
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009 473

Fault Secure Encoder and Decoder for
NanoMemory Applications

Helia Naeimi and André DeHon

Abstract—Memory cells have been protected from soft errors for
more than a decade; due to the increase in soft error rate in logic
circuits, the encoder and decoder circuitry around the memory
blocks have become susceptible to soft errors as well and must
also be protected. We introduce a new approach to design fault-se-
cure encoder and decoder circuitry for memory designs. The key
novel contribution of this paper is identifying and defining a new
class of error-correcting codes whose redundancy makes the de-
sign of fault-secure detectors (FSD) particularly simple. We fur-
ther quantify the importance of protecting encoder and decoder
circuitry against transient errors, illustrating a scenario where the
system failure rate (FIT) is dominated by the failure rate of the en-
coder and decoder. We prove that Euclidean Geometry Low-Den-
sity Parity-Check (EG-LDPC) codes have the fault-secure detector
capability. Using some of the smaller EG-LDPC codes, we can tol-
erate bit or nanowire defect rates of 10% and fault rates of �� ��

upsets/device/cycle, achieving a FIT rate at or below one for the
entire memory system and a memory density of ���� bit/cm� with
nanowire pitch of 10 nm for memory blocks of 10 Mb or larger.
Larger EG-LDPC codes can achieve even higher reliability and
lower area overhead.

Index Terms—Decoder, encoder, fault tolerant, memory, nan-
otechnology.

I. INTRODUCTION AND MOTIVATION

N ANOTECHNOLOGY provides smaller, faster, and lower
energy devices which allow more powerful and com-

pact circuitry; however, these benefits come with a cost—the
nanoscale devices may be less reliable. Thermal- and shot-noise
estimations [8], [12] alone suggest that the transient fault rate
of an individual nanoscale device (e.g., transistor or nanowire)
may be orders of magnitude higher than today’s devices. As a
result, we can expect combinational logic to be susceptible to
transient faults in addition to storage cells and communication
channels. Therefore, the paradigm of protecting only memory
cells and assuming the surrounding circuitries (i.e., encoder
and decoder) will never introduce errors is no longer valid.

Manuscript received January 29, 2008; revised July 14, 2008. First published
February 27, 2009; current version published March 18, 2009. This research
was supported in part by National Science Foundation Grant CCF-0403674
and by the Defense Advanced Research Projects Agency under ONR Contract
N00014-01-0651.

H. Naeimi was with the Computer Science Department, California Institute of
Technology, Pasadena, CA 91125 USA. She is now with Intel Research, Santa
Clara Laboratory, Santa Clara, CA 95054 USA (e-mail: helia.naeimi@intel.
com).

A. DeHon is with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: andre@acm.
org).

Digital Object Identifier 10.1109/TVLSI.2008.2009217

In this paper, we introduce a fault-tolerant nanoscale memory
architecture which tolerates transient faults both in the storage
unit and in the supporting logic (i.e., encoder, decoder (cor-
rector), and detector circuitries).

Particularly, we identify a class of error-correcting codes
(ECCs) that guarantees the existence of a simple fault-tolerant
detector design. This class satisfies a new, restricted definition
for ECCs which guarantees that the ECC codeword has an ap-
propriate redundancy structure such that it can detect multiple
errors occurring in both the stored codeword in memory and
the surrounding circuitries. We call this type of error-correcting
codes, fault-secure detector capable ECCs (FSD-ECC). The
parity-check Matrix of an FSD-ECC has a particular structure
that the decoder circuit, generated from the parity-check Ma-
trix, is Fault-Secure. The ECCs we identify in this class are
close to optimal in rate and distance, suggesting we can achieve
this property without sacrificing traditional ECC metrics.

We use the fault-secure detection unit to design a fault-tol-
erant encoder and corrector by monitoring their outputs. If a de-
tector detects an error in either of these units, that unit must re-
peat the operation to generate the correct output vector. Using
this retry technique, we can correct potential transient errors in
the encoder and corrector outputs and provide a fully fault-tol-
erant memory system.

The novel contributions of this paper include the following:
1) a mathematical definition of ECCs which have simple

FSD which do not requiring the addition of further redun-
dancies in order to achieve the fault-secure property (see
Section IV);

2) identification and proof that an existing LDPC code (EG-
LDPC) has the FSD property (see Section V);

3) a detailed ECC encoder, decoder, and corrector design that
can be built out of fault-prone circuits when protected by
this fault-secure detector also implemented in fault-prone
circuits and guarded with a simple OR gate built out of
reliable circuitry (see Section VI).

To further show the practical viability of these codes, we work
through the engineering design of a nanoscale memory system
based on these encoders and decoders including the following:

• memory banking strategies and scrubbing (see
Section VI-E);

• reliability analysis (see Section VII);
• unified ECC scheme for both permanent memory bit de-

fects and transient upsets (see Section VIII).
This allows us to report the area, performance, and reliability
achieved for systems based on these encoders and decoders
(see Section IX). We start by reviewing the related work (see
Section II) to put this development in context, and we provide

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

474 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

an overview of the system architecture for the fault-tolerant
memory system (see Section III) which uses these circuits.

We first introduced the concept of ECC with fault-secure de-
tector in [19]; then we developed the nanowire-based imple-
mentation and memory-system optimization in [20]. In addition
to combining the results from our earlier papers, this paper de-
scribes how to use the single ECC system for both permanent
defect and transient fault tolerance. This article also provides a
more detailed accounting of net memory bit density.

II. RELATED WORK

Traditionally, memory cells were the only circuitry suscep-
tible to transient faults, and all the supporting circuitries around
the memory (i.e., encoders and decoders) were assumed to be
fault-free. As a result most of prior work designs for fault-tol-
erant memory systems focused on protecting only the memory
cells. However, as we continue scaling down feature sizes or
use sublithographic devices, the surrounding circuitries of the
memory system will also be susceptible to permanent defects
and transient faults [11].

One approach to avoid the reliability problem in the sur-
rounding circuitries is to implement these units with more
reliable devices (e.g., more reliable CMOS technologies [6],
[26]). However, from an area, performance, and power con-
sumption point of view it is beneficial to implement encoders
and decoders with scaled feature size or nanotechnology de-
vices. Consequently, it is important to remove the reliability
barrier for these logic circuits so they can be implemented with
scaled feature size or nanotechnology devices.

Almost all of the proposed fault tolerant encoders and de-
coders so far, use the conventional fault tolerant scheme (e.g.,
logic replication or concurrent parity prediction) to protect the
encoder and corrector circuitry. That is, they add additional
logic to check the correctness of the circuit calculation. In con-
trast, the technique introduced in this work exploits the existing
structure of the ECC to guarantee the fault-secure property of
the detector unit without adding redundant computations.

The work presented in [21], is an example of the scheme using
redundancy to generate fault tolerant encoder. Reference [21]
develops a fault-secure encoder unit using a concurrent parity-
prediction scheme. Like the general parity-prediction technique,
[21] concurrently generates (predicts) the parity-bits of the en-
coder outputs (encoded bits) from the encoder inputs (informa-
tion bits). The predicted parity bits are then compared against
the actual parity function of the encoder output (encoded bits)
to check the correctness of the encoder unit. The parity pre-
dictor circuit implementation is further optimized for each ECC
to make a more compact design. For this reason, efficient parity-
prediction designs are tailored to a specific code. Simple parity
prediction guarantees single error detection; however, no gen-
eralization is given for detecting multiple errors in the detector
other than complete replication of the prediction and compar-
ison units.

In contrast, our design detects multiple errors in the encoder
and corrector units. Furthermore, the fault-secure detector and
checking logic for our FSD-ECC codes can be automatically
generated from the already known parity-check matrix. This

fault secure detector delivers protection without requiring ad-
ditional fault-tolerance circuitry.

III. SYSTEM OVERVIEW

In this section, we outline our memory system design that can
tolerate errors in any part of the system, including the storage
unit and encoder and corrector circuits using the fault-secure
detector. For a particular ECC used for memory protection, let

be the maximum number of error bits that the code can correct
and be the maximum number of error bits that it can detect,
and in one error combination that strikes the system, let , ,
and be the number of errors in encoder, a memory word,
and corrector, and let and be the number of errors in
the two separate detectors monitoring the encoder and corrector
units. In conventional designs, the system would guarantee error
correction as long as and . In contrast, here
we guarantee that the system can correct any error combination
as long as , , and

. This design is feasible when the following two fundamental
properties are satisfied:

1) any single error in the encoder or corrector circuitry can at
most corrupt a single codeword bit (i.e., no single error can
propagate to multiple codeword bits);

2) there is a fault secure detector that can detect any combi-
nation of errors in the received codeword along with errors
in the detector circuit. This fault-secure detector can verify
the correctness of the encoder and corrector operation.

The first property is easily satisfied by preventing logic sharing
between the circuits producing each codeword bit or infor-
mation bit in the encoder and the corrector respectively. In
Section IV, we define the requirements for a code to satisfy the
second property.

An overview of our proposed reliable memory system is
shown in Fig. 1 and is described in the following. The infor-
mation bits are fed into the encoder to encode the information
vector, and the fault secure detector of the encoder verifies
the validity of the encoded vector. If the detector detects any
error, the encoding operation must be redone to generate the
correct codeword. The codeword is then stored in the memory.
During memory access operation, the stored codewords will be
accessed from the memory unit. Codewords are susceptible to
transient faults while they are stored in the memory; therefore
a corrector unit is designed to correct potential errors in the
retrieved codewords. In our design (see Fig. 1) all the memory
words pass through the corrector and any potential error in
the memory words will be corrected. Similar to the encoder
unit, a fault-secure detector monitors the operation of the
corrector unit. All the units shown in Fig. 1 are implemented
in fault-prone, nanoscale circuitry; the only component which
must be implemented in reliable circuitry are two OR gates that
accumulate the syndrome bits for the detectors (shown in Fig. 3
and described in Section VI-B).

Data bits stay in memory for a number of cycles and, during
this period, each memory bit can be upset by a transient fault
with certain probability. Therefore, transient errors accumulate
in the memory words over time. In order to avoid accumulation
of too many errors in any memory word that surpasses the code

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

NAEIMI AND DEHON: FAULT SECURE ENCODER AND DECODER FOR NANOMEMORY APPLICATIONS 475

Fig. 1. Overview of our proposed fault-tolerant memory architecture, with pipelined corrector.

correction capability, the system must perform memory scrub-
bing. Memory scrubbing is the process of periodically reading
memory words from the memory, correcting any potential er-
rors, and writing them back into the memory (e.g., [22]). This
feature is shown in the revised system overview in Fig. 10. To
perform the periodic scrubbing operation, the normal memory
access operation is stopped and the memory performs the scrub
operation. In Section VI, we further detail the scrubbing oper-
ation and potential optimization to achieve high performance
and high reliability. We also explain each of the above units, en-
coder, corrector, and detector, and memory operations in greater
detail in Section VI.

IV. ECCS WITH FAULT SECURE DETECTOR

In this section, we present our novel, restricted ECC defini-
tion for our fault-secure detector capable codes. Before starting
the details of our new definition we briefly review basic linear
ECCs.

A. Error-Correcting Code Reviews

Let be the -bit information vector that
will be encoded into an -bit codeword, .
For linear codes, the encoding operation essentially performs
the following vector-matrix multiplication:

(1)

where is a generator matrix. The validity of a received
encoded vector can be checked with the Parity-Check matrix,
which is an binary matrix named . The checking
or detecting operation is basically summarized as the following
vector-matrix multiplication:

(2)

The -bit vector is called the syndrome vector. A syn-
drome vector is zero if is a valid codeword, and nonzero if is
an erroneous codeword. Each code is uniquely specified by its
generator matrix or parity-check matrix.

A code is a systematic code if every codeword consists of the
original -bit information vector followed by parity bits
[16]. With this definition, the generator matrix of a systematic
code must have the following structure:

(3)

where is a identity matrix and is a matrix
that generates the parity-bits. The advantage of using systematic
codes is that there is no need for a decoder circuit to extract the
information bits. The information bits are simply available in
the first bits of any encoded vector.

A code is said to be a cyclic code if for any codeword , all the
cyclic shifts of the codeword are still valid codewords. A code
is cyclic iff the rows of its parity-check matrix and generator
matrix are the cyclic shifts of their first rows.

The minimum distance of an ECC, , is the minimum number
of code bits that are different between any two codewords. The
maximum number of errors that an ECC can detect is ,
and the maximum number that it corrects is . Any ECC
is represented with a triple , representing code length,
information bit length, and minimum distance, respectively.

B. FSD-ECC Definition

The restricted ECC definition which guarantees a FSD-ECC
is as follows.

Definition I: Let be an ECC with minimum distance .
is FSD-ECC if it can detect any combination of overall
or fewer errors in the received codeword and in the detector
circuitry.

Theorem I: Let be an ECC, with minimum distance .
is FSD-ECC iff any error vector of weight , has
syndrome vector of weight at least .

Note: The following proof depends on the fact that any single
error in the detector circuitry can corrupt at most one output
(one syndrome bit). This can be easily satisfied for any circuit
by implementing the circuit in such a way that no logic element
is shared among multiple output bits; therefore, any single error
in the circuit corrupts at most one output (one syndrome bit).

Proof: The core of a detector circuitry is a multiplier that
implements the vector-matrix multiply of the received vector
and the parity-check matrix to generate the syndrome vector.
Now if errors strike the received codeword the syndrome
weight of the error pattern is at least from the assumption.
Furthermore, the maximum number of tolerable errors in the
whole system is and errors already exist in the encoded
vector, therefore the maximum number of errors that can strike
in the detector circuitry is . From the previous note,
these many errors can corrupt at most syndrome bit,
which in worst case leaves at least one nonzero syndrome bit
and therefore detects the errors.

The difference between FSD-ECC and normal ECC is simply
the demand on syndrome weight. That is, for error vector of
weight , a normal ECC demands nonzero syndrome
weight while FSD-ECC demands syndrome weight of .

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

476 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

V. FSD-ECC EXAMPLE: EUCLIDEAN GEOMETRY CODES

A. Euclidean Geometry Code Review

This section reviews the construction of Euclidean Geometry
codes based on the lines and points of the corresponding fi-
nite geometries [27]. Euclidean Geometry codes are also called
EG-LDPC codes based on the fact that they are low-density
parity-check (LDPC) codes [14]. LDPC codes have a limited
number of 1’s in each row and column of the matrix; this limit
guarantees limited complexity in their associated detectors and
correctors making them fast and light weight [9].

Let be a Euclidean Geometry with points and lines.
is a finite geometry that is shown to have the following

fundamental structural properties:
1) every line consists of points;
2) any two points are connected by exactly one line;
3) every point is intersected by lines;
4) two lines intersect in exactly one point or they are parallel;

i.e., they do not intersect.
Let be a binary matrix, whose rows and columns

corresponds to lines and points in an Euclidean geometry,
respectively, where if and only if the th line of
contains the th point of , and otherwise. A row in

displays the points on a specific line of and has weight
. A column in displays the lines that intersect at a specific

point in and has weight . The rows of are called the
incidence vectors of the lines in , and the columns of are
called the intersecting vectors of the points in . Therefore,

is the incidence matrix of the lines in over the points in
. It is shown in [15] that is a LDPC matrix, and therefore

the code is an LDPC code.
A special subclass of EG-LDPC codes, type-I 2-D EG-LDPC,

is considered here. It is shown in [15] that type-I 2-D EG-LDPC
have the following parameters for any positive integer :

• information bits, ;
• length, ;
• minimum distance, ;
• dimensions of the parity-check matrix, ;
• row weight of the parity-check matrix, ;
• column weight of the parity-check matrix, .
It is important to note that the rows of are not necessarily

linearly independent, and therefore the number of rows do not
necessarily represents the rank of the matrix. The rank of
is which makes the code of this matrix linear code.
Since the matrix is , the implementation has syndrome
bits instead of . The , parity-check ma-
trix of an euclidean geometry, can be formed by taking
the incidence vector of a line in and its cyclic shifts
as rows; therefore this code is a cyclic code.

B. FSD-ECC Proof for EG-LDPC

In this section, we prove that EG-LDPC codes have the
FSD-ECC property.

Theorem II: Type-I 2-D EG-LDPC codes are FSD-ECC.
Proof: Let be an EG-LDPC code with column weight

and minimum distance . We have to show that any error vector
of weight corrupting the received encoded vector
has syndrome vector of weight at least .

TABLE I
EG-LDPCS AND UPPER AND LOWER BOUNDS ON CODE LENGTH

Now a specific bit in the syndrome vector will be one if and
only if the parity-check sum corresponding to this syndrome
vector has an odd number of error bits present in it. Looking
from the Euclidean geometry perspective, each error bit cor-
responds to a point in the geometry and each bit in the syn-
drome vector corresponds to a line. Consequently, we are in-
terested in obtaining a lower bound on the number of lines that
pass through an odd number of error points. We further lower
bound this quantity by the number of lines that pass through
exactly one of the error points. Based on the definition of the
Euclidean geometry, lines pass through each point; so error
points potentially impact lines. Also at most one line con-
nects two points. Therefore, looking at the error points, there
are at most lines between pairs of error points. Hence, the
number of lines passing through a collection of these points
is lower bounded by . Out of this number, at most
lines connect two or more points of the error points. Summa-
rizing all this, the number of lines passing through exactly one
error point, which gives us the lower bound on the syndrome
vector weight, is at least .

From the code properties introduced in Section V-A and
knowing that , we can derive the following inequality:

when

The previous inequality says that the weight of the syndrome
vector of a codeword with errors is at least when

which is the required condition of Theorem (I). Therefore,
EG-LDPC is FSD-ECC.

C. Efficiency of EG-LDPC

It is important to compare the rate of the EG-LDPC code
with other codes to understand if the interesting properties of
low-density and FSD-ECC come at the expense of lower code
rates. We compare the code rates of the EG-LDPC codes that we
use here with an achievable code rate upper bound (Gilbert-Var-
shamov bound) and a lower bound (Hamming bound). Table I
shows the upper and lower bounds on the code overhead, for
each of the used EG-LDPC. The EG-LDPC codes are no larger
than the achievable Gilbert bound for the same and value,
and they are not much larger than the Hamming bounds. Conse-
quently, we see that we achieve the FSD property without sac-
rificing code compactness.

VI. DESIGN STRUCTURE

In this section, we provide the design structure of the en-
coder, corrector, and detector units of our proposed fault-tol-
erant memory system. We also present the implementation of

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

NAEIMI AND DEHON: FAULT SECURE ENCODER AND DECODER FOR NANOMEMORY APPLICATIONS 477

Fig. 2. Structure of NanoMemory core. Please note that the address decoders
are for memory access and are not related to the memory ECC decoders.

these units on a sub-lithographic, nanowire-based substrate. Be-
fore going into the design structure details we start with a brief
overview of the sub-lithographic memory architecture model.

A. NanoMemory Architecture Model

We use the NanoMemory [4], [6] and NanoPLA [5] archi-
tectures to implement the memory core and the supporting
logic, respectively. NanoMemory and NanoPLA are based on
nanowire crossbars [2], [10].

The NanoMemory architecture developed in [4], [6] can
achieve greater than b/cm density even after including
the lithographic-scale address wires and defects. This design
uses a nanowire crossbar to store memory bits and a limited
number of lithographic scale wires for address and control lines.
Fig. 2 shows a schematic overview of this memory structure.
The fine crossbar shown in the center of the picture stores one
memory bit in each crossbar junction. To be able to write the
value of each bit into a junction, the two nanowires crossing
that junction must be uniquely selected and an adequate voltage
must be applied to them (e.g., [3], [24]). The nanowires can be
uniquely selected through the two address decoders located on
the two sides of the memory core.

The detail of the NanoMemory structure is presented in [4]
and [6]. For our design, we revise the original NanoMemory
structure introduced in [4] and [6]. Instead of using a litho-
graphic-scale interface to read and write into the memory core,
we use a nanowire-based interface. The reason that we can re-
move the lithographic-scale interface is that all the blocks inter-
facing with the memory core (encoder, corrector and detectors)
are implemented with nanowire-based crossbars. So we use a
nanowire-based DEMUX to connect the memory core to the sup-
porting logic blocks. The detail of the DEMUX structure is avail-
able in [17], [18], and [20].

B. Fault Secure Detector

The core of the detector operation is to generate the syn-
drome vector, which is basically implementing the following
vector-matrix multiplication on the received encoded vector
and parity-check matrix :

(4)

Fig. 3. Fault-secure detector for (15, 7, 5) EG-LDPC code. All the gates except
the last OR gate are implemeneted with fault-prone nanoscale circuitry. The last
OR gate is implemented with more reliable lithography technique.

TABLE II
DETECTOR, ENCODER, AND CORRECTOR CIRCUIT AREA IN THE

NUMBER OF 2-INPUT GATES

Therefore each bit of the syndrome vector is the product of
with one row of the parity-check matrix. This product is a linear
binary sum over digits of where the corresponding digit in
the matrix row is 1. This binary sum is implemented with an
XOR gate. Fig. 3 shows the detector circuit for the (15, 7, 5)
EG-LDPC code. Since the row weight of the parity-check ma-
trix is , to generate one digit of the syndrome vector we need
a -input XOR gate, or 2-input XOR gates. For the whole
detector, it takes 2-input XOR gates. Table II illustrates
this quantity for some of the smaller EG-LDPC codes. Note that
implementing each syndrome bit with a separate XOR gate satis-
fies the assumption of Theorem I of no logic sharing in detector
circuit implementation.

An error is detected if any of the syndrome bits has a nonzero
value. The final error detection signal is implemented by an OR

function of all the syndrome bits. The output of this -input OR

gate is the error detector signal (see Fig. 3). In order to avoid
a single point of failure, we must implement the OR gate with
a reliable substrate (e.g., in a system with sub-lithographic
nanowire substrate, the OR gate is implemented with reliable
lithographic technology—i.e., lithographic-scaled wire-OR).
This -input wire-OR is much smaller than implementing the
entire 2-input XORs at the lithographic scale. The
area of each detector is computed using the model of NanoPLA
and NanoMemory form [5] and [4] and [6] accounting for all
the supporting lithographic wires and reported in Table III.

Fig. 4 shows the implementation of the detector on a
NanoPLA substrate. The framed block in Fig. 4(b) shows
a -input XOR gate, implementing a -level XOR tree
in spiral form (see Fig. 4(a)). The solid boxes display the
restoration planes and the white boxes display the wired-OR

planes of NanoPLA architecture model [5], [7]. In Fig. 4, the
signals rotate counter clock-wise, and each round of signal
generates the XOR functions of one level of the XOR-tree. The
final output then gates a robust lithographic-scale wire. This
lithographic-scale wire generates a wired-OR function of all the

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

TABLE III
DECOMPOSED AREA PER BIT OF THE DESIGN POINTS SELECTED FOR THE CURVES IN Fig. 14. THE MEMORY SIZE FOR THIS DESIGN IS �� bit. THE UNIT OF

AREA IS NANOMETERS SQUARED PER BIT

Fig. 4. (a) �-input XOR tree implemented on NanoPLA structure. (b) Detector circuit implemented on NanoPLA: The parameters in the figure are � � � � � ,
� � �� � ��� � ��, � � � ���� � � �� � �� � ��� � ��, and � � �	�� � , where � ��
�, is the width of a NanoPLA plane with
 nanowire, including
the area of the supporting lithographic scale wires.

-input XORs and is the final output of the detector circuit.
The XOR gate is the main building block of the encoder and
corrector as well.

C. Encoder

An -bit codeword , which encodes a -bit information
vector is generated by multiplying the -bit information
vector with a bit generator matrix ; i.e., .

EG-LDPC codes are not systematic and the information bits
must be decoded from the encoded vector, which is not desirable
for our fault-tolerant approach due to the further complication
and delay that it adds to the operation. However, these codes are
cyclic codes [15]. We used the procedure presented in [15] and

Fig. 5. Generator matrix for the (15, 7, 5) EG-LDPC in systematic format; note
the identity matrix in the left columns.

[16] to convert the cyclic generator matrices to systematic gen-
erator matrices for all the EG-LDPC codes under consideration.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

NAEIMI AND DEHON: FAULT SECURE ENCODER AND DECODER FOR NANOMEMORY APPLICATIONS 479

Fig. 6. Structure of an encoder circuit for the (15, 7, 5) EG-LDPC code; � to � are 7-bit information vector. Each of the XOR gates generate one parity bit of the
encoded vector. The codeword consists of seven information bits followed by eight parity bits.

Fig. 5 shows the systematic generator matrix to generate (15,
7, 5) EG-LDPC code. The encoded vector consists of informa-
tion bits followed by parity bits, where each parity bit is simply
an inner product of information vector and a column of , from

. Fig. 6 shows the encoder circuit to compute
the parity bits of the (15, 7, 5) EG-LDPC code. In this figure

is the information vector and will be copied to
bits of the encoded vector, , and the rest of encoded

vector, the parity bits, are linear sums (XOR) of the information
bits.

If the building block is two-input gates then the encoder cir-
cuitry takes 22 two-input XOR gates. Table II shows the area of
the encoder circuits for each EG-LDPC codes under considera-
tion based on their generator matrices.

Once the XOR functions are known, the encoder structure is
very similar to the detector structure shown in Fig. 4, except it
consists of XOR gates of varying numbers of inputs. Each
nanowire-based XOR gate has structure similar to the XOR tree
shown in Fig. 4.

D. Corrector

One-step majority-logic correction is a fast and relatively
compact error-correcting technique [15]. There is a limited
class of ECCs that are one-step-majority correctable which
include type-I two-dimensional EG-LDPC. In this section,
we present a brief review of this correcting technique. Then
we show the one-step majority-logic corrector for EG-LDPC
codes.

1) One-Step Majority-Logic Corrector: One-step majority-
logic correction is the procedure that identifies the correct value
of a each bit in the codeword directly from the received code-
word; this is in contrast to the general message-passing error-
correction strategy (e.g., [23]) which may demand multiple iter-
ations of error diagnosis and trial correction. Avoiding iteration
makes the correction latency both small and deterministic. This
technique can be implemented serially to provide a compact im-
plementation or in parallel to minimize correction latency.

This method consists of two parts: 1) generating a specific
set of linear sums of the received vector bits and 2) finding the
majority value of the computed linear sums. The majority value
indicates the correctness of the code-bit under consideration; if
the majority value is 1, the bit is inverted, otherwise it is kept
unchanged.

The theory behind the one-step majority corrector and the
proof that EG-LDPC codes have this property are available
in [15]. Here we overview the structure of such correctors for
EG-LDPC codes.

Fig. 7. Serial one-step majority logic corrector structure to correct last bit (bit
14th) of 15-bit (15,7,5) EG-LDPC code.

A linear sum of the received encoded vector bits can
be formed by computing the inner product of the received
vector and a row of a parity-check matrix. This sum is called
Parity-Check sum. The core of the one-step majority-logic cor-
rector is generating parity-check sums from the appropriate
rows of the parity-check matrix. The one-step majority logic
error correction is summarized in the following procedure.
These steps correct a potential error in one code bit lets say,
e.g., .

1) Generate parity-check sums by computing the inner
product of the received vector and the appropriate rows of
parity-check matrix.

2) The check sums are fed into a majority gate. The output
of the majority gate corrects the bit by inverting the
value of if the output of majority gate is “1”.

The circuit implementing a serial one-step majority logic cor-
rector for (15, 7, 5) EG-LDPC code is shown in Fig. 7. This cir-
cuit generates parity-check sums with XOR gates and then
computes the majority value of the parity-check sums. Since
each parity-check sum is computed using a row of the parity-
check matrix and the row density of EG-LDPC codes are , each
XOR gate that computes the linear sum has inputs. The single
XOR gate on the right of Fig. 7 corrects the code bit using
the output of the majority gate. Once the code bit is cor-
rected the codeword is cyclic shifted and code bit is placed
at position and will be corrected. The whole codeword can
be corrected in rounds.

If implemented in flat, two-level logic, a majority gate could
take exponential area. The two-level majority gate is imple-
mented by computing all the product terms that have

ON inputs and one -input OR-term. For ex-

ample, the majority of 3 inputs , , is computed with
product terms and one 3-input OR-terms as follows:

(5)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

Fig. 8. (a) Four-input sorting network; each vertical line shows a one-input
comparator. (b) One comparator structure.

Fig. 9. Eight-input majority gate using sorting network.

In the next section we presents a novel, compact implementation
of majority circuits.

2) Majority Circuit Implementation: Here we present a com-
pact implementation for the majority gate using Sorting Net-
works [13]. The majority gate has application in many other
error-correcting codes, and this compact implementation can
improve many other applications.

A majority function of binary digits is simply the median
of the digits (where we define the median of an even number of
digits as the smallest digit).

To find the median of the inputs, we do the following:
1) divide the inputs into two halves with size ;
2) sort each of the halves;
3) the median is 1 if for the th element of

one half and the th element of the other half
are both 1.

We use binary Sorting Networks [13] to do the sort operation
of the second step efficiently. An -input sorting network is the
structure that sorts a set of bits, using a 2-bit sorter building
blocks. Fig. 8(a) shows a 4-input sorting network. Each of the
vertical lines represents one comparator which compares two
bits and assigns the larger one to the top output and the smaller
one to the bottom [see Fig. 8(b)]. The four-input sorting net-
work, has five comparator blocks, where each block consists of
two two-input gates; overall the four-input sorting network con-
sists of ten two-input gates in total.

To check the condition in the third step, we use two-input
AND gates followed by a -input OR gate. Fig. 9 shows the
circuit implementing the above technique to find the median
value of 8 bits. It has two -input (four-input) sorting net-
works followed by combinational circuitry, consisting of four
two-input AND gates and a four-input OR gate, which can be
implemented with three two-input OR gates. Therefore in total
an eight-input majority gate implemented with sorting networks
take 27 two-input gates; in contrast, the two-level implementa-
tion of this majority gate takes five-input AND gates
and one 56-input OR gate.

3) Serial Corrector: As mentioned earlier, the same one-step
majority-logic corrector can be used to correct all the bits of
the received codeword of a cyclic code. To correct each code-bit,
the received encoded vector is cyclic shifted and fed into to the
XOR gates as shown in Fig. 7. The serial majority corrector takes

Fig. 10. Partial system overview with serial corrector. Here only the corrector
and its detector are shown; these blocks connect to the memory block and the
rest of the system shown in Fig. 1.

cycles to correct an erroneous codeword. If the fault rate is
low, the corrector block is used infrequently; since the common
case is error-free codewords, the latency of the corrector will not
have a severe impact on the average memory read latency. The
serial corrector must be placed off the normal memory read path.
This is shown in Fig. 10. The memory words retrieved from
the memory unit are checked by detector unit. If the detector
detects an error, the memory word is sent to the corrector unit
to be corrected, which has the latency of the detector plus the
round latency of the corrector.

4) Parallel Corrector: For high error rates [e.g., when
tolerating permanent defects in memory words as well (see
Section VIII)], the corrector is used more frequently and its
latency can impact the system performance. Therefore we
can implement a parallel one-step majority corrector which
is essentially copies of the single one-step majority-logic
corrector. Fig. 1 shows a system integration using the parallel
corrector. All the memory words are pipelined through the
parallel corrector. This way the corrected memory words
are generated every cycle. The detector in the parallel case
monitors the operation of the corrector, if the output of the
corrector is erroneous, the detector signals the corrector to
repeat the operation. Note that faults detected in a nominally
corrected memory word arise solely from faults in the detector
and corrector circuitry and not from faults in the memory
word. Since detector and corrector circuitry are relatively small
compared to the memory system, the failure rate of these units
is relatively low; e.g., in a memory system that runs at 1 GHz
and , the parallel corrector for a (255, 175, 17)
code should see one upset every 30 hours (calculation is done
using the reliability equations in Section VII). Therefore, the
error detection and repeat process happens infrequently and
does not impact the system throughput.

Assuming our building blocks are two-input gates, number
of -input parity-check sums will require two-input
XOR gates. The size of the majority gate is defined by the sorting
network implementation. Table II shows the overall area of a se-
rial one-step majority-logic corrector in the number of two-input
gates for the codes under consideration. The parallel implemen-
tation consists of exactly copies of the serial one-step ma-
jority-logic corrector.

Generating the linear binary sums (XORs) of the one-step ma-
jority sum is the same as Fig. 4. The majority gate is simply
computed following the structure shown in Fig. 9 using the
nanowire-based substrate.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

NAEIMI AND DEHON: FAULT SECURE ENCODER AND DECODER FOR NANOMEMORY APPLICATIONS 481

Fig. 11. Banked memory organization, with single global corrector.

E. Banked Memory

Large memories are conventionally organized as sets of
smaller memory blocks called banks. The reason for breaking a
large memory into smaller banks is to trade off overall memory
density for access speed and reliability. Excessively small bank
sizes will incur a large area overhead for memory drivers and
receivers. Large memory banks require long rows and columns
which results in high capacitance wires that consequently in-
creases the delay. Furthermore long wires are more susceptible
to breaks and bridging defects. Therefore excessively large
memory banks have high defect rate and low performance.
The organization of NanoMemory is not different from the
conventional memory organization, except that the overhead
per bank is larger due to the scale difference between the size of
a memory bit (a single wire crossing) and the support structures
(e.g., microscale wires for addressing and bootstrapping). The
work presented in [6] provides more detail on memory banks
and shows how the banks would be integrated into a complete
memory system. The memory system overview shown in Fig. 1
can be generalized to multiple banks as shown in Fig. 11,
where similarly the encoder and correctors are protected with
fault-secure detectors.

Memory words must be scrubbed frequently to prevent error
accumulation. The number of faults that accumulate in the
memory is directly related to the scrubbing period. The longer
the scrubbing period is, the larger the number of errors that
can accumulate in the system. However, scrubbing all memory
words serially can take a long time. If the time to serially scrub
the memory becomes noticeable compared to the scrubbing
period, it can reduce the system performance. To reduce the
scrubbing time, we can potentially scrub all the memory banks
in parallel. For this, each memory bank requires a separate
corrector and detector unit. It may not be necessary to go to
the extreme of scrubbing all banks in parallel. Instead, we can
cluster a number of memory banks together and consider a
corrector and detector unit for each Cluster. Fig. 12 shows a
memory system with two parallel corrector units. Here each

Fig. 12. Banked memory organization with cluster size of 2.

cluster contains two memory banks. In Section IX, we calculate
the appropriate cluster sizes to balance performance and area.

VII. RELIABILITY ANALYSIS

In this section, we analyze the reliability of the system. To
measure the system reliability, we estimate the probability that
system fails—i.e., the system experiences a greater number of
errors in a memory word than the number of errors the error-cor-
recting code can tolerate. With this analysis, we then show the
impact of protecting the ECC support logic (see Section VII-B).

A. Analysis

We assume the fault probability of each device at each cycle
has i.i.d. and random distribution over the devices of the

memory system. Recall and are the nominal number of er-
rors that occurs in encoder and encoder detector during memory
write operation at one instance. Similarly, , , and are
the number of errors that occur in a memory word and its corre-
sponding corrector and detector. Let , , and be the size
of the circuitry involved in an operation on a single code bit in
the encoder, corrector, or detector, respectively. This is the size
of the logic cone of a single output of each of the above units. For
example, in a detector each logic cone is a -input XOR gate gen-
erating a single bit of the syndrome vector (see Section VI-B).

Let a nominal unit have a logic cone size of (may be one
of the values , ,). With worst-case analysis the output
of the logic cone fails when any of the devices in the logic cone
fails. So when at least one of the devices inside the cone is
erroneous, the output of the logic cone, which is a code bit,
would be erroneous. Therefore, the probability that a code bit
is erroneous in any of the above units is

. Similarly the probability that a memory-bit is erroneous
in scrubbing interval of cycles is

(6)

where is the number of devices contained in one memory
cell. When using 6 T-SRAM cells, . When using a
NanoMemory, the memory bit is essentially a single nanowire

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

crosspoint. However, since accessing each memory bit requires
reading the signal value through a pair of nanowires (see Fig. 2),
the correctness of each memory bit depends on the correctness
of two nanowires. Therefore, for the NanoMemory design,

. Each unit or a memory-word experience errors among
bits of the codeword with the probability

(7)

which is simply a binomial distribution; is the code-length,
is either or , and is , , , ,

or .
As explained in Section VI-B, errors in the encoder unit are

detected by its following detector, and are corrected by repeating
the encoding operation to generate a correct encoded vector. The
detector can detect up to errors overall in these two units.
Where is the code distance. With worst-case assumptions, the
detector fails to detect the errors if there are more than
errors. Therefore, we define the first reliability condition as

Cond. I)

which states that the total number of errors in the encoder unit
and the following detector unit must be smaller than the min-
imum distance of the code. The detector of the corrector is
also capable of detecting up to errors accumulated from
memory unit, corrector unit and the second detector unit. Sim-
ilarly with worst-case assumption, the detector fails to detect
errors when they are more than . Therefore, the second re-
liability condition is defined as

Cond. II)

Furthermore, the corrector can recover a memory-word with up
to errors from the memory unit. If more
errors are accumulated in a memory word, then the EG-LDPC
codes cannot correct the memory word. Therefore, the third re-
liability condition is formulated as

Cond. III)

which states that the maximum number of tolerable errors in
each memory word is . Satisfying the three previous condi-
tions guarantees that the memory system operates with no un-
detectable or uncorrectable errors. We calculated the probability
of each of the above conditions employing (7), for all the var-
ious EG-LDPC codes.

Section IX illustrates the reliability of the system for different
device failure rate . It also presents the best design points for
optimizing reliability, area, and throughput.

B. Impact of Providing Reliability for Supporting Logic

It is important to understand the impact of protecting the sup-
porting logic on the system FIT rate. Could the system FIT rate
be low enough if only memory words were protected? What is
the potential cost of protecting the supporting logic? We answer
these questions with the following example.

Fig. 13. Impact of protecting logic on system reliability for fault rate equals
�� per bit per cycle �� � �� �.

Fig. 13 shows the FIT rate of the system decomposed into the
contribution from the memory bank and the contribution from
the supporting logic. The FIT in the supporting logic is without
a fault-secure detector (i.e., any error in the supporting logic re-
sults an erroneous output, with worst-case analysis). Obviously
the FIT of the whole system with no logic protection is the sum
of the above two FITs, illustrated with a solid line. This graph
is plotted for a device fault rate of with a memory
scrubbing interval of 10 minutes. As you can see, for codes with
minimum distance larger than 9, the FIT of the system with
no logic protection is dominated by the FIT of the unprotected
logic. Using codes with greater redundancy will decrease the
FIT of memory bank; however, since the unprotected logic has
a nontrivial FIT rate, increasing the code redundancy without
protecting the logic does not decrease the FIT of the composite
system. To achieve the higher reliability the logic must also be
protected. The FIT of such system with fault secure logic is il-
lustrated with the dashed line, and as you can see, the FIT of
this system follows very closely the FIT of the memory bank.
Protecting supporting logic, is essentially done by the fault-se-
cure detector and the only cost to achieve the logic protection
is the cost that we pay for the detectors. Table III shows that
the detector takes a negligible fraction of area compared to the
memory core, encoder, and corrector. Therefore with minimal
area overhead the system reliability can be greatly improved.

VIII. TOLERATING PERMANENT DEFECT IN MEMORY CELLS

In this paper, so far we focused on a transient fault-tolerant
memory structure. Equally important is to tolerate permanent
defects in the memory systems. Since the memory unit has a
regular structure, most of the defect tolerant designs are based
on row and column sparing. This means that we overpopulate
the rows and columns based on the expected defect rate so that
after removing all the defective rows and columns the memory
has the desired size. For example, if we want to have a 1 K

1 K memory, and the junction defect rate is 0.001% which
results in nanowire defect rate of ,
then, with 2% row and column overpopulation (20 more rows

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

NAEIMI AND DEHON: FAULT SECURE ENCODER AND DECODER FOR NANOMEMORY APPLICATIONS 483

and columns), the system yields a 1 K 1 K memory core with
99.6% probability

(8)

and the memory yields when both rows and columns yield
which is the product of the two probabilities and

(9)

So when the defect rate is small (0.001%), even with very small
area overhead (2% overpopulation), the system can yield a per-
fect 1 K 1 K memory core with high probability.

A. ECC for Defect Tolerance

However, with higher defect rates, the column and row
sparing can be very costly. For example, a 1% junction defect
rate on a nanowire with 1000 junctions implies that, with almost
100% probability, every nanowire in the memory block has at
least one defective junction. At this defect rate we cannot afford
to discard nanowires with any defective junctions. The work
presented in [6] suggests a defect tolerant technique that is
more efficient than the column and row sparing. This technique
discards nanowires that have more defective junctions than
a set threshold. These nanowires will be replaced with spare
nanowires. The limited number of defective junctions on the
remaining nanowires are tolerated using ECCs.

For the previous example with a junction defect rate of 1%,
if we keep nanowires with up to 12 defective junctions, then the
system would require only 31% row and column overpopulation
to achieve 99% yield. The computation is shown as follows. The
probability that a wire is accepted—i.e., has at most 12 defective
junction—is

(10)

With only 31% column and row sparing we can get 99% yield

(11)

and the final memory yield is

(12)

In [6], it is suggested that a reliable lithographic-scale encoder
and decoder be used to encode and decode memory bits to tol-
erate limited defective bits in each row. With the techniques in-
troduced here, the encoder and decoder can be built with fault-
prone nanowire circuitry as well.

Here we use the same EG-LDPC codes that we use for tran-
sient faults for tolerating permanent defects. The error correc-

tion capability of the ECC is partitioned between fault toler-
ance and defect tolerance similar to the approach in [26]. For
example, the EG-LDPC code (255, 175, 17) can correct up to
eight errors in each memory word. This can be partitioned to
tolerate four transient faults and four permanent defect in each
code word. With this technique we allow each memory word
(code word) to contain up to four defective junctions; with a row
width of 1020, this is about 16 defective junctions per row since
each row holds four memory words and each memory word tol-
erates four defects.

This reduces the area overhead compared to solely row and
column sparing. The important point is that this area overhead
reduction is achieved with almost no extra cost since it uses the
structure which already exists for transient fault tolerance—i.e.,
encoder, corrector, and detector units. The only potential draw-
back point for this technique is that it increases the effective FIT
rate of the memory block relative to the case where we had all
8 errors available to tolerate transient upsets. Therefore to guar-
antee the desired reliability, codes with larger minimum distance
which can tolerate larger numbers of defects and faults must be
used. Section IX shows detail results on how the reliability and
area overhead costs are balanced.

[25] and [26] present more sophisticated schemes for memory
defect tolerance at the cost of reliable, CMOS ECC circuitry and
memories to remap or invert blocks. Our scheme minimizes the
reliable support needed for the nanoscale memory.

B. Impact on Error Correction Frequency

When we have a limited number of defective junction in
memory words, this means that with high probability a memory
word has erroneous bits and must be corrected. Therefore,
as mentioned in Section III we use a parallel, fully pipelined
corrector to prevent throughput loss. The probability that a
memory word has a limited number of defects is computed in
the following. Remember that the memory words with more
than a set threshold are removed. Let the set threshold of the
number of defects in each memory word be , and the
defect rate be , therefore the memory words have 0 to
defective bits. The probability that a memory word is partially
defective and requires correction is

(13)

For example for 1% defect rate and tolerating up to four de-
fective bits per memory word, the probability that a 255-bit
memory word contains defective bits, and needs correcting,
is . Therefore, 91% of the memory
words must be corrected which motivates the use of the parallel
and fully pipelined corrector to prevent high throughput loss.
In the following section, we show the effect of on area,
throughput, and reliability.

IX. AREA AND PERFORMANCE ANALYSIS AND RESULTS

There are three design aspects that are specifically important
when designing fault-tolerant designs: system reliability, area

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

overhead, and performance. It is important to see how these
three factors interact and generate various design points. There
are multiple design parameters that determines the balance be-
tween reliability, area, and performance. Among these parame-
ters, those that we keep variable in our simulations are as fol-
lows:

• maximum number of defects which exist per memory word
;

• scrubbing interval ;
• cluster size of memory banks for scrubbing .

For a fixed memory size, bank size, and transient fault rate, we
find the right value for , , and to minimize area while
achieving the desired performance and reliability. First, we re-
view the impact of each of these parameters on area, perfor-
mance, and reliability.

The threshold on the number of defects per memory word
effects area, reliability, and performance.

• Increasing reduces the number of spare memory rows
(e.g., nanowires) required [6].

• Since defines where we partition the redundancy
in the error correcting code between defect tolerance
and fault tolerance, larger means that the code has
weaker residual capability for tolerating transient faults
and therefore has lower system reliability.

• The decrease in reliability which comes from increasing
also increases overhead cost for error correction. For

fixed ECC, when we reduce the number of bits available for
tolerating transient faults, we must scrub more frequently
to prevent error accumulation to tolerate the same transient
fault rate. However scrubbing more frequently can reduce
performance. To reduce the impact on the system perfor-
mance, we may need to increase the parallelism in the scrub-
bing operation by increasing the number of corrector unit,
which in turn increases the overall area overhead.

The scrubbing interval length impacts the system perfor-
mance and the reliability. The longer the scrubbing interval is,
the less reliable the system will be, because more errors can
accumulate in each memory word during longer scrubbing in-
tervals. Equation (6) shows how scrubbing interval impacts the
reliability of each single memory bit. However the shorter the
scrubbing interval is, the lower the throughput will be, because
the system spends more time performing the scrubbing opera-
tion. Below we show how the value of impacts the system
throughput. Assume a memory system has bank size of and
cluster size of . This means that every memory banks share
one corrector and detector to perform the scrubbing operation.
During each scrubbing operation all the memory words
in each cluster will be read, corrected, and written back into
the memory. With fully pipelined parallel corrector this takes
about cycles. If the scrubbing interval is cycles then
the system throughput loss is

Throughput loss (14)

If is too small, the throughput loss is large.
The impact of memory bank cluster size and memory bank

size is also clear on the system throughput: larger memory
bank size and cluster size increase the throughput loss. In this

Fig. 14. FIT of EG-LDPC codes for a system with �� memory bits, memory
bank size of 1 Mb, system frequency of 1 GHz, and the defect rate of 1%. The
curve labels are of the form: ��� �� ��� .

paper, we set the memory bank size to 1 K 1 K, to achieve
high enough memory density following the detail analysis on
memory bank size provided in [4] and [6]. Here we vary cluster
size to optimize the throughput and area overhead. When the
cluster size is large, the parallel corrector is shared among a
large number of memory words and therefore the area of the
corrector and detector is amortized over a large number of
memory words. However, the throughput loss can increase for
large cluster size (14).

For our simulation, we set the limit of throughput loss to
0.1% and reliability to 1 FIT, and then minimize the area

overhead. Fig. 14 shows the reliability of different codes for dif-
ferent . We also provided the case with , which
means that the EG-LDPC codes are solely used for transient
faults and the permanent defects are not tolerated with current
ECC. Setting the limit on the throughput and reliability, deter-
mines the values of scrubbing interval and cluster size of
memory banks.

Fig. 14 plots the reliability of the systems that satisfy the
throughput loss limit and reliability limit while achieving the
minimum area overhead. The decomposed area of these design
points is shown in Table III. All of the previous design points are
for memory size of bits. For these calculations we assume
a memory unit with the following parameters: lithographic wire
pitch of 105 nm (45 nm node [1]), nanowire pitch of 10 nm, de-
fect rate of 0.01 per memory junction, and memory bank size of

bits.
Fig. 15 plots the total area per bit for different memory sizes,

when the upset rate is errors/device/cycle. The area of the
memory banks are computed following the area model provided
in [4]. The area of the supporting units (encoder, corrector, and
detector) is computed using the area model of NanoPLA pro-
vided in [5].

The codes (255, 175, 17) tolerating 4 defects per memory
words and (63, 37, 9) tolerating 2 defects, are the most compact
designs for EG-LDPC codes. The area overhead of the code in
the flat part of the curve is defined by the following multiple
factors:

1) code overhead ;

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

NAEIMI AND DEHON: FAULT SECURE ENCODER AND DECODER FOR NANOMEMORY APPLICATIONS 485

Fig. 15. Area of the memory system versus the memory size; the fault rate is
� � �� errors/device/cycle, the scrubbing interval and the cluster size is
set to values that satisfy FIT � 1 and throughput loss �0.001. The curve labels
are of the format: ��� �� ��� .

2) constant area overhead of the memory bank which makes
the per-bit area of the memory decrease for larger memory
size;

3) number of accepted defective junctions per memory word
.

The final area per bit shown in Fig. 15 is the combined result
of the above factors. The code overhead is smallest for
larger codes; e.g., (255, 175, 17) has the lowest code overhead.
If all the other costs where amortized out over the large number
of memory bits, we would expect that the largest code shows
the lowest area per memory bit. However one important fact that
dominates the code overhead is the limited memory bank size.
We set the memory banks size fixed at 1 Mb, and for a cluster of
memory banks, which can be from 1 to 1000 banks per cluster,
we dedicate one corrector and one detector (see Fig. 12). The
area overhead of these units are amortized over the memory bits
of a cluster and is not reduced as the total memory size increase.
The only costs that are reduced as the total memory size grow is
the global encoder and its detector unit which are shared among
all the memory bits.

Finally, the memory core area per bit plays an important role
in the area overhead of the system. This is greatly influenced by

; the more defective junctions we can tolerate per memory
row, the fewer spare rows the system requires and the smaller
the area will be. This effect is visible when comparing the same
codes [e.g., (255, 175, 17)] for different (e.g., 2, 3, and
4). The combination of all of these factors results in the curves
shown in Fig. 15.

In order to understand how each part of the memory system
contribute to the final area overhead and how they change with
the cluster size, we show decomposed area for a memory system
of size 1 Mb, which is essentially one memory bank, in Table IV.
First of all, let us look at the memory core area per bit. The
memory core area per bit is fixed for the code and pair. It
does not change with the cluster size or with the total memory
size increase. For one code, the larger number of defects it can
tolerate the smaller the area of the core will be, because it can

TABLE IV
DECOMPOSED AREA PER BIT OF SINGLE CLUSTER (MEMORY SIZE OF 1 Mb).

THE UNIT OF AREA IS NANOMETERS SQUARED PER BIT

use more defective wires and requires less wire sparing. For ex-
ample, compare rows 4 and 6 of Table IV. The area of the Final
Memory when tolerating 4 defect per codeword is almost 1/3
compared to the case when tolerating 2 defect per codeword
(746 versus 2180). The maximum number of defective junctions
that the smaller codes can tolerate per row is larger than the max-
imum number of defective junctions of the larger codes. For our
system with memory rows of 1000 bits, a (15,7,5) code which
tolerates 1 defect per memory word essentially tolerates 66 er-
rors per row, and a (255,175,17) which tolerates 4 defective bits,
tolerates 12 errors per row. Therefore, generally, smaller codes
could result in lower area because they can tolerate more defec-
tive bits in a row. However larger codes have better code rates

. The combination of these factors makes the memory core
using code (63, 37, 9) and tolerating 2 defective junctions, the
smallest memory cores; note the second row of Table IV with
the per-bit area of 719 nm .

The second part is the area overhead due to the corrector and
detector per bank cluster. The area of the corrector and detector
is amortized over the memory bits of one cluster. Table IV shows
the area of the corrector and decoder amortized over 1 Mbit-
memory bank (one cluster). For larger clusters (e.g., Table III)
these net area per memory bit decrease.

The global encoder and its detector, are shared among the
whole memory system. Therefore, the net per bit area of these
units decrease as the memory size increases. For large enough
memory (0.1 Gb) these units have negligible area overhead
per bit compared to other parts of the system.

The overall area overhead per memory bit for large enough
memories, is dominated mainly by the memory core area; the
overhead of this core area is determined both by the defect-
tolerant overpopulation and rate of the ECC. The cluster cor-
rector and detector also contribute to the area, but their area is
a second-order effect compared to the memory core area. The
global encoder contributes an even smaller amount to the effec-
tive memory bit area. The curves in Fig. 15 plot the total area
per bit for a range of memory size, and shows its decrease as the
memory size increases.

X. SUMMARY

In this paper, we presented a fully fault-tolerant memory
system that is capable of tolerating errors not only in the
memory bits but also in the supporting logic including the ECC
encoder and corrector. We used Euclidean Geometry codes.
We proved that these codes are part of a new subset of ECCs
that have FSDs. Using these FSDs we design a fault-tolerant
encoder and corrector, where the fault-secure detector monitors

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 4, APRIL 2009

their operation. We also presented a unified approach to tolerate
permanent defects and transient faults. This unified approach
reduces the area overhead. Without this technique to tolerate
errors in the ECC logic, we would required reliable (and conse-
quently lithographic scale) encoders and decoders. Accounting
for all the above area overhead factors, all the codes considered
here achieve memory density of 20 to 100 Gb/nm , for large
enough memory (0.1 Gb).

ACKNOWLEDGMENT

The authors would like to thank Dr. S. Ghosh for her valu-
able reference to EG-LDPCs. This material is based upon work
supported by the Department of the Navy, Office of Naval Re-
search. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foun-
dation or the Office of Naval Research.

REFERENCES

[1] ITRS, “International technology roadmap for semiconductors,”
2005. [Online]. Available: http://www.itrs.net/Links/2005ITRS/
Home2005.htm

[2] Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J.
O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams,
“Nanoscale molecular-switch crossbar circuits,” Nanotechnology, vol.
14, pp. 462–468, 2003.

[3] Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams,
J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E.
Anderson, “Nanoscale molecular-switch devices fabricated by imprint
lithography,” Appl. Phys. Lett., vol. 82, no. 10, pp. 1610–1612, 2003.

[4] A. DeHon, “Deterministic addressing of nanoscale devices assembled
at sublithographic pitches,” IEEE Trans. Nanotechnol., vol. 4, no. 6,
pp. 681–687, 2005.

[5] A. DeHon, “Nanowire-based programmable architectures,” ACM J.
Emerging Technol. Comput. Syst., vol. 1, no. 2, pp. 109–162, 2005.

[6] A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln, “Non-pho-
tolithographic nanoscale memory density prospects,” IEEE Trans.
Nanotechnol., vol. 4, no. 2, pp. 215–228, Feb. 2005.

[7] A. DeHon and M. J. Wilson, “Nanowire-based sublithographic pro-
grammable logic arrays,” in Proc. Int. Symp. Field-Program. Gate Ar-
rays, Feb. 2004, pp. 123–132.

[8] M. Forshaw, R. Stadler, D. Crawley, and K. Nikolić, “A short re-
view of nanoelectronic architectures,” Nanotechnology, vol. 15, pp.
S220–S223, 2004.

[9] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[10] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. John-
ston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin,
H.-R. Tseng, J. F. Stoddart, and J. R. Heath, “A 160-kilobit molecular
electronic memory patterned at �� ���� per square centimeter,”
Nature, vol. 445, pp. 414–417, Jan. 25, 2007.

[11] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai, “Im-
pact of CMOS process scaling and SOI on the soft error rates of logic
processes,” in Proc. Symp. VLSI, 2001, pp. 73–74.

[12] J. Kim and L. Kish, “Error rate in current-controlled logic processors
with shot noise,” Fluctuation Noise Lett., vol. 4, no. 1, pp. 83–86, 2004.

[13] D. E. Knuth, The Art of Computer Programming, 2nd ed. Reading,
MA: Addison Wesley, 2000.

[14] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check
codes based on finite geometries: A rediscovery and new results,” IEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 2711–2736, Jul. 2001.

[15] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 2004.

[16] R. J. McEliece, The Theory of Information and Coding. Cambridge,
U.K.: Cambridge University Press, 2002.

[17] H. Naeimi, “A greedy algorithm for tolerating defective crosspoints
in nanoPLA design,” M.S. thesis, Dept. Comput. Sci., California Inst.
Technol., Pasadena, CA, Mar. 2005.

[18] H. Naeimi, “Reliable integration of terascale designs with nanoscale
devices,” Ph.D. dissertation, Dept. Comput. Sci., California Inst.
Technol., Pasadena, CA, Sep. 2007.

[19] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for
memory applications,” in Proc. IEEE Int. Symp. Defect Fault Toler-
ance VLSI Syst., Sep. 2007, pp. 409–417.

[20] H. Naeimi and A. DeHon, “Fault-tolerant nano-memory with fault se-
cure encoder and decoder,” presented at the Int. Conf. Nano-Netw.,
Catania, Sicily, Italy, Sep. 2007.

[21] S. J. Piestrak, A. Dandache, and F. Monteiro, “Designing fault-secure
parallel encoders for systematic linear error correcting codes,” IEEE
Trans. Reliab., vol. 52, no. 4, pp. 492–500, Jul. 2003.

[22] A. Saleh, J. Serrano, and J. Patel, “Reliability of scrubbing recovery-
techniques for memory systems,” IEEE Trans. Reliab., vol. 39, no. 1,
pp. 114–122, Jan. 1990.

[23] M. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710–1722, Nov. 1996.

[24] D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J.
O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, “Molecule-independent
electrical switching in pt/organic monolayer/ti devices,” Nanoletters,
vol. 4, no. 1, pp. 133–136, 2004.

[25] F. Sun, L. Feng, and T. Zhang, “Run-time data-dependent defect tol-
erance for hybrid CMOS/nanodevice digital memories,” IEEE Trans.
Nanotechnol., vol. 7, no. 2, pp. 217–222, Mar. 2008.

[26] F. Sun and T. Zhang, “Defect and transient fault-tolerant system design
for hybrid CMOS/nanodevice digital memories,” IEEE Trans. Nan-
otechnol., vol. 6, no. 3, pp. 341–351, Jun. 2007.

[27] H. Tang, J. Xu, S. Lin, and K. A. S. Abdel-Ghaffar, “Codes on finite
geometries,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 572–596, Feb.
2005.

Helia Naeimi (S’00–M’08) received the Ph.D.
and M.Sc. degrees in computer science from the
California Institute of Technology, Pasadena, and the
B.Sc. degree in computer engineering from Sharif
University of Technology in 2008, 2005, and 2002
respectively.

Since 2008, she has been a Research Scientist
with Intel Research, Santa Clara Laboratory, Santa
Clara, CA. Her main research interest is designing
reliable systems with nanotechnology devices, which
includes solving challenging issues such as high

soft-error rate, low system yield, and high parameter variations.

André DeHon (S’92–M’96) received the S.B., S.M.,
and Ph.D. degrees in electrical engineering and
computer science from the Massachusetts Institute
of Technology, Cambridge, in 1990, 1993, and 1996,
respectively.

Since 2006, he has been an Associate Professor
with the Department of Electrical and Systems En-
gineering, University of Pennsylvania, Philadelphia.
From 1996 to 1999, he co-ran the BRASS Group
in the Computer Science Department, University
of California at Berkeley, Berkeley. From 1999

to 2006, he was an Assistant Professor with the Department of Computer
Science, California Institute of Technology, Pasadena. He is broadly interested
in how we physically implement computations from substrates, including VLSI
and molecular electronics, up through architecture, CAD, and programming
models. He places special emphasis on spatial programmable architectures
(e.g., FPGAs) and interconnect design and optimization.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 13, 2009 at 17:27 from IEEE Xplore. Restrictions apply.

