A Caltech Library Service

Approaching the Quantum Limit of a Nanomechanical Resonator

LaHaye, M. D. and Buu, O. and Camarota, B. and Schwab, K. C. (2004) Approaching the Quantum Limit of a Nanomechanical Resonator. Science, 304 (5667). pp. 74-77. ISSN 0036-8075.

PDF - Supplemental Material
See Usage Policy.


Use this Persistent URL to link to this item:


By coupling a single-electron transistor to a high–quality factor, 19.7-megahertz nanomechanical resonator, we demonstrate position detection approaching that set by the Heisenberg uncertainty principle limit. At millikelvin temperatures, position resolution a factor of 4.3 above the quantum limit is achieved and demonstrates the near-ideal performance of the single-electron transistor as a linear amplifier. We have observed the resonator's thermal motion at temperatures as low as 56 millikelvin, with quantum occupation factors of N_(TH) = 58. The implications of this experiment reach from the ultimate limits of force microscopy to qubit readout for quantum information devices.

Item Type:Article
Related URLs:
URLURL TypeDescription
Schwab, K. C.0000-0001-8216-4815
Additional Information:© 2004 American Association for the Advancement of Science. 8 December 2003; accepted 12 February 2004. We would like to acknowledge very helpful conversations with C. Sanchez, M. Blencowe, A. Armour, M. Roukes, K. Jacobs, S. Habib, A. Korotkov, A. Buonanno, and K. Ekinci. This work has been supported by the U.S. Department of Defense. Supporting Online Material:; Materials and Methods; Fig. S1
Funding AgencyGrant Number
Department of DefenseUNSPECIFIED
Record Number:CaltechAUTHORS:20090911-092252590
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:15767
Deposited By: George Porter
Deposited On:22 Sep 2009 20:44
Last Modified:10 Mar 2017 00:29

Repository Staff Only: item control page