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Abstract—Recently, a novel RNA structural alignment method
has been proposed based on profile-csHMMs. In principle, the
profile-csHMM based approach can handle any kind of RNA
secondary structures including pseudoknots, and it has been
shown that the proposed approach can find highly accurate RNA
alignments. In order to find the optimal alignment, the method
employs the SCA algorithm that can be used for finding the
optimal state sequence of profile-csHMMs. The computational
complexity of the SCA algorithm is not fixed, and it depends on the
so-called adjoining order that describes how we can trace-back
the optimal state sequence in a given profile-csHMM. Therefore,
for fast RNA structural alignments, it is important to find the
adjoining order that has the minimum computational cost. In this
paper, we propose an efficient algorithm that can systematically
find the optimal adjoining order that minimizes the computational
cost for finding the RNA alignments. Numerical experiments show
that employing the proposed algorithm can make the alignment
speed up to 3.6 times faster, without any degradation in the quality
of the RNA alignments.

Index Terms—~Profile-csHMM, pseudoknot, RNA homology
search, RNA structural alignment, SCA algorithm.

I. INTRODUCTION

ANY functional RNAs can fold onto themselves to form

base-paired secondary structures. It is known that these
structures are crucial for carrying out the functions of the RNAs
and, therefore, the secondary structure is typically conserved
among homologous RNAs. For this reason, when carrying out
a similarity search for ncRNAs, it is advantageous to consider
both the structural similarity and the sequence similarity [1],
[13]. A conserved secondary structure that is shared by homol-
ogous RNAs manifests itself in pairwise correlations between
distant bases in each of these RNA sequences. Therefore, in
order to perform an accurate RNA similarity search, we need
a statistical model that can describe such base correlations and
can also be used to recognize them.

Until now, various models have been used in RNA sequence
analysis, where examples include CMs (covariance models) [2],
PHMMTSs (pair hidden Markov models on tree structures) [9],
and PSTAGs (pair stochastic tree adjoining grammars) [6], just
to name a few. These models provide effective frameworks for
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representing RNAs with a conserved secondary structure and
for finding their homologues. Each of these models can handle
a limited class of RNA secondary structures that depends on its
descriptive capability. For example, the CMs [2] and the PH-
MMTSs [9] are both based on SCFGs (stochastic context-free
grammars), and since SCFGs cannot describe crossing corre-
lations, these models are incapable of handling pseudoknots.t
PSTAGs [6], which employ special subclasses of tree adjoining
grammars (TAGS), are a recent development that can also handle
simple pseudoknots that include many known pseudoknots, but
not all of them.

Recently, we have proposed a new statistical model called
profile-csHMMs (profile context-sensitive hidden Markov
models) that can represent any kind of pairwise base correla-
tions [12], [15]. Consequently, profile-csHMMs can in principle
handle any kind of pseudoknots, which is an important ad-
vantage over many existing models. Profile-csHMMSs have
been applied to the problem of finding structural alignments of
RNAs [15], and it was shown that the profile-csHMM based
approach can find highly accurate alignments of RNAs that
have complex secondary structures. Like many other statistical
models used in RNA analysis, one practical problem in using
profile-csHMMs is its high computational cost. In order to
deal with complicated base correlations, the SCA (sequential
component adjoining) algorithm [12] that is used for finding
the optimal state sequence of profile-csHMMs makes important
generalizations to existing algorithms such as the Viterbi algo-
rithm and the Cocke—Younger—Kasami (CYK) algorithm [1].
As a result, the SCA algorithm has a variable computational
complexity that depends on the so-called “adjoining order” that
describes how the sequence adjoining rules should be applied
to find the optimal state sequence in a given profile-csHMM.
Therefore, in order to make the structural alignment based on
profile-csHMMs faster, we have to find the adjoining order
that minimizes the computational cost for finding the optimal
alignment.

In this paper, we propose an efficient algorithm that can be
used for finding the optimal adjoining order for a fast structural
alignment of RNAs. The paper is organized as follows. In
Section I, we briefly review the structural alignment method
based on profile-csHMMs. In Section IlI, we consider the
problem of optimizing the adjoining order in more depth. The
algorithm for finding the optimal adjoining order is described
in Section IV. Finally, we demonstrate the performance of
the proposed method in Section V and conclude the paper in
Section VI.

IRNA secondary structures that have crossing base-pairs are called pseudo-
knots.
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Fig. 1. (a) Reference RNA sequence and its secondary structure after folding. (b) RNA multiple sequence alignment. (c) Profile-csHMM that is constructed based

on the reference RNA.

Il. REVIEW OF RNA STRUCTURAL ALIGNMENT USING
PROFILE CONTEXT-SENSITIVE HMMS

RNA structural alignment methods try to find the optimal
alignment between a structured RNA (an RNA with a known
secondary structure) and an unstructured RNA (an RNA with an
unknown structure) [6], [15]. Unlike traditional sequence align-
ment methods [4], structural alignment methods consider both
structural similarity as well as sequence similarity between the
RNAs to find the best alignment between them. As many func-
tional RNAs conserve their secondary structure more than they
conserve their primary sequence, structural alignment methods
can find more accurate RNA alignments than methods that are
solely based on sequence similarity. Furthermore, when applied
to RNA similarity search, the structural alignment approach can
significantly increase the discriminative power of the search, as
it can detect homologues with poor sequence conservation and
also reject false candidates that lack the conserved secondary
structure.

Recently, we have proposed a new RNA structural alignment
method based on profile-csHMMs [15]. The profile-csHMM is
a subclass of the context-sensitive HMM (csHMM) [11], which
has a linear repetitive structure that is suitable for representing
RNA sequence profiles. As profile-csHMMSs can represent any

kind of pairwise base correlations, they provide a convenient
framework for building RNA sequence analysis tools that
can virtually handle any kind of RNA secondary structures
including pseudoknots.

A. Building the Model

Assume that we want to build a profile-csHMM that repre-
sents the reference RNA shown in Fig. 1(a). The dotted lines in-
dicate the base-pairs. The reference RNA can be either a single
RNA sequence or the consensus sequence of an alignment of
related RNAs as shown in Fig. 1(b). Fig. 1(c) shows the pro-
file-csHMM that has been constructed based on the reference
RNA. As we can see in Fig. 1(c), the profile-csHMM has a very
regular structure that repetitively uses match states (M}, ), delete
states (Dy.), and insert states (I). The match state M;, is used
to represent the kth base in the reference RNA, while the delete
state D;, is used to model its deletion. The insert state I, is used
to model additional bases that are inserted between the kth and
the (k + 1)th bases of the original RNA. One important fea-
ture of the profile-csHMM is the context-sensitivity of certain
match states. In order to model the pairwise correlation between
two bases, the profile-csHMM uses a pair of pairwise-emission
match state and context-sensitive match state, which cooperate
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with each other as follows. When we enter a pairwise-emis-
sion state, it emits a symbol according to its emission proba-
bilities. After emitting a symbol, the pairwise-emission match
state stores the emitted symbol in the auxiliary memory that is
dedicated to it. Later on, when we enter the corresponding con-
text-sensitive match state, it first reads the symbol that was pre-
viously emitted at the pairwise-emission state and then its emis-
sion probabilities are adjusted accordingly.

For example, let us take a look at the profile-csHMM in
Fig. 1(c). In order to model the base-pair between the first and
the fourth bases in the original RNA, we use a pairwise-emis-
sion match state at M, and the corresponding context-sensitive
match state at M. Let us assume that A; emitted the base A,
which will be subsequently stored in MEMORY 1. When we enter
My, it first reads from MEMORY 1 to see that A was emitted at
M. Based on this observation, the emission probabilities at
M, are adjusted such that M, emits the base U (which is the
complementary base of A). For other bases, the model works
in a similar manner to maintain the base-pair in the original
RNA. Similarly, the base correlation between the second and
the fifth bases in the reference RNA are modeled by the pair
of pairwise-emission match state at M, and the corresponding
context-sensitive match state at M5 that share MEMORY 2.
Further details on the concept of profile-csHMMs and their
construction can be found in Section IV of [15].

B. Finding the Structural Alignment

Once we have constructed the profile-csHMM that represents
the reference RNA, we can use it to find the structural alignment
between the reference RNA and an unstructured target RNA.
The optimal alignment between these RNASs can be obtained by
finding the optimal state sequence of the profile-csHMM that
maximizes the observation probability of the target RNA. As
every match state in the model corresponds to a specific base
position in the reference RNA, finding the underlying state se-
quence of the target RNA leads to a unique and unequivocal
alignment between the RNAs.

As profile-csHMMs can describe complicated symbol corre-
lations that cannot be modeled using HMMs or SCFGs, we can
neither use the Viterbi algorithm (used for HMMSs) nor the CYK
algorithm (used for SCFGs) to find the optimal state sequence
(or, optimal path) in profile-csHMMs. For this reason, a new dy-
namic programming algorithm, called the SCA (sequential com-
ponent adjoining) algorithm, has been proposed for finding the
optimal state sequence in profile-csHMMs [12], [15]. The SCA
algorithm makes two important generalizations to the aforemen-
tioned algorithms. First, it allows us to define and use subse-
quences that consist of multiple nonoverlapping intervals. This
tremendously increases the number of ways in which the in-
termediate subsequences (used during the iterative process of
finding the optimal state sequence) can be adjoined and ex-
tended, and it allows us to handle symbol correlations that are in-
tertwined in a complicated manner. Second, the SCA algorithm
follows a model-dependent “adjoining order” to find the op-
timal state sequence, instead of simply proceeding left-to-right
(like the Viterbi algorithm) or inside-to-outside (like the CYK
algorithm). Like these two algorithms, the SCA algorithm first

finds the optimal paths of short subsequences, and iteratively ex-
tends or adjoins them to find the optimal paths of longer subse-
quences. This process is repeated until we find the optimal path
for the entire symbol sequence. During this iterative process,
the adjoining order instructs the algorithm how to proceed in
extending and adjoining the subsequences so that we can ulti-
mately find the final optimal state sequence.

Usually, it is convenient to describe the adjoining order in
terms of the bases and base-pairs in the reference RNA that
was used to construct the profile-csHMM. The adjoining order
shows how the bases can be “assembled” step-by-step, to obtain
the entire RNA sequence. This is illustrated on the left-hand side
of Fig. 2. According to this order, we progressively find the op-
timal state sequence for the portion of the profile-csHMM that
corresponds to the partial RNA shown on the left-hand side.2
This is shown on the right-hand side of Fig. 2. By following
the adjoining order, we can ultimately find the optimal state se-
quence of the observed symbol sequence (i.e., the target RNA
sequence), hence the best structural alignment between the ref-
erence RNA and the target RNA.

I1l. CONSIDERATIONS FOR FINDING
A GOOD ADJOINING ORDER

In the previous section, we briefly reviewed the RNA struc-
tural alignment method based on profile-csHMMs. As we have
seen, we first construct a profile-csHMM that represents the
given reference RNA and then use the SCA algorithm to find
the optimal state sequence of the target RNA. Based on the
predicted optimal state sequence, we can immediately find the
optimal alignment between the reference and the target RNAs.
Now, one question that is of practical significance is the fol-
lowing: Given a reference RNA with a known structure, how can
we find a “good” adjoining order that can be used to find the op-
timal state sequence of the corresponding profile-csHMM? This
is an important question as the choice of the adjoining order will
affect the quality of the RNA alignment as well as the compu-
tational cost for finding the alignment. To answer this question,
we address two important issues that need to be considered in
finding a good adjoining order.

A. Definition of Adjoining Rules

Before proceeding with the discussion, let us first define the
concept of adjoining rules. As the name suggests, an adjoining
rule describes how we can adjoin two nonoverlapping subse-
quences to obtain a longer subsequence. Examples of adjoining
rules are shown in Fig. 3. For example, let us consider the ad-
joining rule shown on the left-hand side of Fig. 3(a). This rule
shows how we can adjoin a subsequence with two intervals (se-
quence a) and a subsequence with a single base (sequence b) to
obtain a new subsequence that has also two intervals (sequence
c). Similarly, the rule illustrated in Fig. 3(b) shows how we can
adjoin a subsequence with two intervals (sequence a) and an-
other subsequence with two intervals that consists of a single

2In practice, we only compute the maximum observation probability of the
subsequence, and the optimal state sequence that gives rise to the maximum
probability is traced back later, once we have computed the maximum proba-
bility of the entire symbol sequence.
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Fig. 2. Example of a possible adjoining order.

base-pair (sequence b) to get a longer subsequence with two in-
tervals (sequence c). Another rule depicted in Fig. 3(c) shows
how we can adjoin two neighboring subsequences each with a
single interval (sequences a and b) to obtain a new sequence that
has only one interval (sequence c). Let us consider the adjoining
order shown in Fig. 2 (left-hand side). We can obtain the par-
tial RNA in sTeP-2 by applying the adjoining rule in Fig. 3(a).
Similarly, we can obtain the partial RNAs shown in STEP-3 and
STEP-4 by using the rules in Fig. 3(b) and (c), respectively.
The rules for adjoining “symbol sequences” (shown on
the left-hand side of Fig. 3) are ultimately used for adjoining

the “optimal state sequences” (shown on the right-hand side
of Fig. 3) that correspond to certain portions of the pro-
file-csHMM. As an example, let us again focus on the adjoining
rule in Fig. 3(a). Consider a subsequence with two intervals,
where the first interval consists of only one symbol at position
j and the second interval is located between positions & and m.
Assume that the underlying state at position ;7 is M; and the
states at positions k£ and m are M3 and My, respectively. How
can we find the optimal state sequence of the given subsequence
by combining shorter optimal state sequences? As shown on
the right-hand side of Fig. 3(a), we can adjoin the optimal state
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Fig. 3. Examples of adjoining rules.

sequence with two intervals (where the first interval has only
one symbol at position ;5 with underlying state M, and the
second interval is located between & + 1 and m whose left
and right terminal states are u and My, respectively) and the
optimal state sequence with a single base (located at k£ with
underlying state M3). When adjoining the two optimal state
sequences, we consider all possible transitions from state M
at position k to state v € {I5, Dy, M4} at position £ + 1 and
choose the one that maximizes the observation probability.3
This exactly corresponds to STEP-28 shown on the right-hand
side of Fig. 2. In a similar manner, the adjoining rule shown
in Fig. 3(b) [or Fig. 3(c)] can be used to find the optimal sate
sequence corresponding to the portion of the profile-csHMM
shown in STEP-3B(0r STEP-4B).

B. Handling Maximum Number of Base-Pairs

In principle, the adjoining rules that are used in the SCA algo-
rithm are quite similar to the production rules (rewriting rules) in
transformational grammars. In a transformational grammar, the
production rules describe how a symbol sequence can be gener-
ated [1]. Therefore, the types of symbol correlations that can be
represented by a grammar is determined by the set of production
rules that is used. For example, context-free grammars have pro-
duction rules that enable them to represent RNAs with nested
base-pairs, but they cannot be used to represent RNAs with
pseudoknots. In order to model pseudoknots, we need to use

3In this example, we can have 4 only when

“context-sensitive” production rules that allow the reordering of
certain symbols [1]. Note that adding such rules to a context-free
grammar turns it into a context-sensitive grammar.

While the production rules are used for “generating” symbol
sequences, the adjoining rules in the SCA algorithm are used for
“tracing back” the most probable path by which a symbol se-
quence may have been generated by the given profile-csHMM
[12]. In order to find the optimal path, the adjoining rules de-
scribe how we can find the optimal path of a given symbol se-
quence by optimally adjoining the optimal paths of its subse-
quences. For this reason, the types of symbol correlations in
the profile-csHMM that can be traced back by the SCA algo-
rithm is determined by the set of adjoining rules that are being
considered.

Although it is true that including more complex adjoining
rules in the SCA algorithm (or production rules in a transfor-
mational grammar) allows us to handle sequences with more
complicated symbol correlations, the main reason for restricting
the set of rules is to prevent the computational complexity for
analyzing sequences from growing too large. Table | shows the
computational complexity of the SCA algorithm for analyzing
RNAs with different types of secondary structures, where L is
the length of the sequence that is being analyzed.# As we can see
in Table I, the computational cost for aligning RNAs increases
with their structural complexity. For typical RNA pseudoknots,

4Actually, the computational complexity also depends on the number of states
in the model. However, in this discussion, we consider it only in terms of the
target sequence length
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TABLE |
COMPUTATIONAL COMPLEXITY FOR ALIGNING RNAS
WITH VARIOUS SECONDARY STRUCTURES

RNA Secondary Structure Computational Complexity
Hairpin Structure O(L2)
tRNA Cloverleaf Structure O(L3)
Pseudoknots > O(L%)

the computational cost is O(L*), and for more complex pseu-
doknots in the Rivas and Eddy class [8], the cost can be as high
as O(L®). Theoretically, the computational complexity can be-
come even higher for more complex structures. Too high a com-
plexity can make the computational analysis of RNA sequences
practically infeasible—especially, when the sequence is long.
Therefore, it is necessary to restrict the adjoining rules such that
the maximum computational cost would not exceed the compu-
tational resource that is available.

Since profile-csHMMs can represent any kind of pairwise
symbol correlations [12], it is possible to construct a profile-
csHMM whose correlation structure is beyond the capacity
of the present set of adjoining rules. In such cases, the SCA
algorithm cannot properly find the optimal state sequence in
the given profile-csHMM. Therefore, when building a profile-
csHMM based on a consensus RNA sequence, it is important
to ensure that its correlation structure is within the analytic
capacity of the set of allowed adjoining rules.

Now, consider the case when we want to build a profile-
csHMM for an RNA family, whose consensus sequence has a
complicated secondary structure that cannot be handled by the
current set of adjoining rules. In such cases, we need to “reduce”
the original structure to a less complicated one that can be prop-
erly handled by the given set of rules. When finding a reduced
secondary structure that can be analyzed by the present set of
adjoining rules, it is important to find the one that includes the
maximum number of base-pairs in the original structure. In this
way, we can ensure that the profile-csHMM constructed based
on the modified structure is the most accurate representation of
the original RNA that is analyzable.

Thisidea s illustrated in Fig. 4. Let us first consider the RNA
secondary structure shown in Fig. 4(a) that has multiple stems.
Assume that we want to use only simple adjoining rules that do
not allow the “bifurcation” of multiple stems so that the compu-
tational complexity does not exceed O(L?) [1]. In this case, we
can remove a base-pair as shown in Fig. 4(a), in order to reduce
the structure to a simpler one that can be handled by the given
set of adjoining rules. It is not difficult to verify that the reduced
structure shown in this figure is indeed the one that retains the
maximum number of base-pairs. Fig. 4(b) shows another ex-
ample, where the original RNA has a pseudoknot. Now, let us
assume that we want to consider only nested base-pairs, since
dealing with pseudoknots is computationally more expensive. In
this case, we can remove the base-pair that crosses all the other
base-pairs, to obtain the reduced structure shown in Fig. 4(b).

In these examples, it was relatively easy to find the reduced
structures with the maximum number of base-pairs. However,
finding the best substructure may not be straightforward in prac-
tice, where the RNAs are much longer and have more com-
plex secondary structures. Furthermore, if we include diverse

Fig. 4. Reducing the original RNA secondary structure to a simpler structure
that can be handled by a given set of adjoining rules. (a) Reducing to a structure
without bifurcating stems. (b) Reducing to a structure without pseudoknots.

adjoining rules to efficiently handle a large class of RNA sec-
ondary structures, it becomes also harder to determine whether a
given secondary structure belongs to this class or not. Therefore,
we need a systematic method for finding the best substructure
of a given RNA that is analyzable by a specified set of adjoining
rules.

C. Minimizing the Computational Cost for Finding the
Optimal Alignment

As we mentioned earlier, the SCA algorithm has a variable
computational complexity that depends on how the adjoining
order is defined. For a profile-csHMM, there typically exist
many legitimate adjoining orders, where any of them can be
used to find the optimal state sequence. For example, let us
consider the Viterbi algorithm that is used to find the optimal
path in a traditional HMM. The algorithm tries to find the best
alignment between the HMM and the symbol sequence starting
from the leftmost position, and then it proceeds to the rightward
direction until the optimal path of the entire sequence has been
found. However, it is also possible to begin by aligning the
rightmost parts of the model and the sequence, and proceed
right-to-left to find the optimal path. In principle, both schemes
can find the optimal path identically, unless there are multiple
optimal paths that are equally probable. The computational
complexity for finding the optimal path will be O(L) for both
schemes. Now, assume that we want to find the alignment
between the symbol sequence and the HMM, starting from the
inside of the model and proceeding towards outside, like the
CYK algorithm that is used for parsing context-free grammars
[1]. This also allows us to find the optimal state sequence,
but the computational complexity will be increased to O(L?).
This discussion clearly shows that there can be many ways for

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 12, 2009 at 17:16 from IEEE Xplore. Restrictions apply.



406 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 3, JUNE 2008

Fig. 5. Different adjoining orders may have different computational costs. (a) Adjoining order with a higher computational cost. (b) Adjoining order with a lower

computational cost.

Fig. 6.

finding the optimal state sequence and that the computational
cost for finding the optimal state sequence depends on how we
proceed to find it.

As an example, let us assume that we want to construct a pro-
file-csHMM based on the reference RNA shown in Fig. 5. Once
the model is constructed, we can use it to find the best structural
alignment between the reference RNA and other RNAs as elabo-
rated in Section 1. Since the given RNA has a pseudoknot struc-
ture, the constructed profile-csHMM displays crossing symbol
correlations. Therefore, when finding the optimal alignment,
we cannot simply proceed left-to-right (like the Viterbi algo-
rithm) or inside-to-outside (like the CYK algorithm) but we
have to follow a properly defined adjoining order. Fig. 5(a) and

Ilustration of sTEP-5 of the adjoining order in Fig. 5(a).

(b) shows two possible adjoining orders, where we can follow
either of them to find the optimal state sequence in the profile-
csHMM. However, the computational cost for following each
order is significantly different, where it is O(LS) for the order
shown in Fig. 5(a) and O(L*) for the order in Fig. 5(b).

The main reason for this large difference in computational
cost is the following. When following the “high cost” adjoining
order shown in Fig. 5(a), the SCA algorithm tries to optimally
adjoin two subsequences, where both subsequences have two
intervals [see STEP-5 in Fig. 5(a)]. This is illustrated in Fig. 6,
where the corresponding bases in the original RNA are shown
along with each subsequence. In order to adjoin the sequences
in an optimal way, the algorithm has to consider all possible po-
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sitions for adjoining the intervals and choose the positions that
maximize the observation probability of the new subsequence.
The computational cost of this process is very high (i.e, O(LS)),
making STEP-5 the bottleneck of the entire adjoining process.
Unlike this “high cost” order in Fig. 5(a), the “low cost” ad-
joining order shown in Fig. 5(b) tries to extend the intermediate
subsequences either by a single base or a single base-pair at
a time. This eliminates the need for choosing the optimal ad-
joining positions as in Fig. 6, hence the overall complexity is
reduced to O(L*).

In the example shown in Fig. 5, it may not be difficult to
find out which of the two schemes has a lower cost, as their
computational complexities have different orders. However, the
problem of choosing the adjoining order with the lowest compu-
tational cost is more difficult and subtle, as there typically exist
many adjoining orders whose complexities have the same order.
Therefore, we definitely need an effective method for finding the
optimal adjoining order that minimizes the computational cost,
or equivalently, that makes the structural alignment speed the
fastest.

IV. FINDING THE OPTIMAL ADJOINING ORDER

In Section 111, we have discussed two important things that
have to be considered in finding the adjoining order, in order
to make structural RNA alignments based on profile-csHMMs
faster and more accurate. In this section, we propose an efficient
algorithm that can be used for finding the “optimal” adjoining
order, based on the criterion considered in Section Ill. More
precisely, the proposed algorithm solves the following problem.

Problem Statement:

Given a reference RNA sequence with structural
annotation:

1) if necessary, find the substructure of the original
RNA that contains the maximum number of
base-pairs that can be handled by the current set of
adjoining rules;

2) find the adjoining order (for the profile-csHMM that
represents the reference RNA or the modified RNA
if a substructure was chosen) that minimizes the
computational complexity of the SCA algorithm.

Even though we have described the purpose of the proposed
algorithm in two separate steps for clarity, finding the best sub-
structure and finding the optimal adjoining order actually pro-
ceed simultaneously, as we will see in Section IVV-C. Note that if
the original RNA can be handled by the current set of adjoining
rules, the algorithm directly uses the original RNA since there
is no need to modify the structure of the RNA to a simpler one.

A. Notation

In order to describe the algorithm for finding the optimal ad-
joining order, let us first define the necessary notation. The ref-
erence RNA sequence is denoted by x = z1 023 . . . 2, Where
K is the length of the RNA. In order to describe a subsequence

of x, we use an ordered set of one or more nonoverlapping
closed intervals N' = {nj,na,...,ns}. The ith interval is de-
noted by n; = [nf,n”], where n! is the left end of the ith interval
and n! is its right end. Every interval n; = [nf, n!] in the set \/
satisfies

L<ni<nj <K
and
n; < n? fori < j.
Using the set A/, we can define a subsequence of x as follows:

x(N) =2pe o @y @, Ty
N

N V)

I

s

~

~
n; n, nr

For notational convenience, we denote the length of this subse-
quence by |x(A)|, or equivalently by |A/], which is defined as
follows:

W)= NV =D (nf —ni+1).

i=1

Based on this notation, we can define the following sub-
sequences:

N ={[2.2]} —x(N) =22
No = {[1,2],[4,4]} — x(N2) = 7122 4

Ng = {[1, 1]/ [3/ 5] [7,8]} —>X(N3) = X1 X345 T7LR.
As we can see in these examples, using the set notation allows us
to define subsequences with multiple intervals, which is indis-
pensable for dealing with complicated base correlations in RNA
sequences. One thing that should be noted is that there can be
multiple sets that designate subsequences that are virtually iden-
tical. Such an example is shown in the following:

f = {[2,5]} —)X(./\/f) = X2X3T4T5
Néf = {[273]7 [475]} —X (N./f) = T2T3 T4T5-

The only difference between these two subsequences is that
x(N§) treats “zox3475” @S ONe contiguous sequence, whereas
x(N?) regards it as a concatenation of two sequences “zox3”
and “rax5.”

For any subsequence x(N'), there typically exist many ways
to obtain x(\) by adjoining two shorter subsequences x(N,)
and x(A;) using one of the allowed adjoining rules. Given a
subsequence x(\), we define the set of all such pairs (N, N;)
as follows:

AWN) = {Na, Nb) | x(N) = x(Na) + x(Np), No < Np}

In this definition

X(N) = x(Ng) + x(Np)

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on May 12, 2009 at 17:16 from IEEE Xplore. Restrictions apply.



408 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 3, JUNE 2008

implies that the subsequence x () can be obtained by adjoining
the two subsequences x(A,) and x(A;) using one of the ad-
joining rules. The second condition

Ny < Ny

implies that the leftmost interval of A/, is located on the left-
hand side of the leftmost interval of N;. For example, the fol-
lowing inequalities hold using this notation:

N ={[L,3]} <N ={[5,9]}
N ={[2,3],19,10]} <Ng = {[4,5],[7.8]} .

For a subsequence x(N), we define n(\) as the maximum
number of base-pairs in the subsequence x(A/) that can be
handled by the set of allowed adjoining rules. Now, assume that
there are multiple ways—i.e, multiple adjoining orders—for ap-
plying the adjoining rules that can handle n(A) base-pairs. In
such cases, we want to choose the adjoining order that mini-
mizes the computational cost for finding the best alignment be-
tween the subsequence x(A/) of the reference RNA and a sub-
sequence of the target RNA under consideration. For this pur-
pose, we define ¢(A) to be the minimum computational cost
for applying the adjoining rules for finding this alignment. In
order to compute ¢(\), we need to define the initialization cost
cinit (N) and the adjoining cost c,q;(N; N, Np). The initializa-
tion cost cipnic (A) is the computational cost for finding the best
alignment between a single base (or a single base-pair) in the
reference RNA and a base (or a base-pair) in the target RNA,
allowing gaps. The adjoining cost c,q;(N; N, Ny ) is the com-
putational cost for adjoining two sequences x(/N,) and x(N;)
to obtain x(\). Finally, we define two variables \,(N') and
Ap(N) that are used to trace-back the optimal adjoining order
that maximizes the number of considered base-pairs and mini-
mizes the overall computational cost.

B. Initialization

We begin by initializing n(\') and ¢() for all subsequences

x(N) that consists of either a single base or a single base-pair.

i) Forapositionk (1 <k < K), we let V' = {[k, k]}, and
initialize n(N') and ¢(N) as follows:

n(N) =

c(N) = cinie(N)
Ae(N) =@
NN =2

ii) For positions jand k (1 < j < k < K),we let N/ =
{4, 41, [k, ]}, and initialize n(\") and ¢(N) as follows:

n(N) =8(4, k)
c(N) = cinit(N)
AN) =0
M(N) =T
where
oy J 1, ifz;and 2 form a base-pair
601, k) = {0, othérwise.

C. lteration

Now, we proceed to compute n(A') and ¢(N\') for longer
subsequences in an iterative manner. We begin by computing
these values for all subsequences of length |A| = 2, and con-
tinue the iterative process until we obtain n(N") and ¢(\) for
N = {[1, K]}, which corresponds to the complete sequence
X = x1%T2 ... Tx . FOr each subsequence x(A/), we take the fol-
lowing steps to compute n(A) and ¢(N).

i) First, we find the set .A(N') of all possible partitions
(N, Ny) for the given subsequence.
ii) Second, we compute

n(\) [n(Na) + n(Nb)] -

= max
(Na ,Np)EAWN)

In this step, we can compute the maximum number of
base-pairs in the subsequence x(A/) that can be handled
by the given set of adjoining rules.

iii) Third, we find the subset of .A(N\) that consists of all par-
titions (N, ;) that can achieve the maximum number
of base-pairs n(A/). This subset .A*(A\/) is defined as

AT N) = {(Nay No) | (Nay Ny) € AN)
n(Na) +n(Ny) = n(N)}.

Among all the partitions in .A*(N), now we find the one
that minimizes the computational cost

c(N) = WS [c(Na) + c(Nb)
+Cadj(N§Na7-/\/b)]
(N NG) = argmin = [c(Ng) + ¢(N)
WNa, Np)€EA* (N)
+Cadj(N;Na7-/\/b)]
Aa(N) = N
ANN) = A7

D. Trace-Back

Once we have computed n(N) and ¢(N') for N = {[1, K},
we trace-back the algorithm to find the optimal adjoining order.
For this purpose, we need two empty stacks S and 7', where T’
will be used to store the intermediate results and S will be used
to store the optimal adjoining order. The respective adjoining
instruction is denoted by (N : N,,A;), which indicates that
we can obtain the subsequence x(\) by adjoining x(N,) and
x(N3). Note that this adjoining instruction implies which ad-
joining rule should be used.

1) Empty S and T". Push A/ = {[1, K} onto the stack 7".

2) Pop Nt from T'. Let N = A\ (NV?), Nf = Ap(NY).

3) Push (N* : N}, N!) onto the stack S.

4) If N # &, push N onto T

5) If N} # &, push NV onto T.

6) If T"is empty, terminate. Otherwise, goto STEP 2.

After the termination of the above procedure, the stack S con-
tains the optimal adjoining order.
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E. Example

As an example, let us again consider the RNA sequence
shown in Fig. 1(a). The dotted lines indicate the base-pairs.
For this reference RNA, assume that we have obtained the
following adjoining order using the proposed algorithm.

1) ({[11L[44]}y © NG ).

2) ({1141} {11441y A3} )
3) ({[iL2sly {114l {22155} ).
4 sy AlLiLRsy 2 ).

The number on the left-hand side indicate the order of each ad-
joining instruction in the stack .S, counted from top to bottom.
This adjoining order corresponds to the step-by-step “assembly
order” of the original RNA, as shown in Fig. 2. Note that we
may have N, = & or N}, = O in an adjoining instruction
(N = Noy Ny IEN, = N, = &, this corresponds to an ini-
tialization rule for a stand-alone base or a stand-alone base-pair.
Such acase isshown in sTEP 1 in Fig. 2. If only one of them is an
empty set, let us say NV, # @ and N, = &, then the instruction
implies that one or more intervals in A/, are combined such that
N has fewer intervals than NV, . For example, the last instruction

({[L,5]} = {1, 1], [2, 5]}, ©9)

shows that the two intervals [1, 1] and [2, 5] in A/, are combined
into one interval, such that A has only one interval, which is
[1, 5]. This is illustrated in STEP 4 in Fig. 2.

F. Estimating the Computational Costs for Adjoining Rules

In order to carry out the proposed optimization algorithm,
we first have to estimate the computational costs cini(N)
for initialization and the costs caqj(N; Ng, Ny) for adjoining
subsequences. Although the exact costs depend on various
factors—such as how the SCA algorithm is implemented,
which programming language is used, what kind of compiler
is used to build the program, on which machine the algorithm
is executed, and so on—a reasonable way for estimating these
costs is to count the number of iterations that the algorithm
has to go through in order to carry out the corresponding
initialization or adjoining rule. One small problem with this
approach is that the number of iterations depend on the length
of the target RNA sequence, which is generally not known in
advance. In such cases, we can simply use the average length
of the RNAs in the reference RNA family (or equivalently, the
length of the consensus RNA sequence) used to construct the
profile-csHMM. This will yield the adjoining order that will be
optimal for the average case.

V. EXPERIMENTAL RESULTS

In order to demonstrate the proposed idea and to verify how
much performance gain can be obtained by using the optimal ad-
joining order, we applied the algorithm described in Section IV
to the profile-csHMM based structural alignment method pro-
posed in [15]. The new structural alignment method that em-
ploys the optimized adjoining order has been tested using sev-

eral RNA sequence families in the Rfam database [5]. We com-
pared its performance with the original implementation [15] as
well as the PSTAG-based method [6], which is a state-of-the-art
structural alignment method that can handle many pseudoknots.

For our experiments, we chose the following RNA fam-
ilies: CorRONA_Pk3, HDV_RiBozYME, TomBus_3 IV, and
FLAvI_Pk3. Note that all these families contain pseudoknots,
which cannot be handled by traditional SCFGs. The reason for
choosing these pseudoknotted families was as follows. For an
RNA that does not have a pseudoknot, the SCA algorithm can
simply proceed “inside-to-outside” like the CYK algorithm for
SCFGs. In this case, the adjoining order will be more or less
fixed, and there will not be a significant difference between
an optimal order and a suboptimal one. However, for an RNA
with a pseudoknot, the computational complexity of the SCA
algorithm may differ significantly depending on how we define
the adjoining order. One such example was shown in Fig. 5. For
this reason, we chose RNA families with pseudoknots as they
will clearly demonstrate the importance of using the optimal
adjoining order with minimum complexity. In our experiments,
we used the RNA sequences in the “seed” alignment of each
RNA family, as they have a relatively reliable structural annota-
tion. Table 1V summarizes the basic properties of the four RNA
families, such as the number of RNAs in the seed alignment,
the average length of the member sequences, and their average
percentage (sequence) identity.5

The experiments have been performed as follows. For a given
RNA sequence family, we first chose a member of this family
and used it as the reference RNA to build a profile-csHMM.
Then we found the optimal adjoining order by using the pro-
posed algorithm. Following this optimal order, we applied the
SCA algorithm to find the best structural alignment between
the reference RNA and each of the remaining members in the
same family. This process has been repeated for all the members
in the given family, to estimate the average performance of the
alignment method. In order to evaluate the quality of the align-
ments, we predicted the secondary structure of the target RNA
based on the respective alignment and compared it to the anno-
tated structure in the database. Then we counted the number of
correctly predicted base-pairs (TP; true positives), the number
of incorrectly predicted base-pairs (FP; false positives), and the
number of base-pairs that are present in the annotated structure
but were not predicted by the proposed method (FN; false neg-
atives). These numbers were used to compute the average sen-
sitivity (SN) and specificity (SP) of the prediction, which are
defined as

SN = TP/(TP + FN), SP = TP/(TP + FP).

The results of these cross-validation experiments are sum-
marized in Table Il and Table Ill. Let us first take a look at
Table 11, which shows the prediction accuracy of the structural
alignment methods. For convenience, the highest prediction ra-
tios have been boldfaced. First, we can see that the prediction
performance of the profile-csHMM approach and that of the

5These numbers have been obtained from the Rfam database (version 8.1).
FLAvI_Pk3 seed sequences were obtained from Rfam 7.0, which are included in
the FLAVI_CRE family in Rfam 8.1.
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TABLE Il
PREDICTION ACCURACY OF THE STRUCTURAL ALIGNMENT METHODS
PROFILE-CSHMM PSTAG
OPTIMAL ORIGINAL
SN SP SN SP SN SP
(%) (%) | ) (%) | () (%)
CORONA_PK3 95.7 965 | 95.7 965 | 946 955
HDV _RIBOZYME 94.5 95.3 945 953 94.1 95.6
ToMBUS_3_IV 98.6 986 | 969 969 | 974 974
FLAVI_PK3 945 964 | 945 964 - -
TABLE IlI
AVERAGE CPU TIME FOR FINDING AN RNA STRUCTURAL ALIGNMENT
PROFILE-CSHMM PSTAG
OPTIMAL  ORIGINAL  ORG/ OPT
sec sec ratio sec
CORONA_PK3 0.68 1.2 1.7 37.2
HDV _RIBOZYME 0.58 1.7 2.9 207.5
ToMBUS_3_IV 0.42 1.0 2.4 270.9
FLAVI_PK3 1.87 6.8 3.6 -
TABLE IV
BASIC PROPERTIES OF THE RNA FAMILIES
# of seed average average
sequences length percentage identity
CORONA_PK3 14 62.5 70
HDV _RIBOZYME 15 88.8 95
ToMBUS_3_1V 18 64.5 94
FLAVI_PK3 14 95.4 69

PSTAG approach are comparable to each other for the first three
RNA families. Both methods achieved considerably high pre-
diction accuracies, indicating that these methods are capable
of finding accurate pairwise alignment of RNAs with pseudo-
knots. However, as we mentioned earlier, profile-csHMMs can
also handle many RNAs whose structure is too complex to be
handled by PSTAGs.6 The FLAvI_Pk3 RNA family is one such
example. The results in Table Il show that the profile-csHMM
approach can find good alignments also for these relatively com-
plex RNAs. Second, we can observe that the profile-csHMM
based method shows nearly identical prediction performances
for the two different adjoining orders, as we expect. The column
labeled as “optimal” shows the performance when using the op-
timal adjoining order that is obtained using the algorithm pro-
posed in Section IV, while the column “original” shows the per-
formance for using the adjoining order that is found by the orig-
inal implementation of the profile-csHMM alignment method
[15]. Interestingly, for TomBus_3_ IV, there were cases when
a number of different alignments received identical alignment
scores (i.e., observation probabilities), hence the two adjoining
orders resulted in different predictions.

Table I11 shows the average CPU time for finding a structural
alignment using the respective method.” As we can see in this
table, the use of an optimized adjoining order made the align-
ment speed up to 3.6 times faster. Considering that the “orig-

6Theoretically, profile-csHMMs can handle RNA secondary structures with
any kind of base-pairs. In our current implementation, the profile-csHMM
based structural alignment method can handle any RNA that belongs to the
Rivas&Eddy class [8].

7All experiments have been performed on a PowerMac G5 2.5 GHz with
4-GB memory.

inal” adjoining order obtained using the original method [15]
is already a fairly good one, this improvement is quite inter-
esting. In the original method, the alignment program tries to
avoid high-cost adjoining rules and use low-cost adjoining rules
whenever possible. Therefore, even though the original method
is not able to find the optimal adjoining order, it yields a reason-
ably good order. In fact, the computational complexity of the
SCA algorithm was O(L*) for both types of adjoining orders,
for every RNA that was used in our experiments. This shows
that even for adjoining orders with the same order of algorithmic
complexity, there can be a considerable difference between their
actual computational costs. Another interesting observation is
that the average speed improvement that is obtained by opti-
mizing the adjoining order is greater for more complex RNAs.
This makes intuitive sense, since for more complex structures,
it would be less likely that a randomly chosen adjoining order
would be close to the optimum one. For comparison, Table 111
also shows the alignment speed of the PSTAG approach, where
we can see that the profile-csHMM based method runs signifi-
cantly faster despite its larger descriptive capability.

VI. CONCLUDING REMARKS

In this paper, we have proposed an efficient algorithm that
can be used for finding the optimal adjoining order of the SCA
algorithm. As elaborated in Sections 11l and 1V, the proposed
algorithm achieves two important goals. First, if the RNA of
interest has a complicated structure that cannot be handled by
the current set of adjoining rules, the algorithm can find the op-
timal substructure with the maximum number of base-pairs that
can be handled by the adjoining rules at hand. Second, for an
RNA secondary structure that is within the analytic capability of
the present set of adjoining rules, the algorithm gives us the ad-
joining order that minimizes the computational cost for finding
the structural alignment between the given reference RNA and
other target RNAs. Experimental results show that the proposed
algorithm can make the average alignment speed up to 3.6 times
faster without any degradation in the quality of the alignments.
As mentioned earlier, the adjoining rules that are used to trace-
back the optimal state sequence in a profile-csHMM are sim-
ilar to the production rules in a transformational grammar that
are used to generate symbol sequences. Therefore, we believe
that a similar approach can be used for finding the optimal tree
structure of other context-sensitive grammars that minimizes the
computational cost for parsing the tree. This is an interesting
topic for further investigation.
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