On Universal Cycles for Multisets

Glenn Hurlbert*
Tobias Johnson ${ }^{\dagger}$ Joshua Zahl ${ }^{\ddagger}$

February 18, 2008

Abstract

A Universal Cycle for t-multisets of $[n]=\{1, \ldots, n\}$ is a cyclic sequence of $\binom{n+t-1}{t}$ integers from $[n]$ with the property that each t multiset of $[n]$ appears exactly once consecutively in the sequence. For such a sequence to exist it is necessary that n divides $\binom{n+t-1}{t}$, and it is reasonable to conjecture that this condition is sufficient for large enough n in terms of t. We prove the conjecture completely for $t \in\{2,3\}$ and partially for $t \in\{4,6\}$. These results also support a positive answer to a question of Knuth.

[^0]
1 Introduction

Problem 109 in Section 7.2.1.3 of Donald Knuth's The Art of Computer Programming [4] lists the following sequence.

$$
\begin{equation*}
11123352223441333455244451135551224 \tag{1}
\end{equation*}
$$

The noteworthy property of this sequence is discovered by listing every consecutive triple, including the two formed by wrapping the sequence cyclically. Here we have

$$
111,112,123, \ldots, 224,241,411 .
$$

Not only are the triples distinct, but they are still distinct when considered as unordered multisets. In fact, each 3 -multiset of $[5]=\{1,2,3,4,5\}$ appears exactly once. Such a sequence is called a Universal Cycle for 3-multisets of [5]. In this paper we will use the shortened term Mcycle, and in particular t-Mcycle, to refer to a universal cycle for t-multisets of $[n]$, just as the term Ucycle has come to refer to a Universal Cycle for t-subsets of $[n]$. Universal Cycles for a wide range of combinatorial structures were introduced in [1], and [2] contains the most up-to-date knowledge on Ucycles for subsets. In this work we concern ourselves with t-Mcycles for $t \in\{3,4,6\}$. Note that any permutation of $[n]$ is a 1 -Mcycle, and any eulerian circuit (which exists if and only if n is odd) of the complete graph (with loops) on n vertices is a 2 -Mcycle. The main conjecture is the following.

Conjecture 1 For t large enough in terms of n, Universal Cycles for t multisets of $[n]$ exist if and only if n divides $\binom{n+t-1}{t}$.

That the condition above is necessary follows from the fact that each symbol is in the same number of multisets and hence must appear equally often in the cycle. Our preceding comments indicate that the conjecture is true for $t \in\{1,2\}$. In Section 2 we prove the following theorem.

Theorem 2 Let $n_{0}(3)=4, n_{0}(4)=5$ and $n_{0}(6)=11$. Then, for $t \in$ $\{3,4,6\}$ and $n \geq n_{0}(t)$, Mcycles for t-multisets of $[n]$ exist whenever n is relatively prime to t.

This theorem verifies the conjecture for $t=3$, but leaves open the case $n \equiv 2 \bmod 4$ for $t=4$ (the case $n \equiv 0 \bmod 4$ doesn't satisfy the necessary condition) and many cases for $t=6$.

More to the point, Knuth suggests in his solution to Problem 109 that perhaps a t-Mcycle of $[n]$ exists if and only if a t-Ucycle of $[n+t]$ exists (since then the two necessary conditions coincide). Our proof of Theorem 2 sheds light on a correspondence in this direction.

Because of the difficulty of extending these results for other values of t, it is worth considering other methods of construction. Sections 3 and 4 re-prove the special case of $t=3$ from Theorem 2 using different methods that show promise of being extended to larger t. In Section 3 we describe an inductive technique that is an extension of a method developed by Anant Godbole and presented at the 2004 Banff conference on Generalizations of de Bruijn Cycles and Gray Codes. In Section 4 we outline a technique to convert 3-Ucycles into 3-Mcycles on the same ground set. While this technique is limited by the fact that the ground set remains unchanged, and thus divisibility considerations will make it difficult to generalize for $t>3$, it is a step in the right direction.

2 Proof of Theorem 2

2.1 Definitions

What is apparent in the sequence (11) is that each block has the same difference sequence modulo 5 , namely 0011022 . This is a key property of our constructions, as it has been in the construction of all Ucycles to date. This motivates the following definitions (the same terminology as in [2] except that "form" replaces " d-set").

Let $S=\left\{s_{1}, \ldots, s_{t}\right\}, s_{i} \leq s_{i+1}$, be a t-multiset of [n]. Define its form, $F(S)=\left(f_{1}, \ldots, f_{t}\right)$ by $f_{i}=s_{i+1}-s_{i}$, where indices are computed modulo t and arithmetic is performed modulo n (where n is used in place of 0 as the modular representative). Two forms are equivalent if one is a cyclic permutation of the other. Two forms belong to the same class whenever one is any permutation of the other. For example, with $t=5$ and $n=30$, each of the 30 multisets

$$
\{1,11,21,21,1\},\{2,12,22,22,2\}, \ldots,\{30,10,20,20,30\}
$$

belongs to the form $(10,10,0,10,0)$. Also, the two forms
$(10,10,10,0,0)$ and $(10,10,0,10,0)$
make up the class $[10,10,10,0,0]$. We will maintain the use of braces, parentheses, and brackets in order to distinguish the various objects from one another.

2.2 Basic Method

The main idea of the proof is to build a transition digraph whose edges correspond to the set of all forms. In the case that no bad patterns (to be defined in the next section) exist, we show that the digraph is eulerian, thereby listing all forms by traversing an eulerian circuit. From there we repeat the circuit n times in order to list all sets. Note that this repetition is what gives rise to the block structure found in the 3-Mcycle (1).

We begin by choosing a representative for each class. We distinguish one of the coordinates of the form $\left(f_{1}, \ldots, f_{t-1}, f_{t}\right)$ (because of the equivalence among its cyclic permutations we may assume it to be f_{t}) in the representation $\left(f_{1}, \ldots, f_{t-1} ; f_{t}\right)$ so as to infer the ordering $\left\{i, i+f_{1}, \ldots, i+f_{1}+\cdots+f_{t-1}\right\}$ of all its multisets. This singled out coordinate is therefore unused in the linear listing of each of these multisets.

Similarly, we may represent a class by $\left[f_{1}, \ldots, f_{t-1} ; f_{t}\right]$, signifying that f_{t} is distinguished (unused) in each of its forms. It is important, then, that f_{t} be unique in order to avoid ambiguity - this is the reason for wanting good patterns. For example, with $t=4$ and $n=7$, we can choose $[1,1,0 ; 5]$ to represent $[1,1,0,5]$. This determines the representations $(1,1,0 ; 5),(1,0,1 ; 5)$ and $(0,1,1 ; 5)$ of its three forms, of which $(1,0,1 ; 5)$ denotes the (ordered) forms $\{1,2,2,3\},\{2,3,3,4\}, \ldots$ and $\{7,1,1,2\}$.

Based on these choices we define the transition graph $\mathcal{T}_{n, t}$ as follows. We define the prefix, resp. suffix, of the form representation $\left(f_{1}, \ldots, f_{t-1} ; f_{t}\right)$ to be $\left(\left(f_{1}, \ldots, f_{t-2}\right)\right)$, resp. $\left(\left(f_{2}, \ldots, f_{t-1}\right)\right)$. Our use of double parentheses denotes that these are the vertices in the transition graph $\mathcal{T}_{n, t}$ whose directed edges are precisely the representations involved.

For example, Figure 1 shows the transition graph $\mathcal{T}_{5,3}$, which was used to construct the 3 -Mcycle (1). The forms are represented by $(0,0 ; 5),(1,1 ; 3)$, $(2,2 ; 1),(0,1 ; 4),(1,0 ; 4),(0,2 ; 3)$ and $(2,0 ; 3)$. The form $(1,0 ; 4)$ corresponds to the directed edge $((1)) \rightarrow((0))$, and so on. The eulerian circuit 0011022 corresponds to a listing of all forms and produces the differences in the first block, 0001224 , along with the first digit, 1 , of the next block. Since the sum $0+0+1+1+0+2+2 \equiv 1 \bmod 5$, each block shifts by 1 , and since 1 is relatively prime to 5 each integer occurs as the starting digit of some block.

Figure 1: The transition graph $\mathcal{T}_{5,3}$

Hence, each 3-multiset of [5] occurs exactly once. It turns out, however (see the insertion technique in [2]), that having the sum relatively prime to n is an unnecessary component in the general construction process.

In [2] the analogous transition graph $\mathcal{G}_{n, t}$ is defined for t-subsets of [n]. For example, Figure 2 shows the transition graph $\mathcal{G}_{8,3}$, which can be used to construct a Ucycle for 3 -subsets of [8]. The forms in this case are represented by $(1,1 ; 6),(2,2 ; 4),(3,3 ; 2),(1,2 ; 5),(2,1 ; 5),(1,3 ; 4)$ and $(3,1 ; 4)$. The eulerian circuit 1122133 generates the Ucycle

$$
12357836782458345712581246725671347234681478135614568236 \text {, }
$$

as above.

2.3 Proof

In [2] we find the following fact.
Fact 3 If $\mathcal{G}_{n, t}$ is eulerian for some choice of representations of classes, then there exists a Ucycle for t-subsets of $[n]$.

The same arguments (as described in Section (2.2) that prove Fact 3 yield the analogous result for Mcycles, which we therefore state without proof.

Figure 2: The transition graph $\mathcal{G}_{8,3}$

Lemma 4 If $\mathcal{T}_{n, t}$ is eulerian for some choice of representations of classes, then there exists an Mcycle for t-multisets of $[n]$.

The key is that the obvious isomorphism between $\mathcal{T}_{5,3}$ and $\mathcal{G}_{8,3}$ holds in general.

Lemma 5 For every choice of representatives for the classes for t-subsets of $[n+t]$ there exists choices of representatives for the classes for t-multisets of $[n]$ so that the corresponding transition graphs $\mathcal{G}_{n+t, t}$ and $\mathcal{T}_{n, t}$ are isomorphic.

Of course, the theorem holds in reverse as well, with the roles of \mathcal{G} and \mathcal{T} swapped, but we do not need that fact to prove Theorem 2,

Proof. Simply shift every digit of every class and corresponding representation down by one. Clearly $\left[f_{1}, \ldots, f_{t}\right]$ is a class for t-subsets of $[n+t]$ if and only if $\left[f_{1}-1, \ldots, f_{t}-1\right]$ is a class for t-multisets of $[n]$. The same can be said for forms and for subsets/multisets.

Now we borrow the final fact from [2].
Fact 6 Let $n_{0}(3)=8, n_{0}(4)=9$, and $n_{0}(6)=17$. Then the transition graph $\mathcal{G}_{n, t}$ is eulerian for $t \in\{3,4,6\}$ and $n \geq n_{0}(t)$ with $\operatorname{gcd}(n, t)=1$.

In light of Lemma 5 and the knowledge that $\operatorname{gcd}(n, t)=\operatorname{gcd}(n, n+t)$ we arrive at the following result.

Lemma 7 Let $n_{0}(3)=n_{0}(4)=5$ and $n_{0}(6)=11$. Then the transition graph $\mathcal{T}_{n, t}$ is eulerian for $t \in\{3,4,6\}$ and $n \geq n_{0}(t)$ with $\operatorname{gcd}(n, t)=1$.

The combination of Lemmas 4 and 7 yields Theorem 2, with the exception that $n_{0}(3)=5$ instead of 4 . However, a specific example for the case $t=$ $3, n=4$ is given by the sequence S in (2) at the end of Section 3, below. This concludes the proof of Theorem 2,

Note that this result is weaker than Conjecture 1 because the relative primality condition replaces the divisibility condition.

To understand the limitations of this method we combine classes as follows. We see that the collection of all classes is the collection of all unordered partitions of the integer n into t parts. Each class defines a partition of t according to the number of parts of the same size. Two classes belong to the same pattern if they define the same partition of t. We say that a pattern is good if some part has size 1 and bad otherwise. By continuing the example from Section $2.1(t=5, n=30)$, The 5 classes

$$
[0,0,0,15,15],[2,2,2,12,12],[4,4,4,9,9],[8,8,8,3,3], \text { and }[10,10,10,0,0]
$$

make up the pattern $\langle 3,2\rangle$. (Note that the class $[6,6,6,6,6]$ is skipped from this sequence because it belongs to the pattern $\langle 5\rangle$.) In this case there are 7 patterns in all:

$$
\langle 1,1,1,1,1\rangle,\langle 2,1,1,1\rangle,\langle 3,1,1\rangle,\langle 4,1\rangle,\langle 5\rangle,\langle 2,2,1\rangle, \text { and }\langle 3,2\rangle,
$$

of which only $\langle 5\rangle$ and $\langle 3,2\rangle$ are bad.
The underlying mathematics for Lemma 7 comes from the result of [2] that no bad patterns exist if and only if $t \in\{3,4,6\}$ and $\operatorname{gcd}(n, t)=1$.

3 Inductive Construction for $t=3$

As noted in the introduction, one of the main results of this work is an inductive proof of Theorem 2 in the case that $t=3$.

Theorem 8 For $n \geq 4,3$-Mcycles of $[n]$ exists provided $3 \nmid n$.
Proof. For $t=3$, the condition $n \left\lvert\,\binom{ n+t-1}{t}\right.$ implies that $n \equiv 1$ or $2(\bmod 3)$. We will show that for $n \geq 4$, universal cycles on multisets exist whenever n
satisfies $n \left\lvert\,\binom{ n+t-1}{t}\right.$, i.e. $n \left\lvert\,\binom{ n+2}{3}\right.$. We will prove this by induction on n as follows. We will start with a 3-Mcycle on $[n-3]$ of the form $s t t^{\prime} u v$, where $s t t^{\prime} u v$ is the concatenation of the substrings s, t, t^{\prime}, u, and v, where each of these strings is a substring over the alphabet $[n-3]$ with specific properties. From this string, we will construct a 3-Mcycle on $[n]$ of the form $S T T^{\prime} U V$, where $S=s t, T=t^{\prime} u v, T^{\prime}$ is a cyclic permutation of T, and U and V are to be described later.

Before describing the proof itself, we will define some terminology that will be useful for describing universal cycles. We say that a cyclic string $X=$ $a_{1} a_{2} \ldots a_{k}$ contains the multiset collection \mathcal{I} if $\mathcal{I}=\left\{\left\{a_{1}, a_{2}, a_{3}\right\},\left\{a_{2}, a_{3}, a_{4}\right\}\right.$, $\left.\ldots,\left\{a_{k-2}, a_{k-1}, a_{k}\right\},\left\{a_{k-1}, a_{k}, a_{1}\right\},\left\{a_{k}, a_{1}, a_{2}\right\}\right\}$, where each of these multisets must be distinct. Clearly $k=\binom{n+2}{3}$, since this is the number of 3multisets on $[n]$.

For a string $X=a_{1} a_{2} \ldots a_{k}$, we call the head of X the substring $a_{1} a_{2}$ and the tail of X the substring $a_{k-1} a_{k}$.

Now, consider the collection of all 3-multisets over $[n]$. We shall partition this collection into four subcollections. Let \mathcal{A} be the collection of all 3multisets over $[n-3]$, and let \mathcal{B} be the collection of all 3-multisets over $\{n-2, n-1, n\}$ and $[n-6]$ which contain at least one element from $\{n-$ $2, n-1, n\}$. Let \mathcal{C} be the collection of all 3-multisets with one or two elements from $\{n-5, n-4, n-3\}$ and one or two elements from $\{n-2, n-1, n\}$, and let \mathcal{D} be the collection of all 3 -multisets with one element from each of $[n-6],\{n-5, n-4, n-3\}$, and $\{n-2, n-1, n\}$. We can see that $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} are disjoint, and that their union is the collection of all 3 -multisets on [n], as desired.

Now, let S be a 3 -Mcycle on $[n-6]$, and since $1,1,1$ must occur somewhere in S and the beginning of S is arbitrary, we shall have S begin with $1,1,1$. We shall also select S so that its tail is $n-6, n-7$. Thus S, when considered as a cyclic string, contains all 3 -multisets over $[n-6]$, and when considered as a non-cyclic string, contains all 3 -multisets except $\{1, n-7, n-6\}$ and $\{1,1, n-7\}$. Let T be a string over $[n-3]$ such that $S T$-the concatenation of S and T-is a 3 -Mcycle over $[n-3]$. It is not clear that such a T must exist, but we shall find a specific example shortly. In the example we will find, T will begin with 1,1 and will end with $n-3, n-4$. Since T begins with 1,1 , the string $S T$ contains the multisets $\{1, n-7, n-6\},\{1,1, n-7\}$. We can see that the cyclic string $S T$ contains all of the multisets in \mathcal{A}, and that when $S T$ is considered as a non-cyclic string, it contains $\mathcal{A} \backslash\{\{1, n-$
$4, n-3\},\{1,1, n-4\}\}$. Now, consider the string T^{\prime} obtained by taking T and replacing each instance of $n-5$ by $n-2, n-4$ by $n-1$, and $n-3$ by n. Since T contained all multisets over $[n-3]$ which contained at least one element from $\{n-5, n-4, n-3\}$, we have that T^{\prime} contains all multisets over $\{n-2, n-1, n\}$ and $[n-6]$ which contain at least one element from $\{n-2, n-1, n\}$, i.e. T^{\prime} contains all the multisets in \mathcal{B}. Since the head of T is 1,1 , the head of T^{\prime} is also 1,1 , and since T ends with $n-3, n-4, T^{\prime}$ ends with $n, n-1$. If we consider the cyclic string $S T T^{\prime}$, we can see that this string contains all the multisets in $\mathcal{A} \cup \mathcal{B}$, while the non-cyclic version of this string is missing the multisets $\{1, n-1, n\},\{1,1, n-1\}$.

For notational convenience, we will use the following assignments: $a:=$ $n-5, b:=n-4, c:=n-3, d:=n-2, e:=n-1$, and $f:=n$. Now, we will construct the strings U and V. To do so, we shall consider the case where n is even and where n is odd. For n even, consider the following string:

$$
\begin{aligned}
& V_{e}=\quad \operatorname{be}(n-6) \operatorname{af}(n-7) \operatorname{be}(n-8) \operatorname{af}(n-9) \ldots \text { af } 1 \text { be } \\
& \quad \operatorname{ad}(n-6) \operatorname{ce}(n-7) \operatorname{ad}(n-8) \operatorname{ce}(n-9) \ldots \operatorname{ce} 1 \mathrm{ad} \\
& \quad \operatorname{cf}(n-6) \operatorname{bd}(n-7) \operatorname{cf}(n-8) \operatorname{bd}(n-9) \ldots \operatorname{bd} 1 c f e .
\end{aligned}
$$

We can see that this string contains every multiset in \mathcal{D}, as well as the multisets $\{a, b, e\},\{a, d, e\},\{a, c, d\},\{c, d, f\}$, and $\{c, e, f\}$. Now, the following string (found with the aid of a computer) contains all of the multisets in $\mathcal{C} \backslash\{\{a, b, e\},\{a, d, e\},\{a, c, d\},\{c, d, f\},\{c, e, f\}\}:$

$$
U_{e}=\text { aaffc aeebb decec bddcc fbada dfbf. }
$$

Note that while the multisets $\{b, b, f\}$ and $\{b, e, f\}$ are not present in the above string U_{e}, they are present in the concatenation of U_{e} with V_{e}. Similarly, while U_{e} does not contain $\{a, e, f\}$ and $\{a, a, e\}$, these multisets are present in the concatenation of T^{\prime} with U_{e}.

Now, we can see that the string $S T T^{\prime} U_{e} V_{e}$ is a universal cycle over [n] because the non-cyclic string $S T T^{\prime}$ contained all the multisets in $\mathcal{A} \cup$ $\mathcal{B} \backslash\{\{1, n-1, n\},\{1,1, n-1\}\}$, and it is precisely the multisets $\{1, n-1, n\}$ and $\{1,1, n-1\}$ which are obtained by the wrap-around of the tail of V_{e} with the head of S. The head and tail of the other strings has been engineered so as to ensure that each multiset occurs precisely once.

Now, consider the case where n is odd. The corresponding strings V_{o} and U_{o} are

$$
\begin{aligned}
& V_{o}=\quad \operatorname{be}(n-6) \operatorname{af}(n-7) \operatorname{be}(n-8) \operatorname{af}(n-9) \ldots \text { af } 2 \mathrm{be} \\
& \quad \operatorname{ad}(n-6) \operatorname{ce}(n-7) \operatorname{ad}(n-8) \operatorname{ce}(n-9) \ldots \operatorname{ce} 2 \mathrm{ad} \\
& \quad \operatorname{cf}(n-6) \operatorname{bd}(n-7) \operatorname{cf}(n-8) \operatorname{bd}(n-9) \ldots \operatorname{bd} 2 \mathrm{cfe} .
\end{aligned}
$$

and

$$
U_{o}=\text { beb1f abd1c ffaae cbfbf dada1 eccfa eecdc dbd. }
$$

The string V_{o} contains the same multisets as V_{e}, with the exception that V_{o} does not contain the nine multisets $\{\{1 a d\},\{1 a e\}, \ldots,\{1 c e\},\{1 c f\}\}$, and the string U_{o} contains the same multisets as U_{e}, with the exception that it contains the additional nine multisets listed above. The concatenation of V_{o} and U_{o} with the other strings works the same way as their even counterparts.

This completes the induction proof, since the string $S T$ is a 3 -Mcycle over [$n-3$] (taking the place of S in the previous iteration of the induction), and the string $T^{\prime} U V$ extends this 3-Mcycle to $[n]$ (taking the place of T in the previous iteration of the induction). Also note that $T^{\prime} U V$ begins with 1,1 and ends with $n, n-1$, as required for the induction hypothesis.

Thus, all that remains is the find a base case from which the induction can proceed. A possible base case (there are many) for $n=10$ is

$$
\begin{aligned}
& S= 111444222333121 \\
& T= 24343 \\
& 1152263374 \\
& 66477 \\
& 75526 \\
& 4576
\end{aligned} \text { 27732 } 573667713534641715553612742556
$$

which would lead to

$$
\left.\begin{array}{rl}
T^{\prime}= & 11822 \\
& 93304 \\
& 48199 \\
99400 & 08829 \\
4809
\end{array}\right]
$$

Where " 0 " denotes 10 and the spacings have been added to increase readability.

A possible base case for $n=11$ is

```
S = 11122 23114 2251332444 333525454143555
T=11657 43822 74468 54661 72736 18157 31888 77556 6688 57262
    58536 218484777641773 38826 67836 36428 7,
```

The corresponding strings T^{\prime}, U, and V can be found using the method outlined above.

4 Conversion Construction for $t=3$

Theorem 9 Any 3-Ucycle of $[n]$ can be converted to a 3-Mcycle of $[n]$.
Before giving the proof, we introduce two terms. We call each element of $[n]$ a letter, and each a_{i} in the Ucycle $X=a_{1} \ldots a_{k}$ a character. To summarize, a 3-Mcycle on $[n]$ is made up of $\binom{n+t-1}{t}$ characters, each of which equals one of n letters.

To demonstrate the proof's technique, we will first use an argument similar to it to create 2-Mcycles from 2-Ucycles. We start with this 2-Ucycle on [5]:

$$
1234513524 .
$$

Then, we repeat the first instance of every letter to create the following 2-Mcycle:

$$
112233445513524 .
$$

The technique works because repeating a character a_{i} as above adds the multiset $\left\{a_{i}, a_{i}\right\}$ to the Ucycle and has no other effect.

To use this technique on 3 -Ucycles, we repeat not single characters, but pairs of characters. For example, changing

$$
\ldots a_{i-1} a_{i} a_{i+1} a_{i+2} \ldots
$$

to

$$
\ldots a_{i-1} a_{i} a_{i+1} a_{i} a_{i+1} a_{i+2} \ldots
$$

has only the effect of adding the 3 -multisets $\left\{a_{i}, a_{i}, a_{i+1}\right\}$ and $\left\{a_{i}, a_{i+1}, a_{i+1}\right\}$ to the cycle. In order to use this technique, we will need to know which consecutive pairs of letters appear in a 3-Ucycle. For instance, the following 3 -Ucycle (generated using methods from [2]) on [8] contains every unordered pair of letters as consecutive characters but $\{1,5\},\{2,6\},\{3,7\}$, and $\{4,8\}$:

$$
12357836782458345712581246725671347234681478135614568236 \text {. }
$$

This Ucycle is missing 4 pairs, which happens to be $n / 2$. This is no coincidence: in fact, this is the most number of pairs that a 3 -Ucycle can fail to contain.

Claim 10 No two unordered pairs not appearing as consecutive characters in a 3-Ucycle have a letter in common. A 3-Ucycle can hence be missing at most $n / 2$ pairs of letters.

Proof. Suppose that we have a 3-Ucycle that contains neither a and b as consecutive characters, nor a and c as consecutive characters, where $a, b, c \in[n]$. Then the 3-Ucycle does not contain the 3-subset abc, because all permutations of $a b c$ contain either a and b consecutively, or a and c consecutively. But this is a contradiction, as a 3 -Ucycle by definition contains all 3 -subsets.

Hence, no two pairs of characters missing in the 3-Ucycle can have a letter in common. By the pigeonhole principle, the 3 -Ucycle can be missing at most $n / 2$ pairs of letters. \diamond
Proof of Theorem 9, Let X be a 3 -Ucycle on $[n]$. Let x_{1}, \ldots, x_{n} be a permutation of $[n]$ such that

- x_{1} equals the first character in X.
- x_{n} equals the last character in X.
- If x is even, the list $\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}, \ldots,\left\{x_{n-1} x_{n}\right\}$ contains all unordered pairs of letters not contained as consecutive characters in X, which is possible by our lemma. (If X is missing exactly $n / 2$ pairs of letters, these pairs will be exactly the pairs missing from X. If X is missing fewer than $n / 2$ pairs of letters, then the pairs consist of all missing pairs of letters, plus the remaining letters paired arbitrarily.)
If x is odd, one of the following lists contains all unordered pairs of letters not contained as consecutive characters in X :

1. $\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{n-2}, x_{n-1}\right\}$
2. $\left\{x_{1}, x_{2}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{6}, x_{7}\right\} \ldots,\left\{x_{n-1}, x_{n}\right\}$
3. $\left\{x_{2}, x_{3}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\}$

This is possible by our lemma. There can be at most $(n-1) / 2$ missing pairs of letters in X, and depending on whether x_{1}, x_{n}, or both is a member of a missing pair, one of the above lists can contain all the missing pairs. (As in the even case, it does not present any problems if X is missing fewer than $(n-1) / 2$ pairs.)

Construct X^{\prime} by repeating the first instance of every unordered pair of letters in X except for $\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\},\left\{x_{n}, x_{1}\right\}$. The cycle X^{\prime} now contains all multisets except

$$
\begin{gathered}
\left\{x_{1}, x_{1}, x_{1}\right\}, \ldots,\left\{x_{n}, x_{n}, x_{n}\right\} \\
\left\{x_{1}, x_{1}, x_{2}\right\},\left\{x_{1}, x_{2}, x_{2}\right\},\left\{x_{2}, x_{2}, x_{3}\right\},\left\{x_{2}, x_{3}, x_{3}\right\}, \ldots,\left\{x_{n}, x_{n}, x_{1}\right\},\left\{x_{n}, x_{1}, x_{1}\right\} .
\end{gathered}
$$

Now, add the string $x_{1} x_{1} x_{1} x_{2} x_{2} x_{2} \ldots x_{n} x_{n} x_{n}$ to the end of X^{\prime} to create $X^{\prime \prime}$. This provides exactly the missing multisets, creating a 3 -Mcycle.

As a finall illustration, when $n=8$ we start with the 3 -Ucycle

$$
\begin{aligned}
X= & 1235783678245834571258124672 \\
& 5671347234681478135614568236
\end{aligned}
$$

The 3-Ucycle X does not contain the pairs $\{1,5\},\{2,6\},\{3,7\}$, and $\{4,8\}$. Hence, we set

$$
\begin{aligned}
& x_{1}=1, x_{2}=5, x_{3}=3, x_{4}=7 \\
& x_{5}=4, x_{6}=8, x_{7}=2, x_{8}=6
\end{aligned}
$$

Note that x_{1} equals the first character of X, and x_{8} equals the last.
Now, we repeat the first instance of every unordered pair except for $\{1,5\}$, $\{5,3\},\{3,7\},\{7,4\},\{4,8\},\{8,2\},\{2,6\}$, and $\{6,1\}$. (Note that four of these pairs do not appear in X. If some of these pairs actually did appear in X, because X was missing fewer than $n / 2$ pairs of letters, it would not affect the proof.)

$$
\begin{aligned}
X^{\prime}= & 1212323575787838363676782424545858343457171252581812464672 \\
& 56567131347272346868141478135614568236 .
\end{aligned}
$$

Finally, we add the string $x_{1} x_{1} x_{1} \ldots x_{n} x_{n} x_{n}$ to complete the Mcycle.

$$
\begin{aligned}
X^{\prime \prime}= & 1212323575787838363676782424545858343457171252581812464672 \\
& 56567131347272346868141478135614568236 \\
& 111555333777444888222666
\end{aligned}
$$

5 Remarks

The proofs in Sections 3 and 4 suggest natural extensions to the $t=4$ and larger cases. Moreover, they may prove useful by their introduction of new techniques for approaching Ucycles. The section 3 proof is notable for its use of induction, a technique which has not yet been used to create Ucycles. This is especially promising in light of the many potential base cases provided by Jackson [3] for $t \leq 11$. The section 4 proof, while it is tied to Ucycles, is not tied to any particular approach for creating Ucycles, which is not true of the technique in Section 2, Since the necessary condition for the existence of Ucycles for t-subsets of $[n]$ is that n divides $\binom{n}{t}$, and since $\frac{1}{n}\binom{n+t-1}{t}=\frac{1}{n+t}\binom{n+t}{t}$, we see that the condition for t-Mcycles of $[n]$ is the same as the condition for t-Ucycles of $[n+t]$. Thus it is reasonable to assume that some sort of transformation between the two exists, as Knuth suggests.

For values of n and t for which Mcycles do exist, one interesting question is how many Mcycles exist. Clearly each Mcycles has n ! representations, since there are n ! permutations of $1, \ldots, n$. However, when searching for Mcycles using a computer, vast numbers of distinct (i.e. not differing merely by a permutation of $1, \ldots, n$) Mcycles were found. Currently, it is not clear whether $N(n, t)$, the number of distinct Mcycles for a given value of n and t, is a function that can be approximated well.

References

[1] F.R.K. Chung, P. Diaconis, R.I. Graham, Universal Cycles for Combinatorial Structures, Discrete Math. 110 (1992), 43-59.
[2] G. Hurlbert, On Universal Cycles for k-subsets of an n-set, SIAM J. Discrete Math. 7 (1994), 598-605.
[3] B. Jackson, personal communication (2004).
[4] D.E. Knuth, The Art of Computer Programming, Vol. 4, Fasc. 3: Generating All Combinations and Permutations. Addison-Wesley (2005).

[^0]: *Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287-1804, hurlbert@asu.edu
 ${ }^{\dagger}$ Department of Mathematics, Yale University, New Haven, CT 06520, tobias.l.johnson@gmail.com. Research supported in part by NSF grant 0552730.
 ${ }^{\ddagger}$ Department of Mathematics, Caltech, Pasadena, CA 91125, jzahl@zahl.ca. Research supported in part by NSF grant 0552730 .

