
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009 2931

Error-Correcting Codes for Automatic Control
Rafail Ostrovsky, Yuval Rabani, and Leonard J. Schulman

Abstract—Systems with automatic feedback control may con-
sist of several remote devices, connected only by unreliable com-
munication channels. It is necessary in these conditions to have
a method for accurate, real-time state estimation in the presence
of channel noise. This problem is addressed, for the case of poly-
nomial-growth-rate state spaces, through a new type of error-cor-
recting code that is online and computationally efficient. This so-
lution establishes a constructive analog, for some applications in
estimation and control, of the Shannon coding theorem.

Index Terms—Control theory, Lovász local lemma, state estima-
tion, tree codes.

I. INTRODUCTION
A. Motivation

I N many automatic control applications, a device (an engine,
a terrestrial or aerial mobile robot, a sensor, etc.) commu-

nicates with a base station that controls its actions. The com-
munication may be wireless or wired, synchronous or packet-
based. Typically the devices have a limited set of commands/
controls/actions/moves that they can execute. Actions by the
devices combine with environmental disturbances, to cause a
change in the parameters describing the state of the system (such
as position or temperature). Such devices need to communi-
cate with the base station regarding their current state and get
further instructions. Examples are numerous, and include re-
mote mobility issues (such as space or submarine exploration)
and web-based on-line control (such as camera and sensor dis-
tributed control) [16], [6].

If the controller is physically remote from the sensors or ac-
tuators, information flow between them can be subject to noise;
if so, system performance depends upon encoding the transmis-
sions against channel noise. The objective of the base station

Manuscript received August 30, 2006; revised June 16, 2008. Current version
published June 24, 2009. The work of R. Ostrovsky was supported in part by
the Institute for Pure and Applied Mathematics (IPAM); in part by a gift from
Teradata, Intel equipment Grant, IBM Faculty Award, Xerox Innovation Group
Award, National Science Foundation under Grants 0430254, 0716835, 0716389,
0830803, a U.C. MICRO Grant, and Okawa Foundation. The work of Y. Ra-
bani was supported by the Israel Science Foundation under Grant 52/03 and by
United States–Israel Binational Science Foundation under Grant 2002282. This
work was also supported in part while Y. Rabani was visiting the Institute for
Pure and Applied Mathematics in the University of California at Los Angeles.
The work of L. J. Schulman was supported by the National Science Foundatio
(NSF) under Grants CCF-0515342, NSA H98230-06-1-0074, NSF under Grant
ITR CCR-0326554, and the Okawa Foundation. The material in this paper was
presented in part at the 46th Annual Symposium on Foundations of Computer
Science (FOCS), Pittsburgh, PA, October 2005.

R. Ostrovsky is with the Computer Science Department and Department of
Mathematics, University of California, Los Angeles, Los Angeles, CA 90095
USA (e-mail: rafail@cs.ucla.edu).

Y. Rabani is with the Computer Science Department, Technion–Israel Insti-
tute of Technology, Haifa 32000, Israel (e-mail: rabani@cs.technion.ac.il).

L. J. Schulman is with the California Institute of Technology, Pasadena, CA
91125 USA (e-mail: schulman@caltech.edu).

Communicated by V. A. Vaishampayam, Associate Editor At Large.
Digital Object Identifier 10.1109/TIT.2009.2021303

is to learn as precisely as possible the current state of each de-
vice in its parameter space. The encoding of communications
against channel noise faces a special difficulty in control (as
compared to more conventional communications) due to the
need for real-time response to transmissions, causal encoding
(bits of the code can depend only on past events), and causal
decoding.

Naturally, in a bounded-capacity channel, there is a tradeoff
between (on the one hand) the accuracy and reliability of the in-
formation known at the base station, and (on the other) the delay
allowed for the communication. It is therefore a challenge to per-
form channel coding subject to a channel capacity constraint.

The problem can be considered within a very general frame-
work of interactive communication problems [22]; however, the
best results in that literature, while establishing the existence
of causal codes, remain nonconstructive. Fortunately, there is
a feature of some control applications that makes them easier
than general interactive-communication problems: controlled
devices can often be described with a finite-dimensional pa-
rameter space. (Example: the location, orientation, velocity and
engine RPM of an aerial drone.) Crucially for the present paper,
in such a parameter (or state) space the growth rate of the state
space around any point is polynomially bounded.

At each step in time the remote device may send a constant
number of transmissions to the base station to update its posi-
tion/configuration in state space. The objective of the base sta-
tion is to determine as accurately as possible, despite channel
noise, the position of the device in its state space. Of course,
one cannot ask that the base station already have high certainty
about the real value of any bit which the remote device is trying
to transmit, before a significant number of subsequent channel
characters have been received. More specifically, if the channel
has bounded-size input and output alphabets, is memoryless,
and has nonzero probability for every input-output transition,
then the best result one can look for is that for a device state

which is not the correct current state , if all viable
device histories (paths in the state space) leading to di-
verge from the true history at least time steps previously, then
the base station should have probability of incor-
rectly estimating as the current state of the device. The
meaningful question is: Can we achieve such a bound? Doing
so demands that encoded characters convey information about
events arbitrarily far in the past, because if a message bit (i.e.,
some datum about about the state of the transmitter) ever stops
affecting channel transmissions, then the probability of error in
decoding that datum cannot be further reduced.

In this paper, we achieve the desired error prob-
ability profile; both our encoding and decoding are constructive
and efficient. (Here is as above, is a finite-dimensional grid,
and the capacity required of the communication channel does
not grow with .) No other method is known of achieving this

0018-9448/$25.00 © 2009 IEEE

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

2932 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

goal except nonconstructively (through the existence proofs for
codes given in [23], [24]).

B. Problem Statement and Results

In this paper we initiate the study of causal error-correcting
codes for continual communication of the state of a device in
a finite-dimensional parameter space. We restrict ourselves to a
simple communication system having one transmitter and one
receiver, connected by a discrete memoryless channel without
feedback. Our results are fairly insensitive to further details of
the channel; for simplicity in what follows we suppose only
that the channel has binary input, binary output, and positive
capacity. (Our results would go through for any discrete mem-
oryless channel with constant size input and output alphabets,
and positive capacity.) The state of the transmitter at any time
is identified with a vertex (which we denote) of a state graph
(which we denote); the graph (which may be directed or undi-
rected and will typically have self-loops) is known to both par-
ties, as is the initial state of the transmitter. (A single initial-
ization transmission may be required to justify the last assump-
tion, but this is a conventional message-transmission problem,
easily solved with a block code.) Let denote the greatest
out-degree or in-degree in .

In each round, the state of the transmitter shifts to an out-
neighbor of the previous state. The transmitter can then use the
channel a fixed number of times ; the transmitted charac-
ters can depend upon the entire history of the transmitter. Our
problem is to design efficient encoding and decoding methods
which enable the receiver to perpetually maintain estimates of
the current transmitter state that are accurate with high proba-
bility. We say that the rate of the code is .

The receiver, based upon the transmissions it has received up
through time , has at time a guess of the current state of
the transmitter. (We use the term communication scheme to in-
clude both the code and the estimation procedure used by the re-
ceiver.) For nodes let be the length (number
of edges) of a shortest path from to in . We say that the
communication scheme has error exponent if

. We say that the communication scheme is
online-efficient if the time and space complexities of encoding
and (in expectation) decoding are . Finally, we say
that the communication scheme is asymptotically good if it has
positive rate, positive error exponent and is online-efficient.

Let . The growth of as
a function of is the supremum over all of . If this
is bounded above by a polynomial in we say has polyno-
mial growth. Finite-dimensional grids, which are the graphs for
which we construct effective codes in this paper, have polyno-
mial growth. (Throughout the paper, constants implicit in big-
-notation can depend on properties of the noisy channel and on
the growth rate of , i.e., in the constructive case, the dimension
of the grid; but not on any other parameters such as the size of
the graph or the elapsed time in the protocol.)

C. Our Work

Our main result is the construction of an asymptotically good
communication scheme for finite-dimensional grid graphs. The

method extends to other graphs that are discretizations of fi-
nite-dimensional manifolds, which is typically what is needed in
a control application. For example, toroidal meshes. But we do
not spell out these variations. (The existence proof for asymp-
totically good codes, defined below, also holds for arbitrary state
graphs .)

D. A Caveat on Short-Time Dynamics

“Polynomial growth graphs” are not a good model in the
regime of very short time-scale dynamics of an unstable system.
Consider a system of even the simplest form: linear dynamics
in , with . (Following stan-
dard notation, is the position at time is the actuation
impulse at time , and and are real matrices.) In the ab-
sence of restorative actuations, and if the state must be commu-
nicated just as precisely far from the origin as when near it, then
the system in this model can access geometrically increasing
volumes of space in successive time steps. At a fixed precision
level this means that the number of discretized states accessible
to the system grows exponentially in time. Our model is moti-
vated by the larger time scales at which, due either to the true
nonlinear system dynamics, or to the implementation of local
control, or to a willingness to communicate state less accurately
far from the origin, the number of accessible discretized states
grows only polynomially in time. The prototypical example is
a locally stabilized system that nonetheless drifts over time in

(either absolutely or relative to a reference path), such as a
robot with autonomous locomotion.

E. Comment on Asymptotic Goodness

A vast literature on block codes (and on convolutional codes
of small constraint length) is devoted to the design of codes
whose rate is not merely positive, but approaches closely the
capacity of the underlying noisy channel. In the online coding
problem that we consider such a goal is rather distant: the
present paper is devoted solely to the qualitative establishment
of a computationally efficient code of positive rate and positive
error exponent. For this reason even our definition of asymp-
totic goodness glosses over the distinctions between different
channels.

We do not minimize the importance of designing near-op-
timal codes for realistic channel models, and such optimization
will be necessary in order to convert any of our ideas into prac-
tice. The rationale for our free treatment of constants is twofold.
1) Optimization should be performed in the context of a partic-
ular class of channels. Our ideas can be adapted to many chan-
nels, but the optimization needed will vary. 2) Unlike in the clas-
sical coding literature, it is entirely unclear in our scenario what
is the greatest possible achievable rate. It is most unlikely that
heuristic optimizations would approach that unknown target.

To expand on the last point: It is clear that must be at least
proportional to in order to transmit with low probability of
error the very latest transition in the state space—and our result
shows that needn’t be more than a constant factor greater
than this—but, in contrast to the classical Shannon theory, it is
quite possible that the optimal value of is more than a factor 1

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

OSTROVSKY et al.: ERROR-CORRECTING CODES FOR AUTOMATIC CONTROL 2933

greater than the obvious lower bound. In general, not enough is
yet understood about the rate implications of delay constraints,
in spite of important contributions such as [11].

F. Comment on the Online-Efficiency Requirement

The methods in this paper are deterministic, and the expec-
tation in the definition is taken with respect to channel noise.
The probability distribution in our results has an exponential
tail. More generally one could allow randomized encoding and
decoding methods, especially if this led to optimization of the
communication rate. Because of the real-time constraint one
should however continue to insist upon obtaining light-tailed
distributions. (This requirement can be formalized in various
ways; a good one is convergence of all finite moments.)

G. Previous Work

Existing error-correcting codes do not provide a satisfactory
solution for automatic control applications, as we now explain.
Existing error-correcting codes fall mainly into two classes:
block codes and convolutional codes. In a block code (with
block-length, say,), a time-stream of data is broken into
segments of length ; after an entire segment arrives at the
encoder, it is transformed into a (somewhat longer) sequence
of bits, which are then sent across the channel.

With block codes it is possible to achieve very low probabil-
ities of error (exponentially small in) with modest computa-
tional load (near-linear in); however, there is a built-in delay
of time units. This violates the real-time performance require-
ment of an automatic control application.

Convolutional codes [33], [20], [4] avoid the delay drawback
of block codes by performing causal or “on-line” encoding, in
which each bit of the input stream immediately starts influ-
encing the encoded message bits, and continues to do so until
the end of a time interval of length , called the constraint length
of the code; this interval, which in existing implementations is
finite, is analogous to the block length of a block code. The de-
coder can make an informed guess about a message bit very
shortly after its arrival at the encoder, and this guess can con-
tinue to be updated during the entire constraint length, with error
probability decreasing ultimately to a value exponentially small
in . Although this is the kind of code we would like to use for
control, the reason that existing convolutional codes cannot be
used is that no efficient constructions are known for convolu-
tional codes with large constraint lengths (unlike the situation
for block codes). Indeed, while convolutional codes are heavily
used in practice (e.g., in mobile phones), it is thanks to their
very short constraint lengths that they have been intensively op-
timized. The not-very-low probability of error that is a corollary
of short constraint length is sufficient for an application in which
error events simply cause audio static or drops; however, it is not
adequate for control applications in which system stability and
performance depends upon preventing accumulation of errors
over extended time periods.

Convolutional codes with long, and even infinite, constraint
lengths do exist—but not in a form that we can use. The very

first papers on convolutional codes show that randomized fami-
lies of convolutional codes have attractive properties; however,
such a family cannot be used without the crutch of a supply
of shared random bits at encoder and decoder. More recently,
a class of explicit “tree codes” was introduced, which elimi-
nates the need for shared (or even private) coins [23], [24]. (We
describe more exactly what these codes are below.) However,
while these codes have been shown to exist, the existence proof
has not yet been matched by an effective construction, and for
that reason, these codes too cannot yet be used. (A similar situ-
ation persisted for block codes after Shannon’s existence proof
for block codes [26] until explicit constructions were provided
[7], [5].)

There has recently been substantial progress in informa-
tion-theoretic and rate-distortion bounds for control appli-
cations [31], [17], [18], [32], [29], [14], [3], [21], [15], [8],
[34], [27], [28], [11], [2], [10], [13]; some of the roots of
these investigations even go back much further [30], [9], [12].
In particular, Sahai’s work on “anytime information theory”
[21] is related to ours in being concerned with delay-sensitive
communication, but unrelated in that the information to be
communicated is generated at a positive entropy rate and all
of it must ultimately be decoded correctly (in contradistinction
to our notion of “trajectory code”). Under these conditions
Sahai can (among other results) obtain tight characterizations
of the “anytime capacity” (capacity subject to decoding within
finite mean-squared time) of various canonical channels (e.g.,
erasure with feedback, AWGN with feedback). In short, all
these works solve different problems than the one considered
here. There does not appear to be a prior code for our problem
that is efficient in both computation and communication.

Our work, therefore, should be understood as introducing
a new family of convolutional codes with infinite constraint
length, suitable specifically to control applications but not to
general-purpose communication, and which manages to thereby
avoid the technical difficulties that have prevented effective con-
struction of general-purpose convolutional codes with infinite
(or even long) constraint length.

II. TRAJECTORY CODES

Throughout, is a graph with vertex set , initial vertex
, and edge set . A trajectory of length and

which begins at time is a mapping from to
for which all . If two trajectories are of
equal length, start at the same time , and share the same start
vertex (i.e.,), we write . The distance
between trajectories of length is

.
A trajectory code using an alphabet is a mapping

(where), extended to a mapping from
trajectories to by concatenation:

. Hamming distance between equal-
length words in is denoted . The relative distance of the
code is defined to be .
A finite-time trajectory code is defined similarly by a mapping

.
The reader should note that this definition is very restrictive.

The encoding at time is allowed to depend only on and on the

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

2934 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

current state (vertex in), not in any other way on the previous
history. There is no a priori reason to bar codes which depend
upon the entire history. The reason we “tie our hands” is that this
strategy enables us to find an effective construction of trajectory
codes, circumventing the still-open problem of effectively con-
structing tree codes. (And see the end of this section for more
on this subject.) Thanks to the restrictive definition of trajectory
codes, our code design will be able to exploit the polynomial
growth rate of the space , instead of having to
cope with the the exponential growth rate of the message stream

that corresponds to all trajectories.
We say that a code is asymptotically good if it has both pos-

itive rate and positive relative distance . The next lemma
shows that an asymptotically good code is the crucial compo-
nent of an asymptotically good communication scheme.

(A word on our use of the alphabet above. Although our
underlying physical noisy channel is assumed to be binary, we
of course use this channel multiple times per round of the pro-
tocol—this is unavoidable, if only because may be larger than
two—and we need to control this number of uses, which is in-
versely proportional to the rate we achieve. In the rest of this
paper it will frequently be convenient to speak of coding with a
large finite alphabet . It will be implicit that we use a concate-
nated code scheme, whereby the characters of are encoded
into binary strings of length ; the constant in this “ ”
will depend on the underlying noisy channel and on the desired
error exponent .)

Lemma 1: If the ’th character of an asymptotically good
code with alphabet can be computed in time and space

then the code can be used to construct an asymptot-
ically good communication scheme.

Proof: The code conversion is by simple repetition (the al-
phabet of the new code is for constant), and serves only to
improve the error exponent. Decoding is by minimum-distance.
The expected time and space of the computation is
because for sufficiently large (the transition point for this ar-
gument is around), the error exponent is large enough that
the minimum-distance decoding is unlikely to need to even ex-
amine trajectories that diverge far in the past from the trajectory
decoded in the previous round. (The argument is similar to one
in [24].) The detailed explanation follows.

The decoding algorithm maintains at all times a trajectory
such that has minimum Hamming distance to the received
sequence (call it), among all trajectories which
start at at time 0 and end at time .

The property that ensures that can usually be updated
quickly on the basis of is this: let be a trajectory and
let . If

for every , then is on .
In order to compute we find the greatest with the above

property on , and choose the best among all extensions of
. The runtime for doing this is proportional to .

Note, is bounded by the greatest suffix of
in which the proportion of channel errors is at least . Due to
memorylessness of the channel, the fraction of channel errors in
a suffix has an exponential tail bound; by choosing sufficiently
large, the base of this tail bound can be made less than , en-

suring in turn that the computation time for minimum-distance
decoding is constant in expectation (as well as having an expo-
nential tail bound).

Our task therefore is to construct an asymptotically good
trajectory code. The first problem is to show that such codes
exist (Section III). Interestingly, the only proof we know is
non-constructive; however, with the aid of this proof we provide
a constructive and online-efficient finite-time code for grids.
(Section IV).

Comparison With Tree-Codes: It is instructive to compare
the present work with that on (explicit) tree codes. These codes
were developed in [23], [24], and they are a special case of what
we here call trajectory codes; the role of the graph (in the
current notation) is played, in that work, by the protocol tree
used by the parties to solve the communication problem if they
have access to a noiseless channel. The tree code used in that
work for a noisy-communication protocol is a particular case of
what we now call the trajectory code on . The existence
proof provided in the earlier work relies on the tree structure
of the graph, and does not apply to the more general case con-
sidered here. However, the purpose of the generalization is not
to handle more difficult communication problems; the case that

is a tree is actually the most difficult one. (Using tree codes
enables eventual reconstruction of the entire history of the trans-
mitter, not only reconstruction of a good estimate of the current
state.) Instead, the purpose in our paper is to obtain a computa-
tionally effective solution using the special assumption that
has polynomial growth. (As discussed earlier, this assumption is
motivated by control applications, with being a discretization
of the finite-dimensional parameter space of the system.) Thus,
we circumvent the open problem of explicitly constructing a tree
code. The only progress we are aware of regarding tree codes is
an existence proof for codes of improved rate, by Peczarski [19];
to our knowledge there has been no progress toward an effec-
tive construction. For some minor notes on the topic the reader
is also referred to [25].

Here is another way to think about our work: a naïve approach
to the code design problem takes advantage of conventional
source-channel separation and views the message “source” as a
stream of edge-moves, i.e., an element of the set , where
represents the natural numbers. But this approach encounters a
technical obstacle (construction of tree codes). Instead our def-
inition of trajectory codes incorporates the desired semantics of
our application: namely, it does not matter if the receiver (base
station) has a misconception about some portion of the past his-
tory of the transmitter, so long as the receiver is up-to-date on
its current position.

III. EXISTENCE OF ASYMPTOTICALLY GOOD TRAJECTORY

CODES

Theorem 2: Every graph possesses an asymptotically good
trajectory code. Furthermore, every is feasible as the
relative distance of an asymptotically good code.

Proof: In order to achieve positive rate our code
must use an alphabet of size . Consider using a

random , i.e., one in which each label is selected independently
and uniformly. A code obtained in this manner is almost-surely

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

OSTROVSKY et al.: ERROR-CORRECTING CODES FOR AUTOMATIC CONTROL 2935

not asymptotically good. In fact, with probability 1 there will be
infinitely many pairs of distinct trajectories which are
labeled identically, i.e., for which . (Think
just of trajectories of length 1.) Nonetheless we can use this
probability space over codes to show the existence of the desired
code.

Consider first the finite-graph, finite-time restriction of
the problem to . Fix any de-
sired relative distance bound . If con-
sists of two trajectories such that and which
share only their common start vertex (i.e.,

), then we refer to as a pair of “twins” and write
and . Note that

.
For a pair of twins let be the event that .
Due to the Chernoff bound for large deviations, there is (for
any) a positive for which for all . The
code achieves relative distance if .

For twins let
such that . Ob-

serve that is independent of the random variable .
The Lovász local lemma [1] ensures that provided

that there exist nonnegative reals for which

Observe that . (Up to this
point we have used only the assumption that is an upper bound
on out-degrees; here we also employ the assumption that it is an
upper bound on in-degrees.) Let be sufficiently large so that
for , (a) ; (b) .
Set . Then

Since , the hypotheses of the local lemma are
met with an alphabet of size .

To extend the proof to the general case we apply a stan-
dard compactness argument (see [1]). For any , the trajectory
codes on ensured by the above ar-
gument form a finite nonempty set. Let denote the set of
codes on which restrict to one of the trajectory codes on

. is a nonempty set that is closed
in the product topology on . Note that ; the
intersection of the sets for any finite number of indices is
therefore nonempty. The set is the desired set of tra-
jectory codes with relative distance . By Tychonoff’s Theorem,

is compact. Therefore .

IV. CONSTRUCTION OF TRAJECTORY CODES FOR GRIDS

We now construct, for a grid graph of any finite dimension
and for any desired relative distance , an asymptoti-

cally good online-efficient finite-time trajectory code. We actu-
ally provide two different constructions: the first, described in
Section IV-A, is the simpler of the two. Its drawback is that the
rate of the code scales in the dimension as , whereas
the only upper bound we are aware of is . (This upper
bound is straightforward: is the degree of the -dimensional
grid graph. The upper bound derives therefore from the require-
ment to separate twin trajectories of length 1, in other words,
from the very short time-delay requirements on the code.) The
second construction, described in Section IV-B, almost closes
the gap by achieving rate (and in a somewhat less ef-
ficient offline construction,).

Let be the graph on vertex set
with an edge from to

if for all . For simplicity we describe the con-
struction for a time bound of . So our task is to construct
a trajectory code of relative
distance .

A. Construction I: “Multiple Overlaid Tilings”

The idea is to combine recursion with use of an explicit block
code. Set . (needs only to be large enough to
accommodate codewords of the block code described below.)
Let be the least even integer greater or equal to . For
simplicity assume that divides .

1) Recursive Construction: The block code: Let
(for a finite alphabet) be an asymptotically good block

code (i.e., one with positive rate and positive relative distance)
of relative distance , in which encoding and decoding
can be performed in time . Rewrite as a mapping

, so that for ,
.

The recursive code: Let
(for a finite alphabet) be a trajectory code of relative distance

.
The basic idea is to cover by overlap-

ping tiles. Each tile is “placed” at a specified
, and is the following mapping:

The cover of by overlapping tiles will be
described by a union of several covers, each of which is a tiling
(a cover by non-overlapping tiles). Each tiling is associated with
a vector

. (Strictly speaking each tiling may fail to be a cover but only
due to edge effects which we gloss over.) The collection of tiles
associated with the label consists of those placed
at of the form

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

2936 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

for all of the form

The tiling labeled therefore defines a mapping

by restriction (except possibly near the boundaries due to fen-
cepost errors).

The trajectory code is the concatenation of the codes asso-
ciated with each of the tilings

Observe that the number of labels concatenated at each vertex
is .

Lemma 3: achieves relative distance .
Proof: Consider any twins . Let and let

be the starting time of the pair of trajectories.
If then the pair is contained entirely

within a tile. This implies relative distance at least .
Otherwise, partition the time period into consecu-

tive blocks of the following lengths:

(for to be determined), by the following procedure. (Define
.)

Suppose have already been defined.
Set . If ,
set and halt. (It may happen that but only if .)
Otherwise set to be if the following set is
empty, and otherwise to be its least element:

(It may happen that .)
Since . Observe that for each ,

, except that may be smaller.
We show that within each of the blocks, the Hamming dis-

tance between the and codewords is at least
or , as the case may be.

We begin with the “ type” blocks. For the duration of such
a block, the trajectories are separated by graph distance at least

. In each time segment of length , aligned with the tiles
of the construction, the two trajectories pass through distinct
codewords of , and experience relative distance . The
first and last time segments can be incomplete and therefore less
efficient, but the total number of shared characters due to these
two time segments is bounded by , which we upper
bound by .

Next we treat the “ type” blocks, with the following “virtual
trajectory” argument. Choose a vertex
such that both and .
Define by .
Construct a trajectory with start time and length

by having it start at , reach

, and thereafter be identical to until time . Sim-
ilarly construct a disjoint trajectory with start time
and length which starts at , reaches

, and thereafter is identical to until time
. Observe that and are twins of length at most

, so there is a tile entirely containing them. Hence
the Hamming distance between their words is at least

, and therefore the Hamming distance between the
segments of and is at least

.
Combining the contributions of all time segments, we find

that the Hamming distance between the two words is at least
. Note that .

Recalling that , this implies that
. Hence the Hamming distance is greater than
.

2) The Code: What is left unstated by the above construc-
tion, is how the code on the tiles is constructed. The two
extreme options are to pursue the whole construction recur-
sively, or to construct by exhaustive search. The former
option is unsatisfactory because of the alphabet blow-up at
each level of recursion. The latter option requires a one-time
offline -time computation. Once has been
constructed, local look-up can be performed in time ,
hence achieving online-efficiency. In order to improve the of-
fline efficiency, we implement just one more level of recursion,
constructing out of a code for tiles of size ,
which is itself constructed by exhaustive search in time

. Thus, using the option of constructing ,
we have the following theorem.

Theorem 4: The above “multiple overlaid tilings” construc-
tion of can be constructed offline in sublinear time for any
fixed dimension , is online-efficient, and achieves any required
relative distance . Its rate is proportional to .

Proof: The relative distance guarantee follows from
Section IV-A; the construction efficiency follows by combining
the construction of Section IV-A with the double-recursion of
Section IV-B.

B. Construction II: “Shingles”

As pointed out earlier, the construction of Section IV-A gives
a communication rate proportional only to : this is directly
due to the fact that the covering of space by tiles, covers every
point with multiplicity .

We now give a much more economical cover of space. The
way in which this cover is used to construct a code is slightly
less obvious than for the previous cover—simple concatenation
of characters is no longer sufficient—so we defer the code de-
scription, and begin with the purely geometric construction.

1) Shingle Covering of Space by Cubes: To keep things ab-
stract we work in and describe a “shingled” cover of by
tiles that are axis-parallel cubes, each of side-length ,
with the following two properties:

1) Every point is “well inside” some tile: specifically, distance
at least away from its exterior.

2) No point is inside more than tiles.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

OSTROVSKY et al.: ERROR-CORRECTING CODES FOR AUTOMATIC CONTROL 2937

Fig. 1. Shingles in two dimensions.

This is expressed in the following Theorem. Let be the
closed unit cube . Let be a slightly enlarged,
open cube: .

Theorem 5: There is an (easily computed) cover of by
translations of such that no point is within more than
translations of .

Proof: The construction is this. Each integer vector of co-
ordinates will index a translate of . By the “least
corner” of a cube we mean the corner with the least numerical
values in each axis. Place the least corner of the -cube in-
dexed by at the point

That is to say, construct a tiling by unit cubes by applying the
following transformation to integer vectors:

and place a unit cube with its least corner at each image of a
point of the integer lattice. The offsetting of the tiles is the reason
for the term “shingles.” See Fig. 1.

Fix any point . The question
is, how many and cubes can belong to? We wish to
show that the former number is at least 1, and the latter at most

.
Define by letting each be an integer

such that (ties broken arbitrarily). Note that
if lies in a particular translate of then so does .
Moreover, if lies in a translate of then it also lies in
the corresponding translate of . Hence for an upper bound
on the number of -cubes containing a point, it suffices to
upper bound, for integer , the number of -cubes
containing .

We begin with the lower bound for arbitrary points . The
-cube defined by contains if and only if for

every , there is a real such that

(IV.1)

Spelling this out in long-hand, we are interested in the number
of solutions (in integer and in real) to the
following system of equations defined by real :

(IV.2)

(IV.3)

(IV.4)

(IV.5)

We construct what we call the “primary solution”
to this system of equations. First, using the

special case of (IV.1) given in (IV.2), set and
. In general, using (IV.1), we set and

using

and (IV.6)

This demonstrates the lower bound (containment in at
least one -cube). We now turn to the upper bound (con-
tainment in at most -cubes). Recall that for this
purpose it is sufficient to bound the number of times a point

, with integer, is covered
by -cubes.

We construct a tree of all solutions to the (IV.1). Each level
of the tree corresponds to one of the variables: the level imme-
diately below the root corresponds to , the level below that
to , and so on; the last level corresponds to . Each path
down the tree specifies a single solution to the equations.

Here is how we construct the tree, top-to-bottom. At the root
(level), no variables have been set, and we wish to identify
possible settings for . Examining (IV.2), one child of the root
is the primary solution, and .
Moreover, if and only if is an integer (or equivalently

in the primary solution), there is a second solution:
and . Each solution (whether

there are one or two) is set to be a child of the root in the tree of
solutions.

In general, there are several nodes at the th level of the
tree. At this level we are using (IV.1); at any particular node of
this level, the variables have already been set, and
the variables and are to be determined. The pattern is just
as we saw for —namely, we can always construct from

in the primary method given in (IV.6). Moreover,
if and only if is an integer (or equiva-
lently in the primary method), there is a second solution:

and . In this way
the node at level is assigned either
one or two children at level . We now argue that at most one

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

2938 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

node at level is assigned two children; from this it follows
by induction that the tree has at most leaves.

Any solution can be viewed as a variant of the primary so-
lution, described by a vector ; we
denote the variant by , with the primary solution being de-
noted :

In order that the node have two children, the
value must be an
integer. This can be true of only one of the nodes at level

because at each of those nodes the quantity
is a distinct number in the interval . (Specifically, it is a
multiple of .)

A final note that will be useful in the next section: observe that
for any point in , each of the -cubes covering it is associ-
ated with a distinct binary vector .

2) Trajectory Code Based on the Shingle Cover: Similarly
to Section IV-A, our task is to construct a trajectory code

of relative distance . Let
. We suppose that we have already constructed a tra-

jectory code of a smaller size, ,
for , and with a better rela-
tive distance . (is a finite alphabet.) Note that there
is no need to repeat the recursion indefinitely; for best asymp-
totics we recurse twice (as in the previous section) and construct

by exhaustive search. We use the shingle construction to
cover with copies of . Thus, every point
of is at distance at least

away from the exterior of one
of these shingles.

We also use another set of smaller tiles. These are labeled with
where

and is a finite alphabet. We also use the shingle
construction to cover with copies of . Thus,
every point of is at distance at least

away from the exterior of one of these smaller shingles.
Similarly to the previous construction, is based upon an

asymptotically good block code of block length
and relative distance , in which encoding and decoding
can be performed in time . The full region

is covered by approximately
of the small tiles. The code encodes the label of each of
these small tiles (i.e., the integer string which identifies
its least corner)—note that the number of bits required for
such a label is —and maps it into a block
codeword of length over the finite alphabet .
Let denote this codeword. Then

is defined as follows: in the shingle (of size) labeled
by , and at the coordinate

within the shingle, is set to be
. In other words,

the codeword identifying the shingle is repeated within the
shingle, times from top to bottom, and without
any horizontal variation.

So, every point of the region is covered
with between 1 and copies of each of the two types of
shingles. The character of at each point is the concatenation
of two characters which we now specify; each is defined using
one of the two types of shingles.

The character defined at a given point by the block-codeword
shingles is this. Suppose that the point is contained in shin-
gles where (thanks to
the previous section) is at most . Moreover suppose that
the colors (elements of specified by) assigned to the point
by these shingles are . If , pad each of
these lists with 0’s, namely, set and for all

and for all . Then, write out the following
word as the label of the vertex:

(Notice that we do not even care in what order these tuples are
written down.)

The idea is that if at the time corresponding to this point,
large Hamming distance between the pair of trajectories is being
guaranteed by the block code, then the binary (“ ”) parts
of this character distinguish the two trajectories unless those
binary parts line up perfectly; and if they do line up perfectly,
the labels of the two distinct shingles are lined up and therefore
distinguish the two trajectories.

The character corresponding to the recursive trajectory code
is defined in the same way, although the justification for why
this works is different, since the recursive code ensures large
Hamming distance if the two trajectories pass through the same
shingle, not different ones. Just as before, though, the idea is
that the “ ” parts of this character distinguish the two
trajectories unless those parts line up perfectly; and if they do
line up perfectly, the one particular coordinate derived from the
shingle containing both trajectories, provides the required Ham-
ming distance.

If the recursive trajectory code is constructed by exhaus-
tive search, which can be done in time , then
the number of bits specifying each color of is . If on
the other hand is constructed through one more level of re-
cursion, so that is constructed by exhaustive search, which
can be done in time (i.e., sublinear), then
the number of bits specifying each color of (i.e., the number
of bits transmitted in each round of communication) is .

Lemma 6: achieves relative distance
Proof: The proof is almost identical to that of Lemma 3.

Consider any twins . Let and let be the starting
time of the pair of trajectories.

If then the pair
is contained entirely within a recursive (i.e.,) tile. This

implies relative distance at least .

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

OSTROVSKY et al.: ERROR-CORRECTING CODES FOR AUTOMATIC CONTROL 2939

Otherwise, partition the time period into consecu-
tive blocks of the following lengths:

(for to be determined), by the following procedure. (Define
.)

Suppose have already been defined.
Set .
If , set and halt. (It may happen that

but only if .) Otherwise set to be if
the following set is empty, and otherwise to be its least element:

(It may happen that .)
Since .

Observe that for each
, except that may be smaller.

We show that within each of the blocks, the Hamming dis-
tance between the and codewords is at least

or , as the case may be.
We begin with the “ type” blocks. For the duration of such

a block, the trajectories are separated by graph distance at least
”. In each time segment of length , aligned with

the tiles of the construction, the two trajectories pass through
distinct codewords of , and experience relative distance

. The first and last time segments can be incomplete and
therefore less efficient, but the total number of shared characters
due to these two time segments is

, so (using) the Hamming distance in the
block is .

Next we treat the “ type” blocks, with the fol-
lowing “virtual trajectory” argument. Choose a vertex

such that both
and . Define
by . Construct a trajectory
with start time and length by having
it start at , reach ,
and thereafter be identical to until time . Similarly
construct a disjoint trajectory with start time
and length which starts at ,
reaches , and thereafter is identical to
until time . Observe that and are twins of length

, so there is a recursive tile entirely con-
taining them. Hence the Hamming distance between their
words is at least , and therefore the
Hamming distance between the segments of and is at least

.
Combining the contributions of all time segments, we find

that the Hamming distance between the two words is at least
. Since

for all
. Hence the Hamming distance is at least

Finally, by substituting the chosen value
(and by using and), we find that the second term in
the last expression is nonnegative. Hence the relative Hamming
distance between the words of and is at least .

In conclusion (using the option of constructing by exhaus-
tive search) we have the following theorem.

Theorem 7: The above “shingle” construction of can be
constructed offline in sublinear time for any fixed dimension ,
is online-efficient, and achieves any required relative distance

. Its rate is proportional to .

V. TRAJECTORY CODES HAVE AN EFFICIENT VERIFICATION

PROCEDURE

In this section we show how to explicitly verify the distance
property of any trajectory code using dynamic programming.
This is in sharp contrast to tree codes, for which no such efficient
verification procedure is known. Existence of an efficient veri-
fication procedure is important because our construction in the
previous section has large constants. Using branch-and-bound
methods along with the verification procedure might lead in
practice to codes with better constants than are proven by our
analysis.

Let be a graph with polynomial growth rate .
We show an algorithm that verifies that a finite time trajectory
code has relative distance at least
. The running time of the algorithm is polynomial in .

The algorithm is a simple dynamic program. The dynamic
programming table is indexed by quintuples. Valid quintuples

are those for which , and
there exists a pair of twin trajectories which begin at time

at , and such that at time ends at while ends at .
(In other words:

, and for every .) We
compute

Notice that the size of can be loosely upper bounded by
which is polynomial in . Clearly, upon completion

of the computation of , the relative distance of the code can
be verified by checking if

for all valid quintuples .
The table is computed by induction over . For

the valid quintuples are such that and
there is a length trajectory starting at and ending at . For
such valid quintuples we set . For ,
suppose we already computed all the valid entries of the form

. For every and for every three

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

2940 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

distinct nodes we compute the following.
Let be the indicator of .
Consider all pairs of nodes such that
and is a valid quintuple. If no such pair exists,
then is not a valid quintuple. Otherwise, put

This completes the description of the dynamic program.

Theorem 8: The dynamic program takes time to ex-
ecute, and it correctly computes for all valid
quintuples .

Proof: The number of quintuples (valid or
not) that are checked is at most .
The number of pairs that need to be examined in order to
compute is at most twice the maximum in-de-
gree in the subgraph induced by . The proof of correct-
ness is a trivial induction on .

REFERENCES

[1] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed. New
York: Wiley, 2000.

[2] N. Elia, “When Bode meets Shannon: Control-oriented feedback com-
munication schemes,” IEEE Trans. Automat. Control, vol. 49, no. 9, p.
1477, 2004.

[3] N. Elia and S. K. Mitter, “Stabilization of linear systems with lim-
ited information,” IEEE Trans. Automat. Control, vol. 46, no. 9, pp.
1384–1400, Sep. 2001.

[4] R. M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE
Trans. Inf. Theory, pp. 64–74, 1963.

[5] G. D. Forney, Concatenated Codes. Cambridge, MA: MIT Press,
1966.

[6] K. Goldberg, Beyond Webcams: An Introduction to Online Robots, R.
S. , Ed. Cambridge, MA: MIT Press, 2002.

[7] J. Justesen, “A class of constructive, asymptotically good algebraic
codes,” IEEE Trans. Inf. Theory, vol. IT-18, pp. 652–656, Sep. 1972.

[8] D. Liberzon, “On stabilization of non-linear systems with limited
information feedback,” in Proc. IEEE Conf. Dec. Control, 2003, pp.
182–186.

[9] H. Marko, “The bidirectional communication theory—A generalisa-
tion of information theory,” IEEE Trans. Commun., vol. 21, no. 12, pp.
1345–1351, Dec. 1973.

[10] N. C. Martins, “Information Theoretic Aspects of the Control and
Mode Estimation of Stochastic Systems,” Ph.D. dissertation, Cam-
bridge, MA, 2004, MIT.

[11] N. C. Martins and M. A. Dahleh, “Feedback control in the presence of
noisy channels: “Bode-like” fundamental limitations of performance,”
IEEE Trans. Automat. Control, vol. 52, no. 7, pp. 1604–1615, Aug.
2008.

[12] J. Massey, “Causality, feedback and directed information,” in Proc. Int.
Symp. Inf. Theory Its Applicat. (ISITA), 1990, pp. 303–305.

[13] A. Matveev and A. Savkin, “Comments on “control over noisy chan-
nels” and relevant negative results,” IEEE Trans. Automat. Control, vol.
50, no. 12, pp. 2105–2110, Dec. 2005.

[14] S. K. Mitter, “Control with limited information: The role of systems
theory and information theory,” Eur. J. Control, vol. 7, pp. 122–131,
Dec. 2000, (ISIT 2000 Plenary Talk, IEEE Information Theory Society
Newsletter 50:1-23).

[15] S. K. Mitter, “System science: The convergence of communication,
computation and control,” in Proc. 2002 Int. Conf. Control Applicat.,
2002, vol. 1, pp. 18–20.

[16] R. M. Murray, Control in an Information Rich World: Report of the
Panel on Future Directions in Control, Dynamics and Systems. New
York: AFOSR, 2002.

[17] G. N. Nair and R. J. Evans, “State estimation via a capacity-limited
communication channel,” in Proc. 36th IEEE Conf. Dec. Contr., 1997,
pp. 866–871.

[18] G. N. Nair and R. J. Evans, “State estimation under bit-rate constraints,”
in Proc. 37th IEEE Conf. Dec. Contr., 1998, pp. 251–256.

[19] M. Peczarski, “An improvement of the tree code construction,” Inf.
Process. Lett., vol. 99, no. 3, pp. 92–95, 2006.

[20] B. Reiffen, Sequential Encoding and Decoding for the Discrete Memo-
ryless Channel Res. Lab. of Electronics, M.I.T. Tech. Rep., 1960, Vol.
374.

[21] A. Sahai, “Anytime Information Theory,” Ph.D. dissertation, Massa-
chusetts Institute of Technology, Cambridge, MA, Feb. 2001.

[22] L. J. Schulman, “Communication on noisy channels: A coding the-
orem for computation,” in Proc. 33rd Annu. Symp. Found. Comput. Sci.,
1992, pp. 724–733.

[23] L. J. Schulman, “Deterministic coding for interactive communication,”
in Proc. 25th Annu. Symp. Theory Comput., 1993, pp. 747–756.

[24] L. J. Schulman, “Coding for interactive communication,” IEEE Trans.
Inf. Theory, vol. 42, Special Issue on Codes and Complexity, no. 6, pp.
1745–1756, Nov. 1996.

[25] L. J. Schulman, Postscript to “Coding for Interactive Communication
2003 [Online]. Available: http://www.cs.caltech.edu/~schulman/Pa-
pers/intercodingpostscript.txt

[26] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379, 623–423, 656, 1948.

[27] S. Tatikonda and S. Mitter, “Control over noisy channels,” IEEE Trans.
Automat. Control, vol. 49, no. 7, pp. 1196–1201, 2004.

[28] S. Tatikonda, A. Sahai, and S. Mitter, “Stochastic linear control over a
communication channel,” IEEE Trans. Automat. Control, vol. 49, no.
9, pp. 1549–1561, 2004.

[29] S. C. Tatikonda, “Control Under Communication Constraints,” Ph.D.
dissertation, Massachusetts Institute of Technology, Cambridge, MA,
Sep. 2000.

[30] H. S. Witsenhausen, “A counter-example in stochastic optimal con-
trol,” SIAM J. Control, vol. 6, no. 1, pp. 131–147, 1968.

[31] W. S. Wong and R. W. Brockett, “Systems with finite communication
bandwidth constraints-I: State estimation problems,” IEEE Trans. Au-
tomat. Control, vol. 42, pp. 1294–1298, Sep. 1997.

[32] W. S. Wong and R. W. Brockett, “Systems with finite communication
bandwidth constraints ii: Stabilization with limited information feed-
back,” IEEE Trans. Automat. Control, vol. 44, pp. 1049–1053, May
1999.

[33] J. M. Wozencraft, Sequential Decoding for Reliable Communications
Res. Lab. Electron., M.I.T. Tech. Rep., 1957, vol. 325.

[34] S. Yuksel and T. Basar, “Quantization and coding for decentralized LTI
systems,” in Proc. IEEE Conf. Decision Control, 2003, pp. 2847–2852.

Rafail Ostrovsky received the Ph.D. degree in computer science from the Mass-
achusetts institute of Technology (MIT), Cambridge, in 1992, in the Theory of
Computation Group.

He is a Professor of Computer Science and Mathematics at the University of
California, Los Angeles (UCLA). He came to UCLA in 2003 from Bell Com-
munications Research, where he was a Senior Research Scientist. Prior to begin-
ning his career at Bell Communications Research, he was an NSF Mathematical
Sciences Postdoctoral Research Fellow at UC Berkeley. His research centers on
various issues in theoretical computer science, including cryptography, network
algorithms, and high-dimensional search problems. He hold eight U.S. patents
issued and over 130 papers published in refereed journals and conferences.

Dr. Ostrovsky is a member of the Editorial Board of Algorithmica; and the
Editorial Board of the Journal of Cryptology; he serves on the Editorial and
Advisory Board of the International Journal of Information and Computer Se-
curity. Professor Ostrovsky was invited as a Plenary Speaker at a conference
organized by FBI in 2009, and was invited as a Keynote Speaker for Public Key
Cryptography International Conference in 2007. In addition to numerous invi-
tations to special issues dedicated to top-rated STOC/FOCS articles, his awards
include the Best Paper Award of the 2008 International Conference on Com-
puting and Combinatorics (COCOON-2008); 2006 and 2005 Xerox Corporate
Innovation Faculty Awards; 2006 IBM Faculty Award; 2006 Xerox Corporation
Distinguished Lecture Series; 2005 Distinguished Cryptographer of the Year
Lecture Series NTT Labs, Japan; OKAWA Foundation 2004 Research Award;
three SAIC Awards for the best published work of the year (1999, 2001, 2002)
in computer science and mathematics; the 1996 Bellcore Prize for excellence in
research; and 1993 Henry Taub Prize. At UCLA, he heads security and cryptog-
raphy multi-disciplinary Research Center (http://www.cs.ucla.edu/security/) at
Henry Samueli School of Engineering and Applied Science.

Yuval Rabani studied in Tel Aviv University, Israel, and received the Ph.D.
degree in computer science in 1992.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

OSTROVSKY et al.: ERROR-CORRECTING CODES FOR AUTOMATIC CONTROL 2941

Since 1995, he has been on the faculty of the Technion—Israel Institute of
Technology, Haifa. He has also held visiting appointments at Cornell Univer-
sity, University of California, Los Angeles, and Caltech. His research interests
include: computational aspects of metric geometry, combinatorial approxima-
tion algorithms, network optimization, and online computing.

Leonard J. Schulman received the B.Sc. degree in mathematics in 1988 and
the Ph.D. degree in applied mathematics in 1992, both from the Massachusetts
Institute of Technology, Cambridge.

Since 2000, he has been on the faculty of the California Institute of Tech-
nology, Pasadena. He has also held appointments at UC Berkeley, the Weizmann
Institute of Science, the Georgia Institute of Technology, and the Mathematical
Sciences Research Institute. His research is in several overlapping areas: al-
gorithms and communication protocols; combinatorics and probability; coding
and information theory; quantum computation.

Dr. Schulman received the MIT Bucsela prize in mathematics, an NSF math-
ematical sciences postdoctoral fellowship, an NSF CAREER award, and the
IEEE Schelkunoff prize. He is the director of the Caltech Center for the Math-
ematics of Information and is on the faculty of the Institute for Quantum Infor-
mation.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on July 20, 2009 at 13:44 from IEEE Xplore. Restrictions apply.

