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Abstract
Electron cryotomography (ECT) is an emerging technology that allows thin samples such as small
bacterial cells to be imaged in 3-D in a nearly native state to “molecular” (∼4 nm) resolution. As
such, ECT is beginning to deliver long-awaited insight into the positions and structures of
cytoskeletal filaments, cell wall elements, motility machines, chemoreceptor arrays, internal
compartments, and other ultrastructures. Here we briefly explain ECT, review its recent
contributions to microbiology, and conclude with a discussion of future prospects.

Introduction
After over a century of intense microbiological research, basic metabolism is now largely
understood and the complete sequences of nearly 1000 bacterial species are available. Light
microscopy has shown us the marvelous diversity of microbial cell shapes and, more
recently through fluorescent tags, the approximate locations of numerous proteins and gene
loci within those shapes. Higher resolution techniques like X-ray crystallography and NMR
spectroscopy have produced atomic models of thousands of important macromolecules.
Given this remarkable progress, our persistent ignorance about many of even the most
fundamental microbial “cell biological” processes is surprising. We still don't know, for
instance, how bacteria generate and maintain their characteristic shapes, establish polarity,
organize their genomes, segregate their chromosomes, divide, and in some cases move. The
problem in large part has been the lack of a technology that allows us to “see” these
processes and their key underlying structures: the resolution gap between light microscopy
and atomic models is the realm of electron microscopy (EM), but the “traditional” EM
specimen preparation methods of chemical fixation, plastic embedment, sectioning, and
staining that have been used in the past failed to preserve the needed details. In just the last
few years, the emergence of ECT has opened a new window into microbial ultrastructure
[1,2] that promises to revolutionize bacterial cell biology.
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Electron cryotomography
Briefly, in ECT suspensions of intact cells are spread into thin films across EM grids,
plunge-frozen in liquid ethane, transferred into an electron cryomicroscope, and imaged
iteratively while being tilted incrementally. Plunge-freezing prevents ice crystallization,
immobilizing the proteins and other cellular structures in their native states and locations.
Recording a series of images at different angles allows a full, three-dimensional (3-D)
reconstruction (“tomogram”) of the specimen to be calculated. Thus ECT produces 3-D
images of intact cells in a nearly native state, without the artifacts of fixation, dehydration,
plastic-embedment, sectioning, or staining. Resolutions of a few nanometers are typically
achieved, though the resolution and interpretability are critically influenced by specimen
thickness and crowdedness. Thus for slender bacteria, the positions and even orientations of
individual ribosomes can be detected, but larger cells such as Bacillus subtilis are
prohibitively thick. For thicker cells, biofilms, or tissues, the alternative specimen
preparation technique “high-pressure freezing” rapidly freezes samples up to 0.5 mm in
thickness under pressures of ∼2000 bar to suppress ice crystal formation. While still far
from routine, techniques are being developed to “cryosection” such frozen-hydrated
material, allowing it to also be imaged in a nearly-native, vitreous state [3].

One of the challenges in ECT is to unambiguously identify structures of interest in
tomograms. Unfortunately there are as yet no “GFP-like,” genetically-encodable markers.
Instead, some structures have been identified by imaging mutant cells where candidate
proteins have been overexpressed, depleted, or deleted, and noting which structures are
affected [4,5]. Correlative light and cryoelectron microscopy techniques have also been
developed in which fluorescence optical images and cryo-EM images are recorded of the
same cell [6-9]. Finally, structures have been identified by their structural “signatures” such
as their shapes [10], subunit spacings [11], or bilayer structure [12,13].

Two years ago we reviewed the contributions and potential of ECT to microbiology [1] and
noted that while the first paper reporting cryotomograms of prokaryotic cells was published
just ten years ago [14], by 2006 there had been thirteen others from 4 different groups. As
predicted, the activity in the field in the last two years has rapidly expanded: in just the last
two years an additional 20 papers have been published reporting work by 10 different
groups. Here we review those papers, including the increasingly promising applications of
cryosectioning. The results cover diverse subcellular structures including cytoskeletal
filaments, cell envelopes and cell walls, surface appendages, internal compartments, and the
nucleoid as well as their functions in the processes of cell division, motility, chemotaxis,
pathogenity, and cell-cell interaction.

Cytoskeleton
The discovery of the bacterial cytoskeleton is a fascinating tale, considering that not long
ago cytoskeletal proteins were thought to exist exclusively in eukaryotic cells. It is now
known that there are homologs of all three main classes of eukaryotic cytoskeletal proteins
(tubulin, actin, and intermediate filaments) in bacteria (FtsZ, MreB, and CreS, respectively).
Indeed it is now apparent that the bacterial cytoskeleton is not only complex, but probably
ubiquitous, and is involved in numerous cellular functions [15]. Each filament's subcellular
localization has been investigated mainly by immuno-EM, immunofluorescence and GFP-
based light microscopy. For example, FtsZ was first localized to the mid-cell division site by
immuno-EM [16] and then visualized as a ring structure by fluorescence light microscopy
[17]. Traditional EM (involving chemical fixation, dehydration, embedding and staining)
failed to reveal actual filaments, however, probably because the polymers were dynamic and
depolymerized somehow during specimen preparation. Applying whole-cell ECT on
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dividing C. crescentus cells, we visualized short, arc-like filaments close to the cytoplasmic
membrane at the constriction site (Fig. 1A and Supplementary Movie) [5]. The filaments'
position, orientation, time of appearance, and correlation in numbers and length to
expression levels and stabilities in several mutants all showed they were in fact composed of
FtsZ. The 3-D images of FtsZ filaments in wild-type cells strongly supported a force-
generating role of FtsZ filaments during cell division first proposed by Erickson [18].

While numerous other filament bundles have now been visualized in cryotomograms of
bacteria (those reviewed in [1], [19-21]), so far only a few are identified. Recently Salje et
al. cryosectioned E. coli cells over-expressing ParM, the actin-like protein that segregates
R1 plasmids, and saw filament bundles (Fig. 1B) [11]. ECT of vitreous sections containing
the filament bundles revealed a diffraction pattern similar to that derived from in vitro
purified and assembled ParM protofilaments, thus identifying the filament bundles as ParM.
In wild-type (low-copy number) strains, the authors observed bundles of three to five
intracellular ParM filaments localized within the periphery of the nucleoid, strongly
supporting the model that only one filament is needed to separate each plasmid pair.

Cell Envelope and Peptidoglycan
Bacterial cell envelopes shield the cytoplasm and genetic material from the environment.
The mycobacterial cell envelope is of paramount medical interest because it constitutes a
permeability barrier for antibiotics and is essential for virulence. Hoffmann et al. applied
both cryosectioning and whole-cell ECT to investigate the cell envelope structure of
Mycobacterium smegmatis, Mycobacterium bovis BCG, and Corynebacterium glutamicum
[12]. With close-to-focus images and tomograms showing paired individual leaflets, they
proved that the mycobacterial outer layer is indeed a bilayer structure, which they labeled
the “mycobacterial outer membrane” (Fig. 2A). By further imaging a mycolic acid-deficient
C. glutamicum mutant, the authors observed the absence of the outer membrane and
concluded that mycolic acids are constituents of the outer membrane. In a similar study,
Zuber et al. cryosectioned the same species and mutants and obtained similar results,
although the authors proposed a different model of the mycobacterial outer membrane [13].
These studies highlighted how important it can be to preserve specimens in their native (in
this case frozen-hydrated) state.

The mechanical strength of bacterial cell walls arises from a molecular “bag-like”
exoskeleton of peptide-crosslinked glycan strands called the sacculus. While the chemical
composition and subunit structure of peptidoglycan has been known for decades, the overall
architecture of the sacculus was unclear. Two fundamentally different models of 3-D
peptidoglycan organization had been suggested, namely the “Layered” and “Scaffold”
models. Gan et al. applied ECT to intact sacculi purified from two Gram-negative bacteria,
E. coli and C. crescentus [22]. In cryotomograms of both preparations, sacculi were seen to
contain a single peptidoglycan layer in which the individual glycan strands were oriented in
the plane of the sacculus perpendicular to the long axis of the cell and spaced approximately
5-8 nm apart (Fig. 2B). This observation ruled out the “Scaffold” model and instead
established a “Disordered, Circumferential, Layered” model.

Motility and Surface Appendages
Bacterial cells exhibit wonderfully diverse modes of motility including swimming,
swarming, twitching, and gliding. The most studied mode of motility, swimming, is driven
by one or more flagella which are rotated by a membrane-embedded motor. In spirochetes,
the flagella are located in the periplasmic space between the outer and cytoplasmic
membranes. Three spirochetes have now been imaged with ECT. In a recently cultured
termite gut spirochete, Triponema primitia, Murphy et al. revealed novel structures
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including bowls, arches, fibrils, and two layers of peptidoglycan sandwiching the flagella
between them (Fig. 3A) [23]. These results, combined with the earlier ECT structure of the
flagellar motor from the same species [24], are consistent with the “rolling cylinder” model
of spirochete motility originally proposed by Berg [25]. ECT of the pathogenic spirochete
Treponema denticola revealed periplasmic flagella, cytoplasmic filaments and plate-like
structures, and a patella-like periplasmic structure at one polar tip [20]. The cytoplasmic
filaments, earlier suggested as CfpA (a unique protein in spirochetes) [26], were visible in
both wild-type and aflagellate strains. Finally, Charon et al. reported the structure of the
Lyme disease spirochete Borrelia burgdorferi [27]. In contrast to the stacked bundle
observed previously by traditional EM [28], by ECT it was seen that the periplasmic flagella
adopt a flat-ribbon configuration.

The gliding bacterium Flavobacterium johnsoniae was shown to possess tufts of ∼5-nm-
wide cell surface filaments emanating from the inner surface of the outer membrane (Fig.
3B) [29]. These filaments were absent in a non-motile gldF mutant cell but were restored in
the same mutant complemented with plasmid-encoded GldF, a component of a putative
ATP-binding cassette transporter. The cell surface filaments are unlikely to be composed of
any Gld proteins, however, since the Gld proteins are known to localize inside the outer
membrane.

Chemotaxis
Bacteria sense nutrient gradients through an array of proteins that form a complex at the cell
pole. As for the structures described above, despite rich information about individual
components and their functions, the overall architecture of the complex was unclear. Two
contradicting models regarding its organization had been suggested based on
crystallographic and other data [30]. Following work with negatively stained samples,
through ECT of wild-type E. coli and mutant strains over-expressing the serine
chemoreceptor Tsr, Zhang et al. visualized striations at the poles and identified them as
chemoreceptor arrays [31]. Briegel et al. confirmed that similar structures in C. crescentus
cells were in fact chemoreceptor arrays by correlating fluorescent light microscopic images
(where the receptors had been labeled with a fluorescent tag) with electron cryotomograms
of the same, lightly fixed cells (Fig. 4A) [9]. Analysis of the wild-type Caulobacter array
structures revealed that the receptors were arranged in a 12-nm hexagonal lattice with
“trimers of receptor dimers” at each vertex. A concurrent study by Khursigara et al.
confirmed the lattice spacing and the trimers-of-dimers model in the same species, but
emphasized that the arrays were not perfectly hexagonal [21]. In an exciting combination of
tomographic, crystallographic, and “single-particle-like” techniques, Khursigara et al. went
on to show that the HAMP domains in E. coli mutants over-expressing Tsr undergo
conformational changes due to ligand binding and methylation (Fig. 4B and C) [32].

Carboxysomes
The carboxysome, a proteinaceous shell that encapsulates bacterial ribulose 1,5-
bisphosphate carboxylase/oxygenase (RuBisCO), is the most well characterized member of
a family of polyhedral bodies termed bacterial microcompartments that encapsulate key
enzymes [33]. In cyanobacteria and many chemoautotrophic bacteria, the encapsulated
RuBisCO catalyzes the first step of carbon fixation in the Calvin-Benson-Bassham cycle.
The structure of carboxysomes has been proposed to increase the local concentrations of
substrate and enzyme and sequester the reaction from useless side reactions. Schmid et al.
first reported the structure of carboxysomes by ECT from Halothiobacillus neapolitanus
(Fig. 4D), showing that they were regular icosahedra but with different sizes. These authors
averaged sub-classes and suggested that the different sizes might be a result of different
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packing arrangements of the shell proteins [34]. Iancu et al. imaged carboxysomes from
Synechococcus strain WH8102, showing that they too were regular icosahedra, but
suggested instead that the different sizes arose from different T-numbers [35]. Iancu et al.
went on to show through simulation that the concentric shells of RuBisCO seen in both
studies could be explained by simple close packing.

Photosynthetic membranes
Two ECT studies have characterized bacterial photosynthetic membranes [36,37]. Ting et al.
applied ECT to both frozen-hydrated cells and sections of two closely related, ecologically
important cyanobacteria (strains of Prochlorococcus) [36]. Compared to the MIT9313 strain,
the MED4 strain (which has one of the smallest genomes (1.66 Mbp) of any known
photosynthetic organisms) had a smaller cell volume, a smaller carboxysome, less
intracytoplasmic lamellae, and a minimal cell wall architecture (Fig. 4E).

Comparative genomic analyses found differences in genes between the two strains including
those involved in peptidoglycan synthesis. Konotry et al. applied whole-cell ECT to the
anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis (Fig. 4F),
documenting the tunnel-like structures connecting the photosynthetic membranes to the
inner membrane and the highly packed arrangement of the flattened sacs [37].

Nucleoid and cell-cell interaction
In traditional EM images, the nucleoid, which is supposed to contain the compacted
genome, was often seen as a lighter area within the cytoplasm. In higher detail and
reliability, cryotomograms of thin bacterial cells often show a central ribosome-free area that
has an obviously finer texture than the rest of the cytoplasm. A particularly clear example is
seen in the highly bent Bdellovibrio bacteriovorus (Fig. 4G) [19]. ECT of frozen-hydrated
sections of Gemmata obscuriglobus (a member of the phylum Planctomycetes) revealed a
network of double-membrane compartments that probably enclose packed chromatin, an
organization speculated to increase the radiation tolerance of this species [38]. ECT also
revealed the structure of the contact site between two symbiotic bacteria, Ignicoccus
hospitalis and Nanoarchaeum equitans [39], and the 3-D ultrastructure of an uncultivated,
ultra-small archaeon in acid mine drainage (AMD) biofilm samples [40].

Future prospects
In addition to these dominantly cryotomographic studies, others have begun to include ECT
reconstruction as just one of a set of approaches to characterize cells and processes [41-44].
Thus in combination with other new imaging and experimental methods, ECT is
precipitating a new era in bacterial cell biology. Improvements in both the quality and
number of cryotomograms being produced should be expected. Beginning with the sample,
further improvements in methods for cryosectioning will make cryotomography of serial
sections possible for larger cells and even biofilms. The development of genetically-
encodable, electron-dense tags to unambiguously identify specific macromolecules in
cryotomograms is sorely needed [45-47], as are further improvements in the technologies for
correlating light and electron cryomicroscopy [6-9].

Instrumentally, the development of direct electron detectors, phase plates, and aberration
correctors could dramatically improve image quality [48,49]. Automation of image
acquisition, tilt-series alignment, and reconstruction [50,51], coupled with the development
of databases for the management and recovery of the large datasets produced by ECT [52](J.
Ding et al., in preparation) will facilitate the imaging of very large numbers of cells, as is
sometimes necessary. Computational advances such as contrast-transfer-function correction
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and improved methods for denoising, template-matching, sub-volume averaging, and
segmentation will all enhance the interpretability of the tomograms [53] [54]. Finally, as
more and more institutions acquire the expensive microscopes needed and more and more
practitioners are trained, the numbers of studies applying this technology will also obviously
increase.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cytoskeletal filaments
(A) 8-nm tomographic slice of a dividing Caulobacter crescentus cell, showing the filaments
in cross-section (small dark dots near the center of the circles). Since the reconstruction can
be visualized in 3-D, these filaments can be segmented (Inset). Filaments (red), outer
membrane (yellow), and inner membrane (blue). Scale bar 100 nm. Adapted from [5] with
permission from Nature Publishing Group. (B) Vitreous cryo-section of an E. coli cell
carrying a high-copy ParMRC-bearing plasmid. The nominal thickness of the section is 50
nm. A bundle of filaments are shown in the circle. Top inset: enlarged view. Bottom inset:
illustration showing the cellular plane (grey) seen in the image. Scale bar 100 nm. Adapted
from [11] with permission from the American Association for the Advancement of Science.
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Figure 2. Cell envelope
(A) Vitreous cryo-section of a Mycobacterium bovis BCG cell. The section has a nominal
thickness of 35 nm. Scale bar 100 nm. Adapted from [12] with permission. © 2008 by The
National Academy of Sciences of the USA. (B) 10-nm tomographic slice through an E. coli
sacculus. The individual glycan strand densities lie in the plane of the sacculus, roughly
perpendicular to the saccular long axis. Scale bar 500 nm. Adapted from [22] with
permission. © 2008 by The National Academy of Sciences of the USA.
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Figure 3. Surface appendages
(A) 10-nm tomographic slice through a Treponema primitia cell, showing novel surface
appendage structures. Scale bar 200 nm. Adapted from [23] with permission from Blackwell
Publishing Ltd. (B) 3-nm tomographic slice through the middle of a Flavobacterium
johnsoniae cell, showing the outer membrane (OM), cytoplasmic membrane (CM), cell
surface filaments (F) and added latex spheres (S). Inset: enlarged view of the boxed area
showing the peptidoglycan layer (P) and a patch (A) underneath the outer membrane. Scale
bar 300 nm. Adapted from [29] with permission from the American Society of
Microbiology.
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Figure 4. Intracellular structures
(A) 15-nm tomographic slice of a C. crescentus cell showing a polar chemoreceptor array
(arrow). Inset: fluorescence light microscopy image of the same cell showing the co-
localization of McpA-mCherry with the polar array seen by ECT. Scale bar 50 nm. Adapted
from [9] with permission from Blackwell Publishing Ltd. (B, C) ‘Compact’ (B) and
‘Expanded’ (C) conformations of the E. coli chemoreceptor Tsr visualized by ECT and sub-
volume averaging. Adapted from [32] with permission. © 2008 by The National Academy
of Sciences of the USA. (D) 4-nm tomographic slice of isolated Halothiobacillus
neapolitanus carboxysomes. Scale bar 100 nm. Adapted from [34] with permission from
Elsevier Ltd. (E) Tomographic slice of a Prochlorococcus MIT9313 cell showing the
intracytoplasmic membrane. Scale bar 100 nm. Adapted from [36] with permission from the
American Society of Microbiology. (F) 20-nm tomographic slice of a Rhodopseudomonas
viridis cell exhibiting photosynthetic membranes. Scale bar 200 nm. Adapted from [37] with
permission from Elsevier Ltd. (G) 8-nm slice of a Bdellovibrio bacteriovorus cell exhibiting
a distinct nucleoid region. Scale bar 150 nm. Inset scale bar 25 nm. Adapted from [19] with
permission from the American Society of Microbiology.
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