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Achievable Throughput in Two-Scale Wireless
Networks

Radhika Gowaikar and Babak Hassibi

Abstract—We propose a new model of wireless networks which
we refer to as “two-scale networks.” At a local scale, charac-
terised by nodes being within a distance r, channel strengths
are drawn independently and identically from a distance-
independent distribution. At a global scale, characterised by
nodes being further apart from each other than a distance r,
channel connections are governed by a Rayleigh distribution,
with the power satisfying a distance-based decay law. Thus, at
a local scale, channel strengths are determined primarily by
random effects such as obstacles and scatterers whereas at the
global scale channel strengths depend on distance.
For such networks, we propose a hybrid communications

scheme, combining elements of distance-dependent networks and
random networks. For particular classes of two-scale networks
with N nodes, we show that an aggregate throughput that is
slightly sublinear in N , for instance, of the form N/ log4 N
is achievable. This offers a significant improvement over a
throughput scaling behaviour of O(

√
N) that is obtained in other

work.

Index Terms—Wireless networks, ad hoc networks, i.i.d. con-
nections, decay law, throughput.

I. INTRODUCTION

SENSOR and ad hoc networks have seen much research
activity in recent years. Throughput, delay, routing pro-

tocols, scalability, resource allocation, efficiency, connectivity
and so on are some of the aspects that have been the focus
of investigation. The first major result of the field was by
Kumar and Gupta [18] in which the throughput of a network
of n nodes was studied. Strengths of the connections between
two nodes were determined entirely by the distance between
them and followed a deterministic power scaling law. With
this model, for networks called ‘Random Networks,’ it was
shown that a total throughput that scaled like

√
n/ log n was

the best possible. This implied that the throughput per user fell
like 1√

n log n
which was quite discouraging. Similar scaling

laws were shown to hold in other settings as well [15], [4],
[9], [11], [14], [19], [21], [22], [16], [17]. The recent result
of Özgür, Leveque and Tse improves this significantly and
achieves linearly scaling throughput in certain cases, using a
hierarchical communication scheme. The other cases in which
scaling laws that are better than O(

√
n) are obtained are where
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nodes are allowed to approach each other [12], or when the
attenuation is very low [22].
In all of the above results, the network connections are

governed by a distance-based decay law. A different network
model is proposed in [23], [2]. In it, the channel strengths
are independent of distance and geometry and are instead
drawn identically and independently (i.i.d.) from a probability
distribution function (pdf). This model is suitable for networks
over a small area, where multipath and physical obstructions
dominate and the decay laws associated with far-field effects
do not kick in.
Though the throughput that is possible with this model

depends very strongly on the distribution that the channel
strengths are drawn from, several distributions, including the
Bernoulli and some heavy-tailed distributions lead to through-
puts that are almost linear in n. Thus the introduction of
randomness changes the behaviour of the system significantly.
In practice, we expect neither the deterministic model of

[18] nor the random model of [2] to hold. Work in the area
of link-level modeling and network modeling tells us that a
combination of distance-dependent connections and random
connections makes for a more realistic model. The next section
introduces existing network models and puts into context the
two-scale model that is proposed and analysed in this work.

A. Network Characterisation

The analysis of ad hoc networks and the results obtained
are strongly dependent on the network model that is under
consideration. Several experimental and analytical results re-
garding network models can be found in the literature [6], [7].
The pathloss phenomenon is the underlying aspect of many of
these. This phenomenon dictates that the signal power decays
according to a power law. This means that over a distance d, it
decays by a factor proportional to d−m wherem is a a constant
that depends on the environment. Typically, m is expected
to vary between 2 and 6 as the environment varies from
free space to urban areas characterised by tall buildings and
obstructions. The pathloss phenomenon is taken into account
in models such as the Okumura Model, the Hata Model and
its COST-231 extension and the Walfisch and Bertoni model
which have been widely adopted in industry and by standards
bodies [8].
An important point to note is that these models have been

developed under the cellular communications concept which
assumes that communication occurs between a base station
that is at a much greater height than the users. This is not a
valid assumption for most ad hoc networks and therefore these
models are of limited use for us. Furthermore, the pathloss
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model is a far-field effect and the models mentioned above
are known to hold only over distances between 1 km and
20 km and in certain ranges of frequency. Since the nodes
in an ad hoc network are likely to be within 1 km of each
other, these models often do not hold in this setting. Models
for shorter ranges are still in development, but the general
observation is that they are very strongly dependent on the
terrain. For example, if the landscape consists of buildings, the
propagation model is dependent on even the specific building
materials [7]. This makes it very difficult to come up with
short range models that hold with any amount of generality.

Another feature, apart from pathloss, that is typically in-
corporated in network models is that of shadowing. Under
the pathloss model, all receivers at a distance d from the
transmitter are expected to receive the same average power.
However, because of the occurrence of obstacles such as
buildings, trees and other properties of the environment this
is not what is observed. At every point the mean received
power is a random variable that follows a log-normal dis-
tribution with a mean equal to the received power dictated
by the pathloss model and a variance that can depend on
the terrain. As explained in [13], this produces an interesting
connectivity phenomenon where nodes that are further apart
are sometimes more likely to be connected than nodes that
are closer. This result also implies that channel strengths
between the transmitter and two receivers that are close to
each other are uncorrelated. Such models, or the connectivity
thereof, is captured by geometric random graphs, in which the
connections are drawn independently but not identically, and
the parameters governing the connections are chosen to reflect
an underlying physical phenomenon, for example, the distance
between a pair of nodes. Thus we see that a combination of
distance-dependent behaviour and random variations makes
for a more complete model. In summary, over short distances,
where the pathloss model does not apply or the pathloss given
by it is small compared to the variance of the shadow fading, it
is the shadow fading that determines the channel strength and
connectivity. Over longer distances, as the pathloss becomes
large, the shadow fading plays a smaller role and the distance-
decay dominates.

Thus, for our purposes of analysis, a suitable model is one
that incorporates the far field effects at a global level through
the decay law, but also recognizes that channel strengths look
much more random at a local level. In this work, we propose
and analyze such a model, which we call the two-scale model.
We discuss a communication strategy for this model and derive
the throughput that is achieved under it. In Section VI we
describe some other models that also incorporate propagation
effects over the short range and long range.

The rest of the paper is organised as follows. A precise
description of the model and the problem statement is in
Section II. Sections III and IV study the scheduling and
error-free communication properties of this model and the
main result is stated in Section V. A simplified throughput
expression is presented in Section V-A, examples are presented
in V-B and conclusions and directions for future work are
presented in Section VI.

II. NETWORK MODEL

In the two-scale model, we assume that nodes that are
within a distance r of each other are connected by channels
that are distance-independent. These channel strengths are
assumed to be drawn i.i.d. from a specified distribution. For
nodes that are further apart than r, the channel connections
obey a Rayleigh distribution with a mean power that depends
on the distance between the nodes and follows a distance-
decay law.

More specifically, consider a network with N nodes that
are uniformly and randomly distributed on the surface of a
sphere of radius R. We use a sphere rather than a planar
disk to separate edge effects and to have symmetry between
all nodes. We follow the standard convention of measuring
distances along great circles.

The channel between nodes i and j is denoted by hi,j =
hj,i. Define the channel strength to be γi,j = |hi,j |2. For
nodes that are within a distance r, the channel strengths, or
γi,j , are drawn i.i.d., according to a pdf, say f(γ). Let the
expected value corresponding to this distribution be denoted
by μγ . If nodes i and j are at a distance of l(i, j) > r
from each other, we model hi,j to be a Rayleigh distributed
random variable with its power (or second moment), E|hi,j |2,
given by cg(l(i, j)) where g(x) is used to model the distance-
dependence and c is a constant. This gives us that the
corresponding γi,j is drawn from an exponential distribution
with cg(x) as its mean. Thus the distribution is given by
cg(x) exp(−γ/cg(x)). Typically, g(x) is a decreasing function
such as 1

xm or e−δx

xm with m > 2, δ > 0 and c is chosen such
that cg(r) equals μγ . This is done to ensure that the expected
value of γi,j does not change abruptly as the distance between
i and j changes from being less than r to being greater than
r. Therefore, c = μγ

g(r) .

Thus the formal definition of the channel strengths is as
follows. Denote by px(γ) the distribution from which the
channel strength between two nodes with distance x between
them is drawn. Then we have

px(γ) =

{
f(γ) if x ≤ r
μγg(x)

g(r) exp(−γ g(r)
μγg(x) ) if x > r

. (1)

Figure 1(a) shows a sample network and the channel
strengths are as explained in the caption. Figure 1(b) plots the
mean channel strength as a function of the distance between
two nodes. The model of equation (1) ensures that the mean
channel strength is a continuous function at distance r.

We allow r andR to be functions of the number of nodesN .
This makes the model versatile and it can be used to subsume
existing models. For example, appropriate choices of r and
R can help model a full range of networks, from the purely
geometric ones of [18], to the purely random ones of [2]. The
former are obtained when r is small enough to ensure that at
most a finite number of nodes (preferably no more than one)
lie inside any circle of radius r and the latter are obtained
when r = R. The dependence of R on N can give networks
of different densities. In addition, it is also possible to choose
f(γ) to be a function of N .
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(b) Average channel strength as a function of distance

Fig. 1. (a) Node A had i.i.d. channel strengths to the nodes inside the circle surrounding it and distance-dependent channel strengths
otherwise. The channel strength between nodes B and D is distance-dependent. Node C has i.i.d. channel strengths to both nodes D and B.
(b) Average channel strength as a function of distance is constant and equal to µγ up to a distance r and follows a decay law beyond that.

A. Successful Communication

Next, we define the notion of successful communication
between two nodes. Assume that node i wishes to transmit
signal xi. We assume that xi is a complex Gaussian random
process with zero mean and unit variance. Each node is
permitted a maximum power of P watts.
We incorporate interference and additive noise in our model

as follows. Assume that l nodes i1, i2, . . . , il are simul-
taneously transmitting signals xi1 , xi2 , . . . , xil

respectively.
Suppose that node j is the intended receiver of the signal xi1 .
Then, the signal received by node j(�= i1, . . . , il) is given by

yj =
l∑

t=1

√
Phit,jxit + wj (2)

where wj represents additive noise for node j. The additive
noise variables w1, . . . , wN are i.i.d., drawn from a complex
Gaussian distribution of zero mean and variance σ2. That is,
wi ∼ CN (0, σ2). The noise is statistically independent of xi.
In equation (2), assume that only node i1 wishes to commu-

nicate with node j and the signals xi2 , . . . , xil
are interference.

Then the signal-to-interference-plus-noise ratio (SINR) for
node j is given by

ρj =
Pγi1,j

σ2 + P
∑l

t=2 γit,j

Note that some of the interference terms will come from the
exponential distribution and the others will be drawn from
f(γ), depending upon the distance of the interferer from j.
We assume that transmission is successful when the SINR
exceeds some ρ0. If the SINR is less than ρ0, we say that an
error has been made.

B. Network Operation and Throughput

We suppose that K nodes s1, . . . , sK are randomly chosen
as sources. For every si, a destination node, say di, is chosen at
random, thus making K source-destination pairs. We assume
that these 2K nodes are all distinct and therefore K ≤ N/2.

Source si wishes to transmit messageWi to destination di and
has encoded it as signal xi.
Communications are assumed to occur using a series of

hops. Every source-destination pair (si, di) uses a sequence
of relay nodes to transmit message xi. Each relay node is
expected to decode the message xi and retransmit it in a
future time slot, using power P . We expect several messages
to be making hops simultaneously and therefore the relay
nodes have to decode in the presence of interference. With
this in mind, we impose the constraint that no relay node be
asked to decode two messages simultaneously. We also assume
that no relay node can receive and transmit in the same time
slot. These properties will define a non-colliding schedule of
relaying.
Assume that all K messages reach the intended destinations

in (at most)H time slots. Assume that a fraction ε of messages
fail to reach the intended destination due to decoding or
scheduling errors. Each message contains at least log(1 + ρ0)
bits of information since ρ0 is the SINR threshold. Therefore,
we define the throughput as

T = (1 − ε)
K

H
log(1 + ρ0) (3)

Note that all the quantities above may depend on N . Typically,
we force ε to go to zero. In the rest of this paper, we present
a scheme of scheduling and communicating and analyze
the throughput as well as performance of this scheme. Our
concern will primarily be with arbitrarily large values of N .
Thus, we will obtain an asymptotic achievability result for the
throughput T . We state our main result next.

C. Main Result

We state the main result assuming a decay law of g(x) =
1

xm with m > 2.
Theorem 1: For the network described above, a throughput

of

T = (1 − ε) · K ·
log

(
1 + Pβ

σ2+ηPKμγ

(
sin2 r

2R + r2

2R2
1

m−2

))
log n

α log np · c2
R
r · log N
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is achievable. Here, n is bounded by c5 · 1
2N sin2 r

24R ≤ n ≤
c5 · 2N sin2 r

12R , α, c2 and c5 are known constants and β, K
and η ≥ 1 are chosen such that the following conditions are
satisfied:
1) K ≤ N

32 cos2 r
24R

.

2) p = P(γ ≥ β) = log n+ωn

n ,where ωn → ∞.

3) K ≤ αN · log(c5· 12 N sin2 r
24R p)

log(c5· 12 N sin2 r
24R )

1
16 cos2 r

24R
.

4) ε ≤ log n
α log np · R

r · 1
η → 0.

5) r
R

√
N → ∞.

Note that the theorem is general and can be applied to any
pdf f(γ). For different choices of r and f(γ) the theorem
gives different achievable throughputs. In Section V-B we see
that these can range from throughputs that are rapidly going
to zero to throughputs that increase almost as fast as N . The
result is derived in Section V and is based on results from
Sections III and IV.

III. RELAYING SCHEME

In this section we determine the scheduling of the relay
nodes for the multihop protocol. We do this through various
constructions, including Voronoi tessellations, a superschedule
and many subschedules. We will borrow techniques from [18]
and [2] and put them together in a suitable manner to perform
scheduling for the proposed hybrid, or two-scale, model. The
general approach is as follows. We first divide the network
into cells and determine a sequence of adjacent cells that a
particular message will have to pass through. This is called a
superschedule. Next, we find a subschedule that determines
which precise nodes will perform the task of carrying a
message from one cell to the next. During the subscheduling,
cells of the network form aggregates and communication only
takes place among nodes within an aggregate. Details of this
relaying scheme are presented in the following subsections.

A. Tessellations and cell-aggregates

Recall the concept of a Voronoi tessellation, used exten-
sively in [18]. Lemma 4.1 of [18] establishes the existence of
a Voronoi tessellation of the surface of the unit sphere where
each Voronoi cell contains a disk of radius δ1 and is contained
in a disk of radius 2δ1 for any δ1 > 0. We will use this result
for the surface of the sphere of radius R. (This can be done
by using the original result for δ1/R rather than δ1 and then
scaling the obtained tessellation by a factor of R.) Denote
by T (x) a tessellation of the surface of the sphere of radius
R where each Voronoi cell contains a disk of radius x and
is contained in a disc of radius 2x. In particular, consider
a tessellation T (r/12) where r is the radius within which
channel strengths are distance-independent and are drawn i.i.d.
from f(γ). Cells of this tessellation are labelled Si. If two cells
share an edge or a vertex they are called neighbors. It is easy
to show that in such a tessellation, for any cell, Si, it and all
its neighboring cells are contained in a disk of diameter r.
(A similar but slightly different result is shown in Lemma 4.2
of [18].) This means that all the nodes within this group of
cells are within a distance r of each other. Therefore, all the
connection strengths within this set of cells are independent
of distance and are drawn i.i.d. from the distribution f(γ).

Recall that the area of a circle of radius x on the surface of a
sphere of radius R is given by A(x) = 4πR2 sin2 x

2R . Using
this fact, it is possible to show that the number of cells that
are neighbors to a given cell is bounded by a constant, say c1.
This is similar to Lemma 4.3 of [18]. We will use this fact in
what follows.

B. Determining a Non-colliding Superschedule

Assume that a tessellation such as one mentioned in the
previous subsection is done and kept fixed. We refer to this as
T0(r/12). If the cells of this tessellation are labelled Sj , every
node belongs to some Sj . (Nodes lying on cell boundaries can
be assigned arbitrarily.) Consider the source-destination pair
(si, di). Consider the great circle containing si and di. Denote
by Li the segment of this circle that connects si and di. (We
will take the shorter of the two segments that form the great
circle.) This segment passes through a sequence of cells as it
traverses from si to di. Since the radius of the sphere is R
and each cell is big enough to contain a disc of radius r/12,
the maximum number of cells that the segment has to pass
through is M = c2

R
r where c2 is a constant. Denote these

cells, in sequence, by si ∈ Si,0, Si,1, Si,2, . . . , Si,M 
 di. We
can obtain such a sequence of cells for each of the K source-
destination pairs. Some sequences may, in actuality, be shorter
than M . We refer to the set of cells S1,t, S2,t, . . . , SK,t as the
t-th layer of cells. We aim to design a schedule in which the
messages from the sources have to progressively pass through
at most M layers in order to reach the intended destinations.
The aforementioned scheme only tells us the cells that a

message has to pass through in a certain layer. We now decide
which node in a particular cell is responsible for a certain
message in a given layer of transmission. We refer to this
schedule of nodes as the superschedule.
In particular, we seek a non-colliding superschedule. The

non-colliding condition requires that the K nodes that act as
relay nodes in one layer be distinct from each other as well
as distinct from the K nodes that occur in the previous layer.
Clearly, this condition can be imposed at the level of each
cell: we require the relay nodes in each cell of the t-th layer
to be distinct from each other as well as distinct from the
relay nodes in the same cell that occur in the (t− 1)-th layer.
(Note that in the zeroth layer of transmission, this condition
is trivially met since the K source nodes are assumed to be
distinct and there is no previous layer.) We wish to have such
distinct nodes for the i-th layer assuming that such nodes for
each layer up to the (i− 1)-th have already been determined.
Let us determine the conditions under which this is possible.
We first estimate the number of sources and the number

of nodes we expect to find in an arbitrary cell. There are at
least 4πR2

A(r/6) = 1/ sin2 r
12R cells in T0(r/12). The K sources

are assumed to be uniformly distributed on the surface of
the sphere. Therefore we expect each cell to contain around
K sin2 r

12R sources. This is made more rigourous in the
following lemma.
Lemma 1: With probability going to 1, each cell contains

at most k1 = 2K sin2 r
12R and at least k2 = 1

2K sin2 r
24R

sources.
Proof: The area of each cell is at most A(r/6) and at

least A(r/12). The K source-destination pairs are uniformly

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 11, 2009 at 19:12 from IEEE Xplore.  Restrictions apply. 



GOWAIKAR and HASSIBI: ACHIEVABLE THROUGHPUT IN TWO-SCALE WIRELESS NETWORKS 1173

distributed over the surface of the sphere. For a particular
cell C with area A(r/12) ≤ xC ≤ A(r/6), let y be the
random variable representing the actual number of sources
in cell C. Let μy = K xC

4πR2 represent the average value of y.
NowK A(r/12)

4πR2 ≤ μy ≤ K A(r/6)
4πR2 . Now consider the following

sequence of inequalities for some δ2 > 0 (see equation top of
following page).
The second inequality comes from a Chernoff bound and

the other two follow from the above discussion. Therefore,
for δ2 = 1, we have Eq. 4. Conversely, consider the following
sequence of inequalities for some 0 < δ3 < 1 (see equation
below Eq. 4 on the following page).
The second inequality comes from a Chernoff bound and

the other two follow from the above discussion. Therefore, for
δ3 = 1/2, we have Eq. 5. Since e

4 and
2
e are both less than

1, for large values of K , the probabilities in (4) and (5) go to
zero, giving us the lemma.
Thus, every cell occurs in the zeroth layer no more than

k1 times. By symmetry, a cell occurs in the t-th layer no
more than k1 times. A similar argument can be made for the
minimum number of nodes that are contained in a cell to give
us the following lemma.
Lemma 2: With probability going to 1, each cell contains

at least n1 = 1
2N sin2 r

24R and at most n2 = 2N sin2 r
12R

nodes.
To go back to the problem of finding distinct relays,

consider a specific cell in T0(r/12). This is expected to have
no more than k1 distinct nodes that are the chosen relays in
the (i − 1)-th layer. This cell also occurs k1 times in the i-th
layer and we wish to assign a further k1 distinct relay nodes
for each occurrence. The total number of nodes in this cell is
at least n1. Therefore the condition of distinct relays can be
met if 2k1 ≤ n1. Substituting for k1 and n1 and simplifying,
we have the following lemma:
Lemma 3: It is possible to obtain a non-colliding super-

schedule of nodes provided the following condition is met:

K ≤ N/(32 cos2
r

24R
).

Once this condition is satisfied, we can assign a distinct relay
node for each of the K messages in each layer. This can be
done in an arbitrary manner. The relay node in layer t that is
responsible for message i will be called si,t. TheK sequences
si = si,0, si,1, . . . , si,M = di for i = 1, . . . , K give us the
non-colliding superschedule. It now remains to decide how to
route the message i from its relay node in layer t, namely si,t

to its relay node in layer (t + 1), namely, si,t+1. We refer to
this as subscheduling and address it next.

C. Non-colliding Subschedules

We consider time slots in blocks of size h, where h denotes
the (maximum) number of hops required for a message to be
transmitted from si,j to si,j+1. The value of h is quantified
later. In a specific block of time slots, say from vh + 1 to
(v+1)h, some constant fraction c3 of all cells will be chosen at
random and called active cells. Denote the set of chosen cells
by Tv. Consider the cells that are not in Tv. Let j be such a
cell. If one of the neighbors of j is in Tv, assign j to it. If more
than one of the neighbors of j are in Tv, this assignment can

8(4)

11(2)

2

12(2)

9(3)

10

13(1)

15(1)

4

7(3) 6(3)

14(1)

5(1)

1

3

Fig. 2. Cells 1, 2, 3, 4 (circled) are originally chosen to be in Tv . The
remaining cells are then assigned as indicated in parentheses. For example,
13 gets assigned to 1 and 6 to 3. Cell 10 remains unassigned. The aggregate
corresponding to cell 3 consists of cells 3, 6, 7 and 9.

be done randomly. Thus, for each of the |Tv| originally chosen
cells, we now have |Tv| cell-aggregates that are active. (Some
of these may consist of just one cell, namely, the originally
chosen cell.) Figure 2 demonstrates this. In the v-th block
of time slots, communications will occur only within the Tv

cell aggregates and not between nodes in different aggregates.
Since any cell and its neighbors can together be put inside a
circle of diameter r (see Section III-A), connections within
an aggregate are drawn i.i.d. from f(γ). We will make use of
this fact in determining h and a non-colliding subschedule in
Lemma 4.
A particular choice of Tv leads to some pairs of adjacent

cells not being in the same cell-aggregate. For a pair that gets
split into two cell-aggregates, the relays in one cell that have
the next relay in the other cell are unable to communicate with
each other in the v-th block of time slots. However, there is a
probability that in another set, say Tw, this pair does not get
split up. Let B be the number of sets we have to choose in
order for every pair of adjacent cells to have been chosen in
the same aggregate at least once.
Let i and j be adjacent cells. They can be in the same cell-

aggregate in a randomly obtained Tv if (i ∈ Tv, j /∈ Tv and
j gets assigned to i) or vice versa. By symmetry, both cases
are equally likely. Therefore,

P(i, j are in the same cell-aggregate)
= 2 P(i ∈ Tv, j /∈ Tv, j gets assigned to i)
= 2 P(i ∈ Tv) ·

P(j /∈ Tv|i ∈ Tv) · P(j is assigned to i|i ∈ Tv, j /∈ Tv)

≥ 2 c3 · (1 − c3) ·
1
c1

The last expression comes from the fact that a fraction c3

of cells are chosen at random to be in Tv. Therefore i is
in Tv with probability c3 and j is not in Tv with probability
(1−c3) independently of i. Finally, j has at most c1 neighbors,
including i (see Section III-A). If some w of them are chosen
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P

(
y > (1 + δ2)K

A(r/6)
4πR2

)
≤ P (y > (1 + δ2)μy) ≤

(
eδ2

(1 + δ2)(1+δ2)

)μy

≤
(

eδ2

(1 + δ2)(1+δ2)

)K
A(r/12)
4πR2

P
(
y > 2K sin2 r

12R

)
= P

(
y > 2K

A(r/6)
4πR2

)
≤

(e

4

)K
A(r/12)
4πR2

(4)

P

(
y < (1 − δ3)K

A(r/12)
4πR2

)
≤ P (y < (1 − δ3)μy) ≤

(
e−δ3

(1 − δ3)(1−δ3)

)μy

≤
(

e−δ3

(1 − δ3)(1−δ3)

)K
A(r/12)
4πR2

P

(
y <

1
2
K sin2 r

24R

)
= P

(
y <

1
2
K

A(r/12)
4πR2

)
≤

(
2
e

)K
A(r/12)
4πR2

(5)

in Tv (and i is one of them), the probability of j being assigned
to i is 1/w ≥ 1/c1.
Let c4 = 2c3(1 − c3) 1

c1
. Any choice of c3 < c1/2 ensures

that c4 < 1. Therefore, the probability that i and j are not in
the same cell-aggregate in B choices for sets of cell-aggregates
is bounded above by (1−c4)B = eB log(1−c4). If we choose B
to be log N , this behaves as N log(1−c4) which goes to zero as
N goes to infinity. (It is enough to choose B to be a function
that goes to infinity for large N .) Therefore, with probability
going to 1, each pair of adjacent cells will be chosen to be
in the same cell aggregate at least once in B sets of h blocks
each.
Consider a block of h time slots in which a particular cell-

aggregate is active. Assume that it consists of c5 ≤ 1 + c1

cells. Each cell has around k1 relays that wish to transmit and
k1 relays that wish to receive in a particular layer. Thus, we
expect there to be no more than c5k1 transmissions that need
to take place while that cell-aggregate is active. We denote the
actual number of transmissions by k ≤ c5k1. In addition, the
cell-aggregate lies entirely in a circle of diameter r, therefore
all the connection strengths within it are drawn i.i.d. from the
distribution f(γ). Let n ≥ c5n1 be the total number of nodes
in the aggregate.
In this subnetwork of n nodes with i.i.d. connections we

seek a schedule of k non-colliding paths from the set of
transmitting relays to the set of receiving relays. But this is
exactly the problem that is addressed in [2].

D. Good edges and vertex-disjoint paths

We reproduce the solution presented there. The channels
that are stronger than a chosen parameter β are called good.
All communications take place over good channels. Since
channels are drawn i.i.d. from f(γ), for every channel, there
is a probability p = P (γ ≥ β) of its being good. We now
construct a graph on n vertices where each vertex represents
a node of the network. An edge is drawn between two vertices
if the channel between the corresponding nodes is good. Thus,
we obtain a graph on n vertices where edges are drawn i.i.d.
from a Bernoulli distribution of parameter p.

Such a graph fits a standard random graph model called
G(n, p) [5]. This model is well-studied and we appeal to an
existing result in the literature to help us with our scheduling.
We seek k non-colliding paths that go from the set of t-th layer
relay nodes to the respective (t + 1)-th layer relay nodes. In
[1], an identical problem is studied, but the condition on the
paths is stricter still – no two paths can share a vertex. In
other words, the paths must be vertex-disjoint. We state here
the result of [1] as it applies to our problem.
Lemma 4: Suppose that G = G(n, p) and p ≥ log n+ωn

n ,
where ωn → ∞. Then there exists a constant α > 0 such
that, with probability approaching 1, there are vertex-disjoint
paths connecting xi to yi for any set of disjoint, randomly
chosen node pairs

F = {(xi, yi)|xi, yi ∈ {1, . . . , n}, i = 1, . . . , k}

provided k = |F | is not greater than αn log np
log n .

The xis of the result above are the transmitting relays (from
the t-th layer) and the yis are the corresponding receiving
relays (from the (t + 1)-layer). From Section III-B, we know
that these are all distinct nodes. We have k ≤ c5k1 ≤ c5 ·
2K sin2 r

12R and n ≥ c5n1 ≥ c5 · 1
2N sin2 r

24R and need
to impose the condition k ≤ αn log np

log n . Under the condition

on p mentioned in the statement of the lemma, αn log np
log n is

an increasing function for sufficiently large n. Therefore it is
sufficient to impose the equation on the top of the following
page, which simplifies to

K ≤ αN ·
log(c5 · 1

2N sin2 r
24Rp)

log(c5 · 1
2N sin2 r

24R )
1

16 cos2 r
24R

.

Finally, the theorem above is an asymptotic result and we
need n → ∞ before we can apply it. It is enough to impose
the condition n1 = 1

2N sin2 r
24R → ∞. For r and R being

functions of N , this means that r
R

√
N → ∞ or r

R cannot
decrease faster than 1/

√
N .

Recall that for every block of h time slots, we have certain
active cell-aggregates. Each time a cell-aggregate is active, we
can appeal to the above theorem to get a satisfactory subsched-
ule. Additionally, following the treatment in [2], it is possible
to show that the lengths of the vertex-disjoint paths grow no
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c5 · 2K sin2 r

12R
≤ α

(
c5 ·

1
2
N sin2 r

24R

)
log(c5 · 1

2N sin2 r
24Rp)

log c5 · 1
2N sin2 r

24R )

faster than log n
α log np . Except for the case when p is a constant,

this is an increasing function of n. When p is a constant, this is
a decreasing function of n. Therefore, the time slots required,
h, can be bounded above by h ≤ log n

α log np ≤ log c5ni

α log c5nip
where

ni can be n1 or n2 from Lemma 2.
Putting the results of this section together, we have the

following result.
Theorem 2: All K communications can be scheduled in

H = hMB ≤ log n
α log np · c2

R
r · log N time slots using non-

colliding paths of length hM ≤ log n
α log np · c2

R
r provided the

following conditions hold.
1) K ≤ N

32 cos2 r
24R

.

2) K ≤ αN
log(c5· 12 N sin2 r

24R p)

log(c5· 12 N sin2 r
24R )

1
16 cos2 r

24R

3) r
R

√
N → ∞

Here, log n+ωn

n ≤ p ≤ 1 is a probability, n is bounded as c5 ·
1
2N sin2 r

24R ≤ n ≤ c5 · 2N sin2 r
12R , α and c2 are constants,

and ωn can be any function that goes to infinity.
Proof: The first condition is as obtained in Lemma 3.

Recall that a message has to traverse M cells or layers as
indicated by the superschedule. In order to go from one cell
to the next, those two cells need to be part of the same cell-
aggregate and it may take as many as B choices of cell
aggregates before this happens. Once the two cells are part
of the same cell-aggregate, it takes at most h hops for the
message to go from the designated relay in one cell to that
in the next cell. Thus the message makes up to hM hops in
up to hMB time-slots. The conditions in the theorem are as
derived in the earlier sections.
Thus, the hybrid model allows us to schedule non-colliding
paths using a combination of ideas from the deterministic
model of [18] and the random model of [2]. At the same time,
the last condition above prevents us from making r so small
that it contains at most one or a constant number of nodes.
Because of this, the above result and hence the main result are
not applicable to the deterministic, purely distance-dependent
model of [18]. Note that the network model itself permits
the purely geometric models, but our method of obtaining a
non-colliding schedule does not apply for those models. The
next question to investigate is that of an appropriate SINR
threshold, ρ0, that determines the rate of the transmissions.

IV. RATE OF TRANSMISSIONS AND ERROR PROBABILITY

All transmissions take place in the presence of noise and
interference. Successful transmissions require a threshold of
ρ0 and occur at a rate of log(1 + ρ0) nats per channel use.
The SINR threshold ρ0 has to be carefully set so that it is not
too low, but is low enough to ensure that most communications
are successful. Let us investigate the SINR at any particular
hop. Let us assume that node a is transmitting to node b. The
power of the transmission is P . All communications take place
on channels that are good, that is, where γ ≥ β. Therefore,
the signal power is at least Pβ. The additive noise power
is σ2. There is interference from all other transmissions that

occur in the same time slot. Some of these transmitting nodes
lie within a distance r of the receiving node b and others lie
further. We now calculate the expected interference.
Consider a node d that is causing interference to b. This

location of this interferer follows a uniform distribution on
the surface of the sphere. Let the distance between b and d be
denoted by the random variable X . We determine the pdf of
X through its cumulative density function (cdf) as follows.

pX(x) =
d

dx
FX(x) =

d

dx
P (X < x)

=
d

dx

A(x)
4πR2

=
1

2R
sin

x

R
.

Recall from (1) that when the distance x, drawn according to
pX(x), satisfies x ≤ r, the channel strength between d and
b is drawn from f(γ) and has mean μγ and when x > r,
the channel strength is an exponential random variable with
mean μγ

g(x)
g(r) . Let us calculate the expected value of the

interference, assuming that d transmits with power P . Denote
the interference by I in Eq. 6 (top of next page).
In the last two lines we have used the specific distance

decay law of g(x) = 1
xm . This makes the remaining paper

easier to read, but similar results can be obtained with more
general laws as well. Note that there are at most K interferers,
since there are only K messages. So the expected value of
the total interference is at most EItotal = K · EI . (In fact, it
is possible to show that only about K

B = K
log N interferers are

active at any time. Therefore the interference above and the
throughput results later are actually pessimistic by a factor of
log N . However, for simplicity, we consider that there are at
most K interferers at any given time.)
Since the strength of the received signal is at least Pβ, we

have this bound on the SINR for node b.

ρb ≥
Pβ

σ2 + Itotal
.

The probability that the SINR falls below some threshold ρ0

is bounded as follows.

P(ρb ≤ ρ0) ≤ P
(

Pβ

σ2 + Itotal
≤ ρ0

)

= P
(

Itotal ≥
Pβ

ρ0
− σ2

)

≤ E(Itotal)
Pβ
ρ0

− σ2
≤

PKμγ(sin2 r
2R + r2

2R2
1

m−2 )
Pβ
ρ0

− σ2
(7)

where the Markov inequality and the expected value of the
interference have been used in the last line.
We will set the SINR threshold to

ρ0 =
Pβ

σ2 + ηPKμγ(sin2 r
2R + r2

2R2
1

m−2 )
(8)

where η ≥ 1 can be suitably chosen to make transmissions
error free. This value of ρ0 is chosen keeping in mind that the
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EI = E(I|X ≤ r) · P (X ≤ r) + E(I, X > r)

= Pμγ · A(r)
4πR2

+ P

∫ πR

r

E(I, X = x)P (X = x)dx

= Pμγ · sin2 r

2R
+ P

∫ πR

r

μγ
g(x)
g(r)

· 1
2R

sin
x

R
dx

≤ Pμγ · sin2 r

2R
+ P

∫ ∞

r

μγ
g(x)
g(r)

· 1
2R

x

R
dx since sinx ≤ x for x ≥ 0

= Pμγ · sin2 r

2R
+ P

∫ ∞

r

μγ
rm

xm
· 1
2R

x

R
dx (6)

= Pμγ · sin2 r

2R
+ Pμγ · r2

2R2

1
m − 2

interference terms are expected to behave like their expected
values for large networks. We use η to keep the threshold
conservative. Substituting for ρ0 in (7), we have for the
probability of error, P(ρb ≤ ρ0) ≤ 1

η .
Finally, we know from Theorem 2 in Section III that every

message makes hM = log n
α log np · c2

R
r hops. At each hop,

the probability that the SINR falls below the threshold ρ0

is as calculated above. With a simple union bound, we find
the probability that a message fails to reach its destination.
Denote this by ε. The destination fails to receive the intended
message if the SINR falls below ρ0 at any of the hM hops.
Denote by Et the event that the t-th hop does not have an
SINR greater than ρ0. Note that the events E1, . . . , EhM are
identical. Therefore we have Eq. 9 (next page), where the
inequality comes from the union bound. Note that the value
of ρ0 as given in (8) has been used. Typically, we will force
ε to go to zero by making the upperbound obtained above go
to zero.

V. DERIVATION OF THE MAIN RESULT

We now have all the pieces we need to obtain the final
result. Section III tells us the conditions for the existence of a
non-colliding schedule, obtained by means of superschedules
and subschedules and Section IV tells us the conditions for
successful communication under this schedule. We thus have
the following result.
Theorem 3: Consider a network of N nodes that are uni-

formly and randomly distributed over the surface of a sphere
of radius R. For two nodes that are within a distance r of each
other, the channel strength between them is drawn i.i.d. from
a pdf f(γ) with mean μγ . For two nodes that are a distance
x > r apart, it is drawn from an exponential distribution
with a mean of μγ

rm

xm , where x > r is the distance between
them. Each node transmits with power P . For this network, a
throughput of

T = (1 − ε) · K ·
log

(
1 + Pβ

σ2+ηPKμγ

(
sin2 r

2R + r2

2R2
1

m−2

))
log n

α log np · c2
R
r · log N

(10)
is achievable. Here, n is bounded by c5 · 1

2N sin2 r
24R ≤ n ≤

c5 · 2N sin2 r
12R , α, c2 and c5 are known constants and β, K

and η ≥ 1 are chosen such that the following conditions are
satisfied:

1) K ≤ N
32 cos2 r

24R
.

2) p = P(γ ≥ β) = log n+ωn

n ,where ωn → ∞.

3) K ≤ αN · log(c5· 12 N sin2 r
24R p)

log(c5· 12 N sin2 r
24R )

1
16 cos2 r

24R
.

4) ε ≤ log n
α log np · R

r · 1
η → 0.

5) r
R

√
N → ∞.

Proof: The throughput expression is obtained from (3)
by substituting for H and ρ0 from Theorem 2 and (8)
respectively. The conditions of Theorem 2 are reproduced here
as conditions 1, 3 and 5. The condition on p also comes
from Theorem 2 and condition 4 comes from forcing the
upperbound given in (9) to go to zero. Thus, all the conditions
that are necessary for scheduling and for ensuring that the
probability of error of the communications goes to zero are
summarised above. This gives us the achievable throughput
mentioned in the theorem.
Note that the theorem allows r and R to be functions of

N so long as condition 5 is satisfied. Another observation
regarding r and R is that they always occur as a ratio, r

R , and
never independently.

A. Simplifying the expression for the Throughput

Note that Theorem 3 is general and can be applied to a
network with arbitrary f(γ). Even the distance decay law that
applies for distances greater than r can be arbitrary, but we
have used the specific case of the 1

xm law in our derivation
of the expected value of the interference. While determining
the exact achievable throughput requires a precise evaluation
of the expression in (10), for the purposes of scaling law
behaviour, it is often enough to consider a simpler expres-
sion. This is obtained next through a series of simplifying
assumptions that often hold.
Consider the throughput term as given by (10) which arises

from T = (1 − ε)K log(1+ρ0)
H . In most examples, the term

(1 − ε) can be ignored since we force ε → 0. Also, in the
ρ0 expression given in (8), the interference term, as given
by ηPKμγ

(
sin2 r

2R + r2

2R2
1

m−2

)
, typically goes to infinity,

therefore the noise term, as given by σ2, can be ignored and ρ0

itself goes to zero. (Note that in order to ignore the noise term,
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ε = P(
hM⋃
t=1

Et) ≤
hM∑
t=1

P(Et) = hM · P(E1) ≤ hM
1
η
≤ log n

α log np
c2

R

r

1
η

(9)

it is enough for the interference term to asymptotically be non-
zero.) Therefore, the log(1+ρ0) term in the throughput can be
approximated by ρ0. Furthermore, we can use sin2 r

2R ≤ r2

4R2

in the denominator of ρ0 (8).
Then, to enforce condition 4 of the theorem, assume that

log n
α log np · R

r · 1
η = 1

θN
where θN is some function of N that

goes to infinity. This gives an expression for η. Using it and
the above simplifications for log(1 + ρ0), and ignoring some
constants, we get the following expression for the throughput:

T =
β(m − 2) log2 np

log2 n · log N · μγ · θN

.

With the condition on p, specified in condition 2 of Theorem
3, and with an appropriate choice of θN , the scaling law for
T can be further simplified to

T =
β(m − 2)

log3 N · μγ

.

Since we have assumed a simple decay law of the form 1
xm , it

is not surprising that m is the only parameter relating to it that
appears in the throughput expression. As for the dependence
of the throughput on f(γ), we note that β and μγ are the
main parameters that affect throughput. Thus the throughput
is strongly dependent on the tail of the distribution as indicated
by β. Note that this in turn is related to the notion of good
channels over which all the hops were scheduled. Now μγ may
be a function of n or N since f(γ) may depend on N or n and
β typically depends on n through condition 2 on p. Since n
asymptotically behaves like N r2

R2 , the throughput depends on
r, R and N even though these do not appear in the throughput
expression directly. Also, the conditions of Theorem 3 still
need to hold and these involve r, R, K and N . Furthermore,
in order for the simplifying assumptions made above to be
valid, additional conditions, such as those required to have
ρ0 → 0, will need to be met. These have to be looked at on
a case by case basis. We formalise the simplified throughput
expression in the following corollary.
Corollary 1: The asymptotic achievable throughput of the

network given in Theorem 3 can be simplified to

T =
β(m − 2)

log3 N · μγ

.

provided the following conditions are satisfied:

1) Conditions 1, 2, 3, 4 and 5 of Theorem 3.
2) ρ0 = Pβ

σ2+ηPKμγ (sin2 r
2R + r2

2R2
1

m−2 )
→ 0.

3) ηPKμγ(sin2 r
2R + r2

2R2
1

m−2 ) � 0.

B. Examples

In this section, we briefly state some examples of networks
and the throughput obtained for them.

1) Consider f(γ) = t−1
(1+γ)t with t > 2 as the distribution

from which the channel strengths are drawn i.i.d. for

nodes within a distance r from each other. We need
t > 2 for μγ to be finite. We will assume that the other
connections are exponential with the mean following
a distance decay law of g(x) = 1/xm for m > 2.
Choosing p = 2 log n

n , we get a β that behaves like
(n/2 logn)

1
t−1 − 1. It is possible to ensure that the

simplifying assumptions of Section V-A hold and a

throughput that scales as

(
N r2

R2

) 1
t−1

log
3+ 1

t−1 N
is achievable. For

r
R being constant, the throughput is almost linear in N

for t just greater than 2, but for t > 3, it falls below
√

N .
If r

R varies as N−ν (we need ν < 1
2 to satisfy condition

5 of Theorem 3), the throughput behaves as N
1−2ν
t−1

log
3+ 1

t−1 N

which scales better than
√

N when t + 4ν < 3.
2) Another interesting distribution is the shadow fading
distribution. In this the connections within distance r
satisfy the Bernoulli distribution f(γ) = (1−p)·Δ(γ)+
p · Δ(γ − 1) where Δ(·) is the Dirac delta-function.
The natural choice for β is 1. Depending on the value
of p, the throughput can vary widely. Note that we
need p to be at least log n+ωn

n in order for our results
to hold. Also, μγ = p and therefore the interference
term of ρ0 does not necessarily go to infinity and we
need be careful about applying the simplifications of
Section V-A. It is possible to show that a throughput

of n
log4 N

=
N r2

R2

log4 N
is achievable. Thus the throughput

scaling is completely dependent on how n scales. It
scales as w2

N

log4 N
if r

R decays as wN√
N
for any wN → ∞.

This means that the throughput can go to zero (for
example, if wN = log N ) or can be just sublinear in N
(for example, if wN =

√
N ) depending on the behaviour

of r
R .

3) If we apply the Theorem to a network where the i.i.d.
connections are drawn from an exponential distribution,
f(γ) = e−γ , we see that the transmissions get heav-
ily dominated by interference. We obtain a very low
throughput that scales as log n

log3 N
and goes to zero.

We see that the throughput obtained in the examples is often
directly dependent on n. Therefore, as r

R decreases, the
throughput takes a hit. To understand this intuitively, consider
that the scheduling is over the good or strong short range i.i.d.
links (defined as being stronger than β). As r

R decreases, the
overall number of short range links decreases and, therefore,
we are forced to lower β to maintain connectivity and obtain
a schedule. This decreases the SINR threshold, ρ0, and the
throughput.
For the case when the distance decay law is given by e−δx

xm ,
δ > 0, many of the same results as above are obtained. The
reason the throughput is not a strong function of the distance
decay law is because of the way we perform scheduling. All
of our transmissions take place over the i.i.d. links between
nodes that are less than a distance of r apart and therefore the
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distance decay law affects only the interference term and does
not produce a first order effect in the throughput scaling law.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have proposed a two-scale network model in which
local connections are drawn at random and global connections
depend on a distance-based decay law. We have analysed the
throughput for this network and found that depending on the
chosen parameters the throughput can vary widely.
In the case when r is so large that the entire network falls

within the range of i.i.d. connections, we obtain the model of
[2]. It can be shown that the achievable throughput result of
[2] can also be obtained in this case. A model similar to that of
[18] is possible if r is so small that no two nodes are within
a range r of each other. As explained in Section III-D, our
strategy of scheduling cannot be applied in the case when r (or
r
R ) becomes small enough to obtain the model of [18]. This is
because our scheduling scheme relies on there being infinitely
many nodes having i.i.d. connections, which is precisely what
is not allowed in the the purely distance-dependent model.
Investigating scheduling algorithms that work in both types of
network models is an interesting direction for future work.
Another interesting question is that of upperbounds. In

theory, it is possible to obtain min-cut upperbounds for this
network. If we consider an arbitrary partition of the network
with the K sources on one side and the K destinations on
the other, an upperbound on the cut capacity is given by
the MIMO capacity of this system. This MIMO capacity is
well understood in the case of all links being Gaussian [20]
and also in the case of all links being distance-dependent
[14]. However, for the two-scale network, we will have a
combination of i.i.d. and distance-dependent links. The authors
expect that the capacity of such a MIMO system cannot scale
faster than N , but determining what that capacity is and its
exact dependence on f(γ) and the distance decay law are
challenging questions.
Finally we propose two more models, as anticipated in

Section I-A. In the two-scale network, the model for the
channel strength changes abruptly when the distance between
nodes exceeds r. More generally, we can consider models
where this transition takes place more smoothly. If px(γ)
denotes the distribution from which channel strengths between
two nodes that are separated by a distance of x, are drawn, a
multiscale model in which this transition takes place between
distances r1 and r2 would be described as in the equation at
the top of the following page.
Another model, which we might call the mixture-model,

where the channel strength always has some probability of
being purely random or being distance-dependent would be
described as follows:

px(γ) =
R − x

R
f(γ) +

x

R

1
xm

exp(−γxm)

Here, the probability that the channel strength is i.i.d. de-
creases with distance as R−x

R . The analysis of these mod-
els presents some interesting challenges. For instance, the
scheduling ideas used in this paper can be repeated for the first
model above, by simply using r1 in place of r. For the latter
model, some new ideas for finding a non-colliding schedule

may be called for. For both models, we expect the SINR
analysis to be similar to that in this paper. The two-scale model
and these models represent some avenues for future work.
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