for the inner planets in order to highlight the
diffusion processes described in previous sections, for
which the gravitational cross section scales as M2

P (e.g.,

Eq. (98)). The high planet masses should shorten the
diffusion time scales by a factor of M�2

P , which would
shorten the total integration time. One might then simulate
WIMP orbits in a solar system with massive inner planets
but with more realistic planet orbits (highlighting secular
resonances), or to simulate WIMP orbits in a solar system

with the same three planets on circular orbits, but for which
the masses of the Earth and Venus are closer to their true
values. One could then add the outer planets to the simu-
lation. It may be possible to learn how theWIMPDF scales
with the masses of the inner planets in the simulations with
higher inner planet masses so the DF could be extrapolated
to small planet masses without needing to simulate orbits
in a solar system with the true planet masses. Even if the
latter is not possible, we would learn enough from each
intermediate simulation to more efficiently run the next set
of simulations.
Second, we propose weighting the initial conditions to

achieve the best statistics with the least amount of compu-
tational time. The optimal weighting for each intermediate
simulation will be guided by the results from the previous.
For example, say that we learn from the first intermediate
stage we propose, a three-planet solar system with large
inner planet masses, that the population of WIMPs with
a < 1:5 AU with perihelia perturbed out of the Sun by
angular momentum diffusion is significant for neutrino
telescope event rates. Perhaps the effect is dominated by
WIMPs initially scattered into a very narrow range of
semimajor axes. If we then wish to simulate this population
in a solar system in which the Earth and Venus have their
true masses, it makes sense to focus the computational
resources on this narrow semimajor axis window.
Furthermore, in order to gain good statistics for this win-
dow, wewould need at least of order 103 long-lived angular
momentum-diffused WIMPs. For �SD

p ¼ 10�41, 	f �
10�5. If we want a sample of at least 103 WIMPs in this
population, we would need to simulate �108 WIMPs.
However, �0:1% of these WIMPs, or 105 total, should
initially be on Kozai cycles. In order to focus on the
angular diffusion population instead of the Kozai popula-
tion, we would simulate all �108 WIMPs for a short time,
�105–106 years, which would be sufficient to identify the
Kozai population. At that point, we would only continue
simulations of the WIMPs not identified as Kozai cycling.
Thus, we would have good statistics on one WIMP popu-
lation without burning resources on less important
populations.
Therefore, while we believe that getting good statistics

for estimating the event rates in neutrino telescopes will be
difficult, it will be possible given (i) a clever and adaptive
simulation strategy, and (ii) patience to acquire a sufficient
number of CPU cycles.

C. The halo distribution function

Throughout the simulations, we assumed that the halo
WIMP DF was smooth, nonrotating in an inertial
Galactocentric frame (lagging the Sun by a speed v� ¼
220 km s�1), and had a velocity dispersion of � ¼ v�=

ffiffiffi
2

p
.

These choices are motivated by N-body simulations of
Milky Way-mass dark matter halos [99,100]. However,
there are a few severe limitations to these N-body simula-
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tions. First, while we hope that the simulations are a good
representation of the real Milky Way, there is no way we
can directly measure the dark matter phase space density.
Second, these simulations do not include baryons, although
we know baryons dominate the gravitational potential
within the solar circle. Simulations that include a treatment
of baryonic disks and the accretion of dwarf galaxies
suggest that the local phase space structure of dark matter
depends sensitively on the accretion history of the
Milky Way [101]. Third, dark matter is fundamentally
clumpy, with the smallest halos corresponding to the size
of the free-streaming scale [102–104], which for a SUSY
WIMP corresponds to about M�M� or length scales of
�10�2 pc. While high-resolution simulations show that
very little (� 0:1–0:5% [105,106]) dark matter within
the solar circle is in resolved subhalos, these simulations
can only probe subhalo masses down to M� 105–106M�.
There is thus an uncertainty in the degree of clumpiness
spanning more than 10 orders of magnitude in mass [55].
Here, we describe how the DF will change if any of the
assumptions of our fiducial halo model are challenged.

We note that the primary change to the DF will be in
normalization, not shape. The only way to change the
shape of the bound WIMP DF relative to that calculated
for our fiducial model for fixed m� and elastic scattering

cross section is to change the distribution of semimajor
axes or locations of initial scatter in the Sun onto Earth-
crossing orbits. The former is robust over several orders of
magnitude inWIMPmass. The latter may be significant for
large (m� * 1 TeV) WIMP masses if the velocity phase

space is radically different from the fiducial model, but will
not be significant as long as there is nontrivial phase space
density of WIMPs at low heliocentric speeds.

However, the height of the DF is proportional to _N�,
which is increasingly sensitive to the low-speed end of the
halo DF for increasingly massive WIMPs. This is because
the halo WIMP energy is E ¼ m�v

21=2 (where v1 is the

heliocentric speed in the absence of the Sun’s gravity) but
the maximum energy a WIMP can lose in a collision with a
solar nucleus is Qmax ¼ 2�2

Av
2ðrÞ=mA, so it becomes hard

to scatter high-mass WIMPs, high-energy WIMPs onto
bound orbits. If the low-speed phase space density were
increased, _N� would increase, and the bound WIMP den-
sity would increase relative to the halo density. This could
be achieved, for example, if the WIMP halo were rotating
in the same sense as the stellar disk, reducing the relative
speed between the halo and the Sun. Conversely, if the low-
speed halo WIMP density were decreased, the bound
WIMP population would be even more insignificant with
respect to the halo.

While clumpiness in the halo may affect the halo DF at
the Earth (although it is unlikely that a subhalo is currently
passing through the Solar System [55]), it will have sur-
prisingly little effect on the DF of WIMPs bound to the
Solar System if the rate at which clumps pass through the

Solar System is either much higher or lower than the
equilibrium time scale for the bound WIMP DF. In the
former case, as long as the velocity distribution of the
ensemble of subhalos is similar to that of the smooth DM
component (if the rate at which clumps enter the Solar
System is high), the boundWIMP DF is proportional to the
time-averaged capture rate in the Sun, fðvÞ / h _N�i. This is
unlikely to be significantly different from _N� calculated
for a purely smooth halo unless the Solar System is deeply
embedded in a dense subhalo. In the latter case, passages of
a subhalo through the Solar System are so infrequent that
the DF is dominated by the smooth component in the halo.
Diemand et al. [104] estimate that if all Earth-mass

subhalos survive intact to the present, the rate at which
subhalos pass through the Solar System is �10�4 yr�1,
with each passage lasting �50 yr. Diemand et al. [107]
and Faltenbacher and Diemand [108] find that the velocity
distribution of subhalos is only slightly biased with respect
to the smooth component, with the major discrepancy
being a decrement of subhalos with low Galactocentric
speeds due to merging. The escape velocity from a subhalo
is much smaller than either any characteristic speed in the
Solar System or characteristic speeds in the solar neighbor-
hood, making it unlikely that the Sun is bound to a subhalo.
Thus, even if dark matter in the solar neighborhood were
highly clumpy, the bound WIMP DF would resemble that
estimated in this work.

VIII. CONCLUSION

In conclusion, we highlight the key points of this paper:
(1) We have developed numerical methods to efficiently

track the highly eccentric orbits of solar-captured
WIMPs from the initial scatter in the Sun to up to
4.5 Gyr without secularly increasing errors in the
Jacobi constant and without numerical precession.
These methods will be employed in future simula-
tions of WIMPs in a more realistic solar system, and
may be used to simulate eccentric orbits in other
hierarchical systems in which one central body
dominates the gravitational potential.

(2) We have characterized the bound WIMP DF at the
Earth as a function of WIMP mass m� and spin-

independent �SI
p and spin-dependent �SD

p elastic

scattering cross sections. For the range of masses
m� ¼ 60 AMU� 500 AMU, we find very little

variation in the WIMP DFs aside from the mass-
dependent rate at which WIMPs scatter onto Earth-
crossing orbits. In contrast to Damour and Krauss
[37], we find that the optical depth in the Sun to
WIMPs imposes a ceiling to the size of the WIMP
DF. For WIMPs that do not intersect Jupiter’s orbit,
the equilibrium DF is reached for �SI

p � 10�42 cm2

and �SD
p � 10�40 cm2. For WIMPs that intersect

Jupiter’s orbit, equilibrium is reached for �SI
p �

10�38 cm2 or �SD
p � 10�36 cm2.
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(3) The maximum phase space density of WIMPs at the
Earth consistent with current constraints on the
elastic scattering cross section is significantly less
than that of WIMPs unbound to the Solar System.
Even though boundWIMPs occupy the low-velocity
phase space that disproportionally contributes to the
event rates in both direct detection experiments and
neutrino telescopes, the total enhancement to those
event rates is negligible. For direct detection experi-
ments, we find that the maximum enhancement to
dR=dQ occurs at Q ¼ 0 and is & 0:5% of the halo
event rate. For the XENON10 experiment, we pre-
dict the maximum enhancement integrated over
their analysis window is of order 10�3%. In the
MSSM, we find less than order unity enhancements
to the neutrino-induced muon event rate in neutrino
telescopes from the annihilation of solar-captured
WIMPs in the Earth.

(4) Although we only include one planet (Jupiter) in our
toy solar system, we do not expect that our conclu-
sions would be significantly different than if we had
included more planets in our simulations. If the
other planets are efficient at putting solar-captured
WIMPs at geocentric speeds v < 30 km s�1, there
may be a large increase in the event rate at neutrino
detectors due to WIMP annihilation in the Earth.
However, it is unlikely that the boost will be suffi-
cient to move the event rate above the detection
threshold for the IceCube neutrino telescope unless
the haloWIMPDF is significantly different from the
fiducial model.

In two other papers in this series, we examine the impact of
the finite optical depth in the Sun and gravitational inter-
actions between WIMPs and Jupiter on the rate of WIMP
annihilation in the Sun (Paper II); and we characterize the
population of WIMPs bound to the Solar System by gravi-
tational interactions with Jupiter (Paper III).
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APPENDIX A: WIMP ELASTIC SCATTERING

1. Spin-independent scattering

For particle physics models of dark matter, the general
spin-independent (‘‘SI’’; scalar) scattering cross section

has the form [1,2]:

d�SI

dQ
¼ 2mA

�g2A
½Zfp þ ðA� ZÞfn�2F2

SIðQÞ; (A1)

where Q is the energy transferred from the WIMP to a
nucleus of mass mA (with atomic mass A and charge Z)
during the scatter, gA is the relative velocity between the
particles, fp and fn are the proton and neutron effective

couplings to the WIMP, and FSIðQÞ is a nuclear form
factor. The nuclear form factor used in this set of calcu-
lations is of the standard exponential form,

FSIðQÞ ¼ e�Q=2QA; (A2)

where the coherence energy is

QA ¼ 1:5@2

mAR
2
A

; (A3)

and the coherence length (the radius of the nucleus A) is set
to

RA ¼ 1 fm½0:3þ 0:91ðmA=ðGeV=c2ÞÞ1=3�: (A4)

The nuclear form factor quantifies the extent to which the
WIMP interacts coherently with the nucleus as a whole (if
the de Broglie wavelength of the nucleus is small), or
incoherently with the nucleons individually.
It is often more convenient to use the center-of-mass

differential cross section. Using the functional form of the
energy transfer

Q ¼ 2
�2

A

mA

g2A

�
1� cos�

2

�
; (A5)

where

�A ¼ mAm�

mA þm�

; (A6)

the differential cross section is

d�SI

d�
¼ 1

2�

dQ

dðcos�Þ
d�

dQ
(A7)

¼ 1

2�

�2
A

mA

g2A

�
d�

dQ

�
(A8)

¼ 1

4�

4

�
�2

A½Zfp þ ðA� ZÞfn�2F2ðQÞ (A9)

¼ �SI
A F

2ðQðcos�ÞÞ
4�

: (A10)

We have parametrized the strength of the interaction by
�A. If fp ¼ fn, which is often a good approximation for

both supersymmetric and UED models,

�SI
A ¼ 4

�
�2

AA
2f2n; (A11)
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so that the strength of the coupling between a nucleus and
the WIMP depends only on the atomic number of the
nucleus. This coupling can also be parameterized in terms
of the strength of the WIMP-proton (or -neutron) cross
section:

�SI
A ¼ �2

A

�2
p

A2�SI
p ; (A12)

which is useful since experimental constraints on the spin-
independent cross section are reported in terms of the
WIMP-nucleon cross section. In the limit of high WIMP
mass,

�A ! mA (A13)

�p ! mp (A14)

�SI
A ! m2

A

m2
p

A2�SI
p (A15)

� A4�SI
p ; (A16)

where the last approximation can be made since mA �
Amp.

2. Spin-dependent scattering

The likely WIMP candidates for both the MSSM (neu-

trino �) and UED (Kaluza-Klein photon Bð1Þ) theories can
have elastic axial-vector interactions with quarks, via
squarks in the MSSM or the lightest Kaluza-Klein excita-

tion of quarks qð1Þ in UED models. In both cases, the spin-
dependent (SD) WIMP interaction with a nucleus of
atomic number A can be parametrized as [1,3]

d�SD

dQ
¼ �� 2mA

�g2A
�2JðJ þ 1ÞF2

SDðjqjÞ; (A17)

where

� ¼
8><
>:
8G2

F MSSM
1
6

g04
ðm2

Bð1Þ
�m2

qð1Þ
Þ2 UED (A18)

parametrizes the coupling in each theory. Here, g0 is the
coupling constant for the B boson in electroweak theory,

and mBð1Þ and mqð1Þ are the masses of the Bð1Þ and qð1Þ

particles, respectively. The other quantities in Eq. (A17)
depend on nuclear properties. Here J is the total angular
momentum of the nucleus, and

� ¼ 1

J
½aphSpi þ anhSni�; (A19)

where an and ap describe the WIMP couplings to the

neutron and proton, and hSni and hSpi are the spin expec-

tation values for the neutrons and protons within the nu-
cleus. The couplings an and ap are derived from specific

WIMP models, while the spin expectation values must be
calculated using detailed nuclear physics models (e.g.,
[1,109–111]), and calculations using different techniques
often yield different results. The function FSDðjqjÞ is the
spin-dependent nuclear form factor as a function of the
momentum transfer jqj. Its form must be carefully calcu-
lated for each nucleus of interest ([112], and references
therein).
There are several important differences between the

form of the spin-dependent and spin-independent cross
sections that have major implications for detection experi-
ment design. The first point is that nuclei with even num-
bers of protons and neutrons will have zero spin-dependent
interactions with WIMPs. Second, the spin-dependent
cross section has a much weaker dependence on the
atomic mass than the spin-independent cross section.
This is apparent if Eq. (A17) is written in the same form
as Eq. (A10),

d�SD

d�
¼ 1

2�

dQ

d cos�

d�SD

dQ
(A20)

¼ 1

2�

�2
Ag

2
A

mA

2mA

�g2A
JðJ þ 1Þ��2 � F2

SDðjqjÞ (A21)

¼ 1

4�
�SD

A F2ðjqjÞ; (A22)

where

�SD
A ¼ 4

�
�2

AJðJ þ 1Þ��2: (A23)

In the limit that mWIMP � mA,

�SD
A / A2; (A24)

unlike

�SI
A / A4 (A25)

for the spin-independent case. Therefore, even if �SD
p >

�SI
p or �SD

n > �SI
n , the spin-independent cross section may

dominate for heavy nuclei. The spin-dependent cross sec-
tion could be large if J scaled with A (since �A / J2), but
this is not the case for heavy nuclei. Note that, in contrast to
predictions for spin-independent scattering, the spin-
dependent WIMP-proton and WIMP-neutron cross sec-
tions are generally not the same to within a few percent.

APPENDIX B: SUBSEQUENT SCATTERING IN
THE SUN

Each time a particle passes through the Sun, there is a
probability

Pscatt ¼ 1� e�� (B1)

that it will be scattered at least once, given the optical depth
� for one jaunt through the Sun. Since the WIMP-nucleon
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cross sections relevant to this paper imply low opacity in
the Sun (� & 10�3), the scattering probability per solar
passage is well approximated by

Pscatt ¼ 1� ð1� �þOð�2ÞÞ (B2)

� �: (B3)

Instead of calculating the scattering probability � on the
fly, we create a table for optical depth indexed by the
semimajor axis and Kepler perihelion of the orbit, and
then interpolate for a particular orbit through the Sun.

The optical depth in differential form is given by

d�

dldQ
¼ X

A

d�A
dldQ

(B4)

¼ X
A

nAðlÞd�A

dQ
; (B5)

where l denotes the particle trajectory, nAðlÞ is the number
density of element A in the Sun at position l along the path,
and d�A=dQ is the differential elastic scattering cross
section with respect to the energy transfer Q between
element A and the WIMP. Since we assume that spin-
independent scattering dominates in the Sun, the integral
over energy transfer can be computed using the form of the
differential cross section in Eq. (A1) and the form factor in
Eq. (A2):

d�

dl
¼ X

A

nAðlÞ
Z Qmax

0

d�A

dQ
(B6)

¼ X
A

nAðlÞ 2mA

�vðlÞ2 ½Zfp þ ðA� ZÞfn�2

�QAð1� e�Qmax;A=QAÞ; (B7)

where we have used the approximation of a zero-
temperature Sun to set vrel ¼ vðlÞ. Using Eq. (61), we
find the maximum energy transfer

Qmax;A ¼ 2
�2

A

mA

vðlÞ2: (B8)

The integration of Eq. (B7) is greatly simplified because
the torque on the particle by Jupiter is negligible in the Sun
compared to the rest of the orbit. Therefore,

dl ¼ vðtÞdt (B9)

¼ vðtðrÞÞ
��������dt

dr

��������dr (B10)

¼ vðrðtÞÞ
jvrðrðtÞÞj dr; (B11)

where

vðE; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E���ðrÞ�

q
(B12)

is the particle’s speed and

jvrðE; J; rÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E���ðrÞ� � J2=r2

q
(B13)

is the radial velocity of the particle. Thus,

d�ðE; JÞ
dr

¼ vðrÞ
jvrðrÞj

d�

dl
; (B14)

and the total optical depth along the path is

�ðE; JÞ ¼ 4

�

X
A

mAQA½Zfp þ ðA� ZÞfn�2

�
Z R�

rp

dr
nAðrÞð1� e�2�2

A
v2ðE;rÞ=mAQAÞ

vðE; rÞjvrðE; J; rÞj : (B15)

In order to express the optical depth � as a function of
the semimajor axis and eccentricity, We use the relations

E ¼ �GMc

2a
(B16)

J2 ¼ �GMcaðe2 � 1Þ; (B17)

where Mc ¼ �M� is the central mass, as determined by
Eq. (34), and the upper (lower) sign is used for hyperbolic
(elliptical) orbits. Therefore,

~vða; rÞ ¼ vða; rÞ= ffiffiffiffiffiffiffiffiffiffiffi
GMc

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
� 1

2a
� ~��ðrÞ

�s
(B18)

j~vrða; e; rÞj ¼ jvrða; e; rÞj=
ffiffiffiffiffiffiffiffiffiffiffi
GMc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
� 1

2a
� ~��ðrÞ

�
 aðe2 � 1Þ

r2

s
; (B19)

where ~�� ¼ ��=GMc. If we insert these expressions into
Eq. (B15),

�ða; eÞ ¼ 4

�

1

GMc

X
A

mAQA½Zfp þ ðA� ZÞfn�2

�
Z R�

rp

dr
nAðrÞð1� e�2�2

A
GMc ~v

2ða;rÞ=mAQAÞ
~vða; e; rÞj~vrða; e; rÞj :

(B20)

We make a look-up table for � using for the choice � ¼ 1,
and then scale � by a factor of��1. There is also a factor of
� in the exponent. However, its impact on � is negligible
since j�� 1j & 10�6–10�5.
If the particle scatters in the Sun, its new phase space

coordinates can be determined by sampling the scattering
distribution
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d�ðE; JÞ
drd�

¼ X
A

nAðrÞ vðE; rÞ
jvrðE; J; rÞj

d�A

d�
; (B21)

where � is the center-of-mass scattering solid angle.

APPENDIX C: DISTRIBUTION FUNCTION
ESTIMATORS

In this section, we describe the outputs of the simula-
tions, and how to estimate the bound distribution function
from these data.

Our method is to find the average DF along Earth’s path.
We record the phase space coordinates of particles passing
near the Earth’s orbit. Since we treat the Earth’s orbit as
circular and coplanar with Jupiter’s orbit, this means that
we focus on particles passing through the wall of a cylinder
of height 2zc centered on the reference plane and radius a�
from the Sun. Thus, the raw data product is the flux of dark
matter particles through the Earth’s orbit as a function of
time.

To convert the flux at position x and time t, Fðx; tÞ, into a
DF fðx; v; tÞ, we assume that the time scale of variation in
the distribution function is much larger than the typical
dynamical time scale of particles in the Solar System
(� year). We adopt the usual argument (cf. [113]) to relate
the flux as a function of velocity dF=dv to the distribution
function. Consider particles passing outward through a
wall of area �A with a unit vector normal to the surface
n̂. For particles with velocity between v and vþ �v, the
particles that pass through the wall in time �t inhabit a
prism volume of base �A, long side v�t, and height �tv 	
n̂. The total number of particles with velocity between v
and vþ �v passing out through the surface �A per unit
time �t is

dFðx; tÞ
dv

dv�A�t ¼ fðx; v; tÞðv�tÞ 	 ð�An̂Þdv (C1)

¼ fðx; v; tÞv cosdv�A�t; (C2)

where cos ¼ v 	 n̂=v. In the simulations, we do not care if
the particles pass inward or outward through the wall of the
cylinder, so we estimate the distribution function from the
simulations using��������dFðx; tÞ

dv

��������dv�A�t ¼ fðx; v; tÞvj cosjdv�A�t; (C3)

or

fðx; v; tÞ ¼
��������dFðx; tÞ=dvv cos

�������� (C4)

¼
��������dFðx; tÞ=dvvr

��������; (C5)

since vr ¼ v cos is the velocity component normal to the

wall of the cylinder (i.e., the radial component of the
velocity).
We now describe in detail how to estimate the distribu-

tion function from the data obtained in the simulations. For
each simulation, we start integrating the orbits of Np

particles (Table I) at time ti since the birth of the Solar
System. Particles scatter onto bound, Earth-crossing orbits
at a rate _N�ðtiÞ, where ti is the time at which the particle
first scatters onto a bound orbit. In principle, _N� can vary
with time if the halo dark matter distribution function
varies on time scales shorter than the age of the Solar
System, but we assume that the halo distribution function
is static, so that _N�ðtiÞ ¼ _N�.
Each time a particle � crosses through the cylinder wall,

we record the time of passage t�� (here, � labels the

particular passage of the particle � through the Earth’s
orbit) since the start of the simulation at ti, position x��,

and velocity v��. The height zc is chosen to be larger than

the radius of the Earth R� in order to improve statistics, but
is small enough (zc � 1 AU) so that the estimate should
be unaffected by gradients in flux as a function of height
above the reference plane.
Each particle crossing can be characterized as one point

in a six-dimensional phase space: n��, the vector describ-

ing the orientation ð�; zÞ of the particle when it crosses the
cylinder of radius a�; the three components of the velocity
v��; and t��. The vector n�� only has two independent

coordinates since the radial component of x�� is fixed. We

estimate the flux of particles passing through a patch of the
cylinder at position n in the cylinder at time t since the
birth of the Solar System, for which the particles had initial
scattering time in the Sun at time ti, with velocity between
v and vþ dv, as

dF̂

dvdti
¼

�
1

�Z
d�

XNp

�¼1

wð�Þ�ð�� ��Þ
� XNp

�¼1

XN�

�¼1

_N�wð��Þ

� �ð6Þðn� n��; v� v��; t� ðti þ t��ÞÞ (C6)

for each experiment. Here, F̂ denotes that this is an esti-
mator for the true flux F. The total flux can be estimated by
integrating Eq. (C6) over ti and v.N� is the total number of
times particle � crosses the Earth’s orbit. The weight
function wð�Þ describes how we sample the initial condi-
tions � relative to the initial particle distribution at the first
scatter. The denominator of Eq. (C6) normalizes the flux.
Since we sample the bound, Earth-crossing WIMPs to

the same density as they scatter onto such orbits in the
Solar System, w ¼ 1 for each particle �. Thus,

XNp

�¼1

wð�Þ�ð�� ��Þ ¼
XNp

�¼1

�ð�� ��Þ (C7)

so that
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Z
d�

XNp

�¼1

wð�Þ�ð�� ��Þ ¼ Np; (C8)

where the integral over � spans the entire range of ��. The
flux at position n as a function of velocity, observation
time, and initial time ti is

dF̂

dvdti
¼ _N�

Np

XNp

�¼1

XN�

�¼1

�ð6Þðn� n��;v� v��; t� ðti þ t��ÞÞ:

(C9)

We are interested in the flux arising from particles enter-
ing the Solar System at all times prior to the present, not
just at a particular time ti. Therefore, to estimate the total
flux in a unit volume of velocity-space, one must integrate
Eq. (C6) over ti, in the range between the time of the
formation of the Solar System and the time at which the
flux is measured,

dF̂

dv
¼

Z t

0
dti

dF̂

dvdti

¼ _N�
Np

XNp

�¼1

XN�

�¼1

�ð5Þðn� n��; v� v��Þ�ðt� t��Þ:

(C10)

In order to get better statistics for the flux through the
Earth, we average the flux in Eq. (C10) over all positions n
on the cylinder wall. In this case,

Z
cylinder

d2n ¼ �A ¼ 2� 2�a�zc; (C11)

the whole area through which we count particle crossings.
This implies that the averaged flux is

d �̂Fðn; tÞ
dv

¼ 1

�A

Z
cylinder

d2n
dF̂

dv
(C12)

¼ _N�
Np

1

�A

XNp

�¼1

XN�

�¼1

�ð3Þðv� v��Þ�ðt� t��Þ:

(C13)

In effect, we are averaging the flux over the Earth’s orbit.
We find the local estimate of the distribution function by
inserting Eq. (C13) into Eq. (C5).

To find the distribution function in the frame of the
Earth, we make a Galilean transformation u ¼ v� v�,
where v� is the circular velocity of the Earth about the
Sun, to find

f̂ �ðx;u; tÞ ¼ f̂ðx;uþ v�; tÞ: (C14)

1. Estimating distribution functions in practice

In practice, there are 108–109 Earth-orbit crossings in
each simulation. In order to present and use the DFs in a
manageable form, we use a small zc and bin the distribu-
tion function in velocity-space. We set zc ¼ 10R�, but
using different zc up to zc ¼ 10�3 AU (the largest value
we tried) yields consistent DFs, demonstrating the desired
result that the estimate for the DF does not depend on the
choice of zc.
The most straightforward way of estimating uncertainty

in the distribution function and any calculations derived
from it is to use bootstrap resampling. Bootstrap resam-
pling yields accurate parameter and error estimation if the
data sample the underlying distribution well. In each re-
sampling, we select Np initial conditions with replacement

from the Np WIMPs. We then calculate all distribution

functions and event rates using the trajectories and cross-
ings of the new sample as described in the previous section.

2. The distribution function in the Earth

In the previous section, we found DFs in the absence of
the Earth’s gravity. However, since both direct detection
experiments and neutrino telescopes are sensitive to parti-
cles within the potential well of the Earth, it is necessary to
find the mapping between the velocity coordinates at dis-
tances� 1 AU from the Earth but well outside the Earth’s
gravitational field and those at distances at which the
Earth’s gravity is significant. Let v ¼ ðv; �;�Þ denote the
velocity outside the Earth’s gravitational field in an inertial
frame centered on and moving with the Earth, with the
polar axis along the Earth’s direction of motion, and the
velocity vloc ¼ ðvloc; �loc; �locÞ be in the Earth’s gravita-
tional field at a position R ¼ ðR; �; c Þ from the Earth’s
center, where vloc is also in an inertial frame centered on
and moving with the Earth. In these coordinates, the angles
�, �loc, and � are measured relative to the direction of
motion of the Earth with respect to the Sun, and the �,
�loc, and c angles are azimuthal.
Since the particle energy E and angular momentum J

with respect to the Earth are approximately conserved near
the Earth, the local DF floc of dark matter in the gravita-
tional field of the Earth can be written as

flocðR; vlocÞ ¼ fðvðvloc;RÞÞ: (C15)

Here, fðvÞ is the dark matter DF in the frame of the Earth
but far from the Earth’s center. Equation (C15) is a restate-
ment of Liouville’s theorem. The number of particles in an
interval between ðR; vlocÞ and ðRþ dR; vloc þ dvlocÞ is

dN ¼ flocðR; vlocÞd3Rd3vloc: (C16)

If the DF fðvÞ were isotropic, then the mapping between
velocity coordinates would be greatly simplified. In such a
situation, the speeds v and vloc are related through conser-
vation of energy,
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E ¼ 1

2
v2 ¼ 1

2
v2
locðRÞ þ��ðRÞ; (C17)

assuming that the Earth’s potential �� is spherical.
Therefore, the number of dark matter particles with posi-
tions betweenR andRþ dR and speeds between vloc and
vloc þ dvloc would be represented as

dNiso ¼ 4�v2
locfðvðR; vlocÞÞd3Rdvloc: (C18)

However, the DFs are not isotropic in the frame of the
Earth. Thus, it is necessary to find v in terms of the velocity
vloc at positionR. The speeds are still related by Eq. (C17),
so that v is a function of only two variables, vloc and R. The
angular coordinates ð�;�Þ, however, will now be a com-
plicated function of all six local phase space coordinates,
so that the number of particles at ðR; vloc) is described as

dN ¼ fðvðR; vlocÞ; �ðR; vlocÞ; �ðR; vlocÞÞR2v2
locdR

� d cos�dc dvlocd cos�locd�loc: (C19)

To relate the angular coordinates, we make use of an-
gular momentum conservation as well as energy conserva-

tion, and the fact that the problem reduces to a spherically
symmetric two-body problem. Since orbits are confined to
a plane, R and vloc are a set of basis vectors for the orbital
plane if the vectors are not parallel. Then, in general, the
position Rfar and velocity v far from the Earth can be
described by

R far ¼ �Rþ �vloc; (C20)

v ¼ Rþ �vloc; (C21)

where the coefficients �, �, , and � only depend on the
local coordinates R and vloc, E, and J. If the Earth’s
potential were purely Keplerian, � and � would be the
Gauss f and g functions (see Sec. 2.5 in [57]), with  ¼ _�
and � ¼ _�. The functional form of the coefficients is
different in the case of non-Keplerian spherically symmet-
ric potentials, but the general framework of Eqs. (C20) and
(C21) holds. Therefore, Eqs. (C20) and (C21) describe the
mapping between coordinates in the gravitational field of
the Earth to those outside the Earth’s sphere of influence.
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